
안드로이드�시스템�서비스�구현하기�
�

1.�AIDL�컴파일러에�의해서�서비스�인터페이스를�자동으로�생성해주는�aidl 파일�작성�
/frameworks/base/core/java/android/app/ISimpleSystemService.aidl�

�

package�android.app;�

�

/**�

*�

*�

*{@hide}�

*/�

�

interface�ISimpleSystemService{�

� void�serviceMethod();�

}�

�

�

�

2.�위의�aidl 파일을�인지하고�AIDL 컴파일러에�의해�컴파일�될�수�있도록�추가해준다.�
LOCA_SRC_FILES�+=�\�부분에�다른�aidl 파일들과�같은�형식으로�작성한다.�

/frameworks/base/Android.mk�

�

�

�

�

3.�aidl 을�통해서�자동으로�만들어진�ISimpleSystemService.Stub�클래스를�상속받아�
구현한다.�

/frameworks/base/services/java/com/android/server/SimpleSystemService.java�

package�com.android.server;�

�

import�android.app.ISimpleSystemService;�

import�android.content.Context;�

import�android.os.RemoteException;�

import�android.util.Slog;�

�

public�class�SimpleSystemService�extends�ISimpleSystemService.Stub{�

� static�final�String�TAG�=�"SimpleSystemService";�

� Context�mContext;�

� public�static�int�i=0;�

� static�DoSomething�thread;�

� �

� public�SimpleSystemService(Context�context){�

� � mContext�=�context;�

� � Slog.i(TAG,�"SimpleSystemService�is�start");�

� � �

� � thread�=�new�DoSomething();�

� � thread.start();�

� }�

� �

� public�void�serviceMethod()�throws�RemoteException{�

� � Slog.i(TAG,�"call�serviceMethod()");�

� � Slog.i(TAG,�i+"");�

� }�

}�

class�DoSomething�extends�Thread{�

� @Override�

� public�void�run()�{�

� � //�TODO�Auto-generated�method�stub�

� � while(true){�

� � � SimpleSystemService.i++;�

� � � try�{�

� � � � Slog.i(SimpleSystemService.TAG,�

� � � � � � SimpleSystemService.i+"");�

� � � � Thread.sleep(1000);�

� � � }�catch�(Exception�e)�{�

� � � � //�TODO:�handle�exception�

� � � � e.printStackTrace();�

� � � }�

� � }�

� }�

}�

4.�작성한�서비스를�SystemServer 에�등록시켜�줘야�한다.�
Service 를�ServiceManager 가�Map 형식으로�관리한다.�

키�값은��

/frameworks/base/services/java/com/android/server/SystemService.java�

//�Bring�up�services�needed�for�UI.�

��������if�(factoryTest�!=�SystemServer.FACTORY_TEST_LOW_LEVEL)�{�

��������� try�{�

� � SimpleSystemService�simpleSystemService�=��

� � � � ���new�SimpleSystemService(context);�

� � ServiceManager.addService(Context.SIMPLE_SYSTEM_SERVICE,�

� � � � � � � �(IBinder)simpleSystemService);�

� }�catch�(Throwable�e)�{�

� � //�TODO:�handle�exception�

� � Slog.e(TAG,�"Fail..");�

� }�

�

� �

5.�Context.SIMPLE_SYSTEM_SERVICE�문자열을�추가해준다.�
/frameworks/base/core/java/android/content/Context.java�

� public�static�final�String�SIMPLE_SYSTEM_SERVICE�=�"simplesystemservice";�

�

6.�service를�구현했으면�service를�개발자가�사용할�수�있도록�Manager를�구현한다.�
Manager 는�Service�인스턴스를�만들어서�해당하는�메소드를�호출시켜주면�된다.�

/frameworks/base/core/java/android/app/SimpleSystemServiceManager.java�

package�android.app;�

�

import�android.os.RemoteException;�

�

public�class�SimpleSystemServiceManager�{�

� private�final�ISimpleSystemService�mService;�

� �

� SimpleSystemServiceManager(ISimpleSystemService�service){�

� � super();�

� � mService�=�service;�

� }�

� public�void�serviceMethod(){�

� � try�{�

� � � mService.serviceMethod();�

� � }�catch�(RemoteException�e)�{�

� � � //�TODO:�handle�exception�

� � }�

� }�

}�

�

7.�개발자가�getSystemService를�통해서�이�서비스를�이용할�수�있도록�해준다.�
Service 를�가지고�있는�Manager 를�return 한다.�

