
Android Wifi Direct

Analysis

보고서 및 논문 윤리 서약

1. 나는 보고서 및 논문의 내용을 조작하지 않겠습니다.

2. 나는 다른 사람의 보고서 및 논문의 내용을 내 것처럼 무단으로 복사하지 않겠습니다.

3. 나는 다른 사람의 보고서 및 논문의 내용을 참고하거나 인용할 시 참고 및 인용 형식을

갖추고 출처를 반드시 밝히겠습니다.

4. 나는 보고서 및 논문을 대신하여 작성하도록 청탁하지도 청탁받지도 않겠습니다.

나는 보고서 및 논문 작성 시 위법 행위를 하지 않고, 명지인으로서 또한 공학인으로서
나의 양심과 명예를 지킬 것을 약속합니다.

보고서명 : Android Wifi Direct Analysis

명지대학교 보안경영공학과 김진성

nadas9029@gmail.com

1. 목적
Cloudlet의 보안을 점검하기 위해 Android의 WifiP2P 구현 소스를 분석하고 어떤 보안기술
이 적용되어 있는지 확인한다.

2. 배경
안드로이드 스마트 폰에서 Wifi Direct를 연결할 때 보안 연결에 대한 설정 부분이 없다. 안
드로이드 소스코드를 분석해서 어떤 보안을 사용하는지 확인해야 한다. 또한 사용한다면 키
생성은 어떻게 하는지 확인이 필요하다. 안드로이드 소스코드 버전은 4.4.4 Kitkat을 기반으로
한다.

3. 코드분석 정리
WifiP2pManager.java

public Channel initialize(Context srcContext, Looper srcLooper, ChannelListener
listener) {
 Messenger messenger = getMessenger();
 if (messenger == null) return null;

 Channel c = new Channel(srcContext, srcLooper, listener);
 if (c.mAsyncChannel.connectSync(srcContext, c.mHandler, messenger)
 == AsyncChannel.STATUS_SUCCESSFUL) {
 return c;
 } else {
 return null;
 }
}
◎Wifi Direct를 사용하기 위해서 처음으로 호출되어야 하는 함수
◎Wifi Direct에서 반드시 필요한 Channel을 return

public void discoverPeers(Channel c, ActionListener listener) {
 checkChannel(c);
 c.mAsyncChannel.sendMessage(DISCOVER_PEERS, 0, c.putListener(listener));
 }
◎이용가능한 Wi-Fi peers를 찾는다.

public void connect(Channel c, WifiP2pConfig config, ActionListener listener) {
 checkChannel(c);
 checkP2pConfig(config);
 c.mAsyncChannel.sendMessage(CONNECT, 0, c.putListener(listener), config);
 }
◎p2p 연결을 시작한다.
◎여기서 인자로 사용하는 WifiP2pConfig 클래스에서 WPS에 대한 설정을 하는 것을 확
인했다. 그렇기 때문에 WifiP2pConfig 클래스를 분석할 필요가 있다.

WifiP2pConfig.java
변수

String deviceAddress
WpsInfo wps
static final int MAX_GROUP_OWNER_INTENT = 15
static final int MIN_GROUP_OWNER_INTENT = 0
int groupOwnerIntent
int netId

◎WPS의 정보를 가지고 있는 WpsInfo를 가지고 있다.
◎Group Owner를 결정하기 위한 GROUP_OWNER_INTENT의 최대 최소값을 가지고 있
고 GROUP_OWNER_INETEN가 높은 디바이스가 Group Owner가 된다.

함수
public WifiP2pConfig() {
 //set defaults
 wps = new WpsInfo();
 wps.setup = WpsInfo.PBC;
}
◎기본 생성자
◎WpsInfo()를 만들어서 default 설정값인 PBC로 설정한다.

public WifiP2pConfig(String supplicantEvent) throws IllegalArgumentException {
 String[] tokens = supplicantEvent.split(" ");

 if (tokens.length < 2 || !tokens[0].equals("P2P-GO-NEG-REQUEST")) {
 throw new IllegalArgumentException("Malformed supplicant event");
 }

 deviceAddress = tokens[1];
 wps = new WpsInfo();

 if (tokens.length > 2) {
 String[] nameVal = tokens[2].split("=");
 int devPasswdId;
 try {
 devPasswdId = Integer.parseInt(nameVal[1]);
 } catch (NumberFormatException e) {
 devPasswdId = 0;
 }
 //Based on definitions in wps/wps_defs.h
 switch (devPasswdId) {
 //DEV_PW_USER_SPECIFIED = 0x0001,
 case 0x01:
 wps.setup = WpsInfo.DISPLAY;
 break;
 //DEV_PW_PUSHBUTTON = 0x0004,
 case 0x04:
 wps.setup = WpsInfo.PBC;
 break;
 //DEV_PW_REGISTRAR_SPECIFIED = 0x0005
 case 0x05:
 wps.setup = WpsInfo.KEYPAD;
 break;
 default:
 wps.setup = WpsInfo.PBC;
 break;
 }
 }
}
◎supplicantEvent 스트링을 넘겨받는 생성자
◎공백(“ ”)을 기준으로 split하여 P2P-GO-NEG-REQUEST이면 정상적인 호출로 확인한
다.
◎정상적인 호출로 판단하면 deviceAddress를 설정하고 WpsInfo를 생성한다.
◎그리고 devPasswdId 부분을 분석하여 각자에 맞는 설정을 해준다.
◎default 설정은 PBC를 사용하는 것으로 한다.
◎DISPLAY 설정은 pin을 생성하여 화면에 보여줌
◎PBC 설정은 push button configuration 설정함
◎KEYPAD 설정은 디바이스를 통해서 PIN 값을 입력받음
◎위 내용을 살펴봤을 때 String supplicantEvent의 내용은 다음과 같은 형식으로 볼 수
있다. P2P-GO-NEG-REQUEST {deviceAddress} dev_passwd_id={CODE}

public WifiP2pConfig(WifiP2pConfig source) {
 if (source != null) {
 deviceAddress = source.deviceAddress;
 wps = new WpsInfo(source.wps);
 groupOwnerIntent = source.groupOwnerIntent;
 netId = source.netId;
 }
}
◎복사 생성자
◎deviceAddress, wpsInfo, groupOwnerIntent, netId를 복사한다.

WifiP2pService.java

class InactiveState

public boolean processMessage(Message message) {
 if (DBG) logd(getName() + message.toString());
 switch (message.what) {
 case WifiP2pManager.CONNECT:
 if (DBG) logd(getName() + " sending connect");
 WifiP2pConfig config = (WifiP2pConfig) message.obj;
 if (isConfigInvalid(config)) {
 loge("Dropping connect requeset " + config);
 replyToMessage(message, WifiP2pManager.CONNECT_FAILED);
 break;
 }

 mAutonomousGroup = false;
 mWifiNative.p2pStopFind();
 if (reinvokePersistentGroup(config)) {
 transitionTo(mGroupNegotiationState);
 } else {
 transitionTo(mProvisionDiscoveryState);
 }
 mSavedPeerConfig = config;
 mPeers.updateStatus(mSavedPeerConfig.deviceAddress,
 WifiP2pDevice.INVITED);
 sendPeersChangedBroadcast();
 replyToMessage(message,
 WifiP2pManager.CONNECT_SUCCEEDED);
 break;
◎WifiP2pManager.java의 connect를 통해서 보낸 message를 처리한다.
◎isConfigInvalid(config)는 deviceAddress에 대한 유효성 검사
◎reinvokePersistentGroup(config)는 netID에 대한 처리

class GroupCreatedState

case WifiP2pManager.CONNECT:
 WifiP2pConfig config = (WifiP2pConfig) message.obj;
 if (isConfigInvalid(config)) {
 loge("Dropping connect requeset " + config);
 replyToMessage(message, WifiP2pManager.CONNECT_FAILED);
 break;
 }
 logd("Inviting device : " + config.deviceAddress);
 mSavedPeerConfig = config;
 if (mWifiNative.p2pInvite(mGroup, config.deviceAddress)) {
 mPeers.updateStatus(config.deviceAddress, WifiP2pDevice.INVITED);
 sendPeersChangedBroadcast();
 replyToMessage(message, WifiP2pManager.CONNECT_SUCCEEDED);
 } else {
 eplyToMessage(message, WifiP2pManager.CONNECT_FAILED,
 WifiP2pManager.ERROR);
 }
// TODO: figure out updating the status to declined when invitation is rejected
 break;
◎GroupCreatedState에서의 .CONNECT처리
◎이 CONNECT처리에서도 deviceAddress만을 처리한다.

case WifiP2pManager.START_WPS:
 WpsInfo wps = (WpsInfo) message.obj;
 if (wps == null) {
 replyToMessage(message, WifiP2pManager.START_WPS_FAILED);
 break;
 }
 boolean ret = true;
 if (wps.setup == WpsInfo.PBC) {
 ret = mWifiNative.startWpsPbc(mGroup.getInterface(), null);
 } else {
 if (wps.pin == null) {
 String pin = mWifiNative.startWpsPinDisplay(mGroup.getInterface());
 try {
 Integer.parseInt(pin);
 notifyInvitationSent(pin, "any");
 } catch (NumberFormatException ignore) {
 ret = false;
 }
 } else {
 ret = mWifiNative.startWpsPinKeypad(mGroup.getInterface(), wps.pin);
 }
 }
 replyToMessage(message, ret ? WifiP2pManager.START_WPS_SUCCEEDED :
 WifiP2pManager.START_WPS_FAILED);
 break;
◎GroupCreatedState에서의 START_WPS 처리부분
◎WpsInfo.PBC로 설정되어 있을 때는 mWifiNative.startWpsPbc()로 처리
◎pin이 null일 때는 Display로 처리하고 null이 아닐때는 Keypad로 처리한다.
◎문제 : 어디서 START_WPS를 보내는지 확인하지 못함
◎각 Native 함수에 대한 분석이 필요

4. 결론
처음 연결 시 WPS를 이용한다. connect 함수를 호출하면서 사용하는 WifiP2pConfig 객체를
통해서 WpsConfig를 설정하는 것을 확인했다. 하지만 WifiP2pService.java에서
WifiP2pManager.START_WPS를 어디에서 보내는 것인지 확인하지 못했다. 또한 이후 통신
에서 사용할 WPA2를 위한 설정이 어디에서 이루어지는지 확인하지 못했다. 이 설정을 확인
하기 위해서 CONNECT이후 수행된다고 나와 있는 몇몇 함수를 확인해봤지만 확인하지 못했
다.
 WifiP2pService.java에서 wpa_supplicant를 많이 볼 수 있는데 검색 결과 안드로이드에서
는 wpa_supplicant를 이용해서 WPA2를 구현한 것 같다. 어떻게 키가 생성되고 통신하는지
좀 더 살펴볼 필요가 있다. wpa_supplicant의 자세한 내용은 w1.fi/wpa_supplicant/에서 확
인할 수 있다.