/frameworks/base/core/java/android/app/ContextImple.java�

static�{�

��������registerService(ALARM_SERVICE,�new�ServiceFetcher()�{�

����������������public�Object�createService(ContextImpl�ctx)�{�

��������������������IBinder�b�=�ServiceManager.getService(ALARM_SERVICE);�

��������������������IAlarmManager�service�=�IAlarmManager.Stub.asInterface(b);�

��������������������return�new�AlarmManager(service,�ctx);�

����������������}});�

���������

��������registerService(HELLO_SERVICE,�new�ServiceFetcher()�{�

��������� public�Object�createService(ContextImpl�ctx){�

��������� � IBinder�b�=�ServiceManager.getService(HELLO_SERVICE);�

��������� � IHelloWorld�service�=�IHelloWorld.Stub.asInterface(b);�

��������� � Log.d("mymymymymymy",�"hello�world�service�manager�is�loaded");� � �

��������� � return�new�HelloWorldManager(service);�

��������� }�

��������});�

���������

��������registerService(SIMPLE_SYSTEM_SERVICE,�new�ServiceFetcher(){�

��������� public�Object�createService(ContextImpl�ctx){�

��������� � IBinder�b�=�ServiceManager.getService(SIMPLE_SYSTEM_SERVICE);�

��������� � ISimpleSystemService�service�=�ISimpleSystemService.Stub.asInterface(b);�

��������� � return�new�SimpleSystemServiceManager(service);�

��������� }�

��������});�

8.�서비스를�작성했으면�빌드�한다.�
�

빌드를�할�때�SDK�API 가�변경된것을�알리는�메시지가�나온다.�

�

�

Make�update-api�를�통해서�api 를�업데이트�해주고�다시�make 로�빌드를�진행하면�된다.�

�

�

9.��개발자가�사용할�때는�Manager 를�getSystemService 로�얻어서�사용한다.�
SimpleSystemServiceManager�simpleSystemService�=�� �

(SimpleSystemServiceManager)getSystemService("simplesystemservice");�

simpleSystemService.serviceMethod();�

�

� �

시스템�서비스에서�parameter�사용하기�
�

�

http://developer.android.com/guide/components/aidl.html�

�

Primitive�Type�변수들은�특별한�처리�없이�사용할�수�있다.�

�

다른�변수들은�in�이라는�키워드를�통해서�받는�parameter 라는�것을�명시해주어야�한다.�

�

package�android.app;�

�

/**�

*�

*�

*{@hide}�

*/�

�

interface�ISimpleSystemService{�

� void�serviceMethod();�

� int�getInteger();�

� void�setInteger(int�integer);�

� String�getString();�

� void�setString(in�String�string);�

�������������MyObject�getMyObject();�

�������������void�setMyObject(in�MyObject�myObject);�

}�

�

�

� �

사용자가�정의한�객체를�전달하기�위해서는��

해당�객체에�대한�인터페이스를�정의하는�aidl 파일을�작성해야한다.�

�

/frameworks/base/core/java/android/app/MyObject.aidl�

�

package�android.app;�

�

parcelable�MyObject;�

�

그리고�객체를�작성해주면�된다.�객체를�작성할�때는�parcelable 을�implements 해줘야�한다.�

/frameworks/base/core/java/android/app/MyObject.java�

package�kr.ac.mju.hmcl.systemservice;�

�

import�android.os.Parcel;�

import�android.os.Parcelable;�

�

�

public�class�MyObject�implements�Parcelable{�

�

� public�int�a;�

� �

� public�MyObject(){}�

� �

� public�MyObject(Parcel�in){�

� � readFromParcel(in);�

� }�

� �

� public�static�final�Parcelable.Creator<MyObject>�CREATOR�=��

� � � � � � new�Parcelable.Creator<MyObject>(){�

� � public�MyObject�createFromParcel(Parcel�in){�

� � � return�new�MyObject(in);�

� � }�

�

� � @Override�

� � public�MyObject[]�newArray(int�size)�{�

� � � return�new�MyObject[size];�

� � }�

� };�

� �

� @Override�

� public�void�writeToParcel(Parcel�dest,�int�flags)�{�

� � //�TODO�Auto-generated�method�stub�

� � dest.writeInt(a);�

� }�

� �

� public�void�readFromParcel(Parcel�in){�

� � a�=�in.readInt();�

� }�

�

� @Override�

� public�int�describeContents()�{�

� � //�TODO�Auto-generated�method�stub�

� � return�0;�

� }�

}�

�

�

�

� �

/frameworks/base/services/java/com/android/server/SimpleSystemService.java�

package�com.android.server;�

�

import�android.app.ISimpleSystemService;�

import�android.app.MyObject;�

import�android.content.Context;�

import�android.os.RemoteException;�

import�android.util.Slog;�

�

public�class�SimpleSystemService�extends�ISimpleSystemService.Stub{�

� static�final�String�TAG�=�"SimpleSystemService";�

� Context�mContext;�

� public�static�int�i=0;�

� private�int�integer;�

� private�String�string;�

� static�DoSomething�thread;�

� private�MyObject�myObject;�

� �

� public�SimpleSystemService(Context�context){�

� � mContext�=�context;�

� � Slog.i(TAG,�"SimpleSystemService�is�start");�

� � �

� � thread�=�new�DoSomething();�

� � thread.start();�

� }�

� �

� public�void�serviceMethod()�throws�RemoteException{�

� � Slog.i(TAG,�"call�serviceMethod()");�

� � Slog.i(TAG,�i+"");�

� }�

� �

� public�int�getInteger()�throws�RemoteException{�

� � Slog.i(TAG,�"call�getInteger");�

� � return�integer;�

� }�

� �

� public�void�setInteger(int�integer)�throws�RemoteException{�

� � Slog.i(TAG,�"call�setInteger");�

� � this.integer�=�integer;�

� }�

� �

� public�String�getString()�throws�RemoteException{�

� � Slog.i(TAG,�"call�getString");�

� � return�string;�

� }�

� �

� public�void�setString(String�string)�throws�RemoteException{�

� � Slog.i(TAG,�"call�setString");�

� � this.string�=�string;�

� }�

� �

� public�void�setMyObject(MyObject�myObject)�throws�RemoteException{�

� � Slog.i(TAG,�"call�setMyObject");�

� � this.myObject�=�myObject;�

� � �

� }�

�

� @Override�

� public�MyObject�getMyObject()�throws�RemoteException�{�

� � //�TODO�Auto-generated�method�stub�

� � return�myObject;�

� }�

}�

�

class�DoSomething�extends�Thread{�

� @Override�

� public�void�run()�{�

� � //�TODO�Auto-generated�method�stub�

� � while(true){�

� � � SimpleSystemService.i++;�

� � � try�{�

� � � � Slog.i(SimpleSystemService.TAG,�SimpleSystemService.i+"");�

� � � � Thread.sleep(1000);�

� � � }�catch�(Exception�e)�{�

� � � � //�TODO:�handle�exception�

� � � � e.printStackTrace();�

� � � }�

� � }�

� }�

}�

�

�

�

�

/frameworks/base/core/java/android/app/SimpleSystemServiceMnager.java�

package�android.app;�

�

import�android.os.RemoteException;�

import�android.app.MyObject;�

�

public�class�SimpleSystemServiceManager�{�

� private�final�ISimpleSystemService�mService;�

� �

� SimpleSystemServiceManager(ISimpleSystemService�service){�

� � super();�

� � mService�=�service;�

� }�

� �

� public�void�serviceMethod(){�

� � try�{�

� � � mService.serviceMethod();�

� � }�catch�(RemoteException�e)�{�

� � � //�TODO:�handle�exception�

� � }�

� }�

� �

� public�int�getInteger(){�

� � try{�

� � � return�mService.getInteger();�

� � }�catch�(RemoteException�e){�

� � � return�0;�

� � }�

� }�

� �

� public�void�setInteger(int�integer){�

� � try�{�

� � � mService.setInteger(integer);�

� � }�catch�(RemoteException�e)�{�

� � � //�TODO:�handle�exception�

� � }�

� }�

� �

� public�String�getString(){�

� � try�{�

� � � return�mService.getString();�

� � }�catch�(RemoteException�e)�{�

� � � //�TODO:�handle�exception�

� � � return�null;�

� � }�

� }�

� �

� public�void�setString(String�string){�

� � try�{�

� � � mService.setString(string);�

� � }�catch�(RemoteException�e)�{�

� � � //�TODO:�handle�exception�

� � }�

� }�

� �

� public�void�setMyObject(MyObject�myObject){�

� � try�{�

� � � mService.setMyObject(myObject);�

� � }�catch�(RemoteException�e)�{�

� � � //�TODO:�handle�exception�

� � }�

� }�

� �

� public�MyObject�getMyObject(){�

� � try�{�

� � � return�mService.getMyObject();�

� � }�catch�(Exception�e)�{�

� � � return�null;�

� � }�

� }�

}�

�

� �

�

Primitive�Type�변수를�사용한�결과�

�

�

String�Type 을�사용한�결과�

�

�

객체를�사용한�결과�

�

�

�

