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a b s t r a c t

Recent advances in data-intensive computing for science discovery are fueling a dramatic growth in
the use of data-intensive iterative computations. The utility computing model introduced by cloud
computing, combinedwith the rich set of cloud infrastructure and storage services, offers a very attractive
environment in which scientists can perform data analytics. The challenges to large-scale distributed
computations on cloud environments demand innovative computational frameworks that are specifically
tailored for cloud characteristics to easily and effectively harness the power of clouds. Twister4Azure
is a distributed decentralized iterative MapReduce runtime for Windows Azure Cloud. Twister4Azure
extends the familiar, easy-to-use MapReduce programming model with iterative extensions, enabling
a fault-tolerance execution of a wide array of data mining and data analysis applications on the Azure
cloud. Twister4Azure utilizes the scalable, distributed and highly available Azure cloud services as the
underlying building blocks, and employs a decentralized control architecture that avoids single point
failures. Twister4Azure optimizes the iterative computations using a multi-level caching of data, a cache-
aware decentralized task scheduling, hybrid tree-based data broadcasting and hybrid intermediate data
communication. This paper presents the Twister4Azure iterative MapReduce runtime and a study of
four real world data-intensive scientific applications implemented using Twister4Azure – two iterative
applications, Multi-Dimensional Scaling and KMeans Clustering; and two pleasingly parallel applications,
BLAST+ sequence searching and SmithWaterman sequence alignment. Performancemeasurements show
comparable or a factor of 2 to 4 better results than the traditional MapReduce runtimes deployed on up to
256 instances and for jobs with tens of thousands of tasks. We also study and present solutions to several
factors that affect the performance of iterative MapReduce applications on Windows Azure Cloud.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The current parallel computing landscape is vastly populated
by the growing set of data-intensive computations that require
enormous amounts of computational as well as storage resources
and novel distributed computing frameworks. The pay-as-you-go
cloud computing model provides an option for the computational
and storage needs of such computations. The new generation of
distributed computing frameworks such as MapReduce focuses on
catering to the needs of such data-intensive computations.

Iterative computations are at the core of the vast majority of
large-scale data-intensive computations. Many important data-
intensive iterative scientific computations can be implemented as
iterative computation and communication steps, in which compu-
tations inside an iteration are independent and are synchronized
at the end of each iteration through reduce and communication
steps, making it possible for individual iterations to be parallelized
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using technologies such as MapReduce. Examples of such appli-
cations include dimensional scaling, many clustering algorithms,
many machine learning algorithms, and expectation maximiza-
tion applications, among others. The growth of such data-intensive
iterative computations in number as well as importance is driven
partly by the need to process massive amounts of data, and partly
by the emergence of data-intensive computational fields, such as
bioinformatics, chemical informatics and web mining.

Twister4Azure is a distributed decentralized iterative MapRe-
duce runtime for Windows Azure Cloud that has been developed
utilizing Azure cloud infrastructure services. Twister4Azure ex-
tends the familiar, easy-to-use MapReduce programming model
with iterative extensions, enabling a wide array of large-scale
iterative data analysis and scientific applications to utilize the
Azure platform easily and efficiently in a fault-tolerant man-
ner. Twister4Azure effectively utilizes the eventually consistent,
high-latency Azure cloud services to deliver performance that is
comparable to traditional MapReduce runtimes for non-iterative
MapReduce,while outperforming traditionalMapReduce runtimes
for iterative MapReduce computations. Twister4Azure has mini-
mal management and maintenance overheads and provides users
with the capability to dynamically scale up or down the amount
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of computing resources. Twister4Azure takes care of almost all the
Azure infrastructure (service failures, load balancing, etc.) and co-
ordination challenges, and frees users from having to deal with
the complexity of the cloud services. Window Azure claims to al-
low users to ‘‘focus on your applications, not the infrastructure’’.
Twister4Azure takes that claim one step further and lets users fo-
cus only on the application logic without worrying about the ap-
plication architecture.

Applications of Twister4Azure can be categorized according
to three classes of application patterns. The first of these are
the Map only applications, which are also called pleasingly (or
embarrassingly) parallel applications. Examples of this type of
applications include Monte Carlo simulations, BLAST+ sequence
searches, parametric studies and most of the data cleansing and
pre-processing applications. Section 4.5 analyzes the BLAST+ [1]
Twister4Azure application.

The second type of applications includes the traditionalMapRe-
duce type applications,which utilize the reduction phase and other
features of MapReduce. Twister4Azure contains sample imple-
mentations of the SmithWaterman-GOTOH (SWG) [2] pairwise se-
quence alignment andWord Count as traditional MapReduce type
applications. Section 4.4 analyzes the SWG Twister4Azure applica-
tion.

The third and most important type of applications Twister4-
Azure supports is the iterative MapReduce type applications.
As mentioned above, there exist many data-intensive scientific
computation algorithms that rely on iterative computations,
wherein each iterative step can be easily specified as a MapReduce
computation. Sections 4.2 and 4.3 present detailed analyses
of Multi-Dimensional Scaling and KMeans Clustering iterative
MapReduce implementations. Twister4Azure also contains an
iterative MapReduce implementation of PageRank, and we are
actively working on implementing more iterative scientific
applications using Twister4Azure.

Developing Twister4Azure was an incremental process, which
began with the development of pleasingly parallel cloud progra-
mming frameworks [3] for bioinformatics applications utilizing
cloud infrastructure services. The MRRoles4Azure [4] MapReduce
framework for Azure cloud was developed based on the success
of pleasingly parallel cloud frameworks and was released in
late 2010. We started working on Twister4Azure to fill the void
of distributed parallel programming frameworks in the Azure
environment (as of June 2010) and the first public beta release of
Twister4Azure (http://salsahpc.indiana.edu/twister4azure/) was
made available in mid-2011.

2. Background

2.1. MapReduce

The MapReduce [5] data-intensive distributed computing
paradigm was introduced by Google as a solution for processing
massive amounts of data using commodity clusters. MapReduce
provides an easy-to-use programming model that features fault
tolerance, automatic parallelization, scalability and data locality-
based optimizations.

2.2. Apache Hadoop

Apache Hadoop [6] MapReduce is a widely used open-source
implementation of the Google MapReduce [5] distributed data
processing framework. Apache Hadoop MapReduce uses the
Hadoop distributed file system (HDFS) [7] for data storage, which
stores the data across the local disks of the computing nodes
while presenting a single file system view through the HDFS
API. HDFS is targeted for deployment on unreliable commodity
clusters and achieves reliability through the replication of file
data. When executing MapReduce programs, Hadoop optimizes
data communication by scheduling computations near the data
by using the data locality information provided by the HDFS
file system. Hadoop has an architecture consisting of a master
node with many client workers and uses a global queue for
task scheduling, thus achieving natural load balancing among the
tasks. The MapReduce model reduces the data transfer overheads
by overlapping data communication with computations when
reduce steps are involved. Hadoop performs duplicate executions
of slower tasks and handles failures by rerunning the failed tasks
using different workers

2.3. Twister

The Twister [8] iterativeMapReduce framework is an expansion
of the traditionalMapReduce programmingmodel,which supports
traditional as well as iterative MapReduce data-intensive compu-
tations. Twister supports MapReduce in the manner of ‘‘configure
once, and run many times’’. Twister configures and loads static
data into Map or Reduce tasks during the configuration stage, and
then reuses the loaded data through the iterations. In each itera-
tion, the data is first mapped in the compute nodes, and reduced,
then combined back to the driver node (control node). Twister sup-
ports direct intermediate data communication, using direct TCP
as well as using messaging middleware, across the workers with-
out saving the intermediate data products to the disks. With these
features, Twister supports iterative MapReduce computations effi-
ciently when compared to other traditional MapReduce runtimes
such as Hadoop [9]. Fault detection and recovery are supported be-
tween the iterations. In this paper, we use the Java implementation
of Twister and identify it as Java HPC Twister.

Java HPC Twister uses a master driver node for management
and controlling of the computations. TheMap and Reduce tasks are
implemented as worker threads managed by daemon processes
on each worker node. Daemons communicate with the driver
node and with each other through messages. For command, com-
munication and data transfers, Twister uses a Publish/Subscribe
messaging middleware system and ActiveMQ [10] is used for the
current experiments. Twister performs optimized broadcasting
operations by using the chain method [11] and uses the minimum
spanning tree method [12] for efficiently sending Map data from
the driver node to the daemon nodes. Twister supports data distri-
bution andmanagement through a set of scripts as well as through
the HDFS [7].

2.4. Microsoft Azure platform

The Microsoft Azure platform [13] is a cloud computing
platform that offers a set of cloud computing services. Windows
Azure Compute allows the users to leaseWindows virtual machine
instances according to a platform as service model and offers
the .net runtime as the platform through two programmable roles
called Worker Roles and Web Roles. Starting recently Azure also
supports VM roles (beta), enabling the users to deploy virtual
machine instances supporting an infrastructure as a service model
as well. Azure offers a limited set of instance types (Table 1) on a
linear price and feature scale [13].

The Azure Storage Queue is an eventual consistent, reliable,
scalable and distributed web-scale message queue service that is
ideal for small, short-lived, transient messages. The Azure queue
does not guarantee the order of the messages, the deletion of
messages or the availability of all themessages for a single request,
although it guarantees eventual availability overmultiple requests.
Each message has a configurable visibility timeout. Once a client
reads a message, the message will be invisible for other clients for
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Fig. 1. MRRoles4Azure architecture [4].
Table 1
Azure instance types.

Virtual machine size CPU cores Memory Cost per hour

Extra small Shared 768 MB $0.04
Small 1 1.75 GB $0.12
Medium 2 3.5 GB $0.24
Large 4 7 GB $0.48
Extra large 8 14 GB $0.96

the duration of the visibility time out. It will become visible for
the other client once the visibility time expires unless the previous
reader deletes it. The Azure Storage Table service offers a large-
scale eventually consistent structured storage. Azure Table can
contain a virtually unlimited number of entities (records or rows)
that can be up to 1 MB. Entities contain properties (cells), that can
be up to 64 KB. A table can be partitioned to store the data across
many nodes for scalability. The Azure Storage Blob service provides
a web-scale distributed storage service in which users can store
and retrieve any type of data through a web services interface.
Azure Blob services supports two types of Blobs, Page blobs that
are optimized for random read/write operations and Block blobs
that are optimized for streaming. Windows Azure Drive allows the
users to mount a Page blob as a local NTFS volume.

Azure has a logical concept of regions that binds a particular
service deployment to a particular geographic location or in other
words to a data center. Azure also has an interesting concept of
‘‘affinity groups’’ that can be specified for both services as well as
for storage accounts. Azure tries its best to deploy services and
storage accounts of a given affinity group close to each other to
ensure optimized communication between each other.

2.5. MRRoles4Azure

MRRoles4Azure [4] is a distributed decentralized MapReduce
runtime for the Windows Azure cloud platform that utilizes
Azure cloud infrastructure services. MRRoles4Azure overcomes
the latencies of cloud services by using sufficiently coarser grained
Map and Reduce tasks. It overcomes the eventual data availability
of cloud storage services through re-trying and explicitly designing
the system so that it does not rely on the immediate availability
of data across all distributed workers. As shown in Fig. 1,
MRRoles4Azure uses Azure Queues for Map and Reduce task
scheduling, Azure Tables for metadata and monitoring data
storage, Azure Blob storage for data storage (input, output and
intermediate) and the Window Azure Compute worker roles to
perform the computations.

In order to withstand the brittleness of cloud infrastructures
and to avoid potential single point failures, we designed MR-
Roles4Azure as a decentralized control architecture that does not
rely on a central coordinator or a client side driver. MRRoles4Azure
provides users with the capability to dynamically scale up/down
the number of computing resources. MRRoles4Azure runtime dy-
namically schedules Map and Reduce tasks using a global queue
achieving a natural load balancing, given a sufficient amount of
tasks. MR4Azure handles task failures and slower tasks through re-
execution and duplicate executions respectively. MapReduce ar-
chitecture requires the Reduce tasks to ensure the receipt of all
the intermediate data products from Map tasks before beginning
the Reduce phase. Since ensuring such a collective decision is not
possible with the direct use of eventual consistent tables, MR-
Roles4Azure uses additional data structures on top of Azure Tables
for this purpose. Gunarathne et al. [4] present more detailed de-
scriptions of MRRoles4Azure, and show that MRRoles4Azure per-
forms comparably to the other contemporary popular MapReduce
runtimes.

2.6. Bio sequence analysis pipeline

Thebio-informatics genomeprocessing andvisualizing pipeline
[14] shown in Fig. 2 inspired the application use cases analyzed in
this paper. This pipeline uses the SmithWaterman-GOTOH appli-
cation, analyzed in Section 4.4, or BLAST+ application, analyzed
in Section 4.5, for sequence alignment, Pairwise clustering for se-
quence clustering and the Multi-Dimensional Scaling application,
analyzed in Section 4.1, to reduce the dimensions of the distance
matrix to generate 3D coordinates for visualization purposes. This
pipeline is currently in use to process and visualize hundreds of
thousands of genomes with the ultimate goal of visualizing mil-
lions of genome sequences.
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Fig. 2. Bio sequence analysis pipeline.
3. Twister4Azure-Iterative MapReduce

Twister4Azure is an iterative MapReduce framework for the
Azure cloud that extends the MapReduce programming model
to support data-intensive iterative computations. Twister4Azure
enables a wide array of large-scale iterative data analysis and data
mining applications to utilize the Azure cloud platform in an easy,
efficient and fault-tolerant manner. Twister4Azure extends the
MRRoles4Azure architecture by utilizing the scalable, distributed
and highly available Azure cloud services as the underlying
building blocks. Twister4Azure employs a decentralized control
architecture that avoids single point failures.

3.1. Twister4Azure programming model

We identified the following requirements for choosing or de-
signing a suitable programming model for scalable parallel com-
puting in cloud environments.

(1) The ability to express a sufficiently large and useful subset of
large-scale data-intensive and parallel computations,

(2) That it should be simple, easy-to-use and familiar to the users,
(3) That it should be suitable for efficient execution in the cloud

environments.

We selected the data-intensive iterative computations as a
suitable and sufficiently large subset of parallel computations that
could be executed in the cloud environments efficiently, while
using iterative MapReduce as the programming model.

3.1.1. Data-intensive iterative computations
There exist a significant amount of data analysis, data mining

and scientific computation algorithms that rely on iterative
computations, where we can easily specify each iterative step
as a MapReduce computation. Typical data-intensive iterative
computations follow the structure given in Code 1 and Fig. 3. We
can identify two main types of data in these computations, the
loop-invariant input data and the loop-variant delta values. Loop-
variant delta values are the result, or a representation of the result,
of processing the input data in each iteration. Computations of
an iteration use the delta values from the previous iteration as
an input. Hence, these delta values need to be communicated to
the computational components of the subsequent iteration. One
example of such delta values would be the centroids in a KMeans
Clustering computation (Section 4.3). Single iterations of such
computations are easy to parallelize by processing the data points
or blocks of data points independently in parallel, and performing
synchronization between the iterations through communication
steps.

Twister4Azure extends the MapReduce programming model
to support the easy parallelization of the iterative computations
by adding a Merge step to the MapReduce model, and also
by adding an extra input parameter for the Map and Reduce
APIs to support the loop-variant delta inputs. Code 1 depicts
the structure of a typical data-intensive iterative application,
while Code 2depicts the corresponding Twister4AzureMapReduce
representation. Twister4Azure will generate Map tasks (lines 5–7
in Code 1, lines 8–12 in Code 2) for each data block, and each Map
task will calculate a partial result, which will be communicated to
the respective reduce tasks. The typical number of reduce tasks will
be orders of magnitude less than the number of Map tasks. Reduce
tasks (line 8 in Code 1, lines 13–15 in Code 2) will perform any
necessary computations, combine the partial results received and
emit parts of the total Reduce output. A single merge task (lines
16–19 in Code 2) will merge the results emitted by the reduce
tasks, andwill evaluate the loop conditional function (lines 8 and 4
in Code 1), often comparing the new delta results with the older
delta results. Finally, the new delta output of the iteration will
be broadcast or scattered to the Map tasks of the next iteration
(line 7 Code 2). Fig. 4 presents the flow of the Twister4Azure
programming model.

Code 1 Typical data-intensive iterative computation
1: k← 0;
2: MAX←maximum iterations
3: δ[0] ← initial delta value
4: while (k < MAX_ITER∥f (δ[k], δ[k−1]) )
5: foreach datum in data
6: β[datum]← process (datum, δ[k])
7: end foreach
8: δ[k+1] ← combine(β[])
9: k← k+ 1
10: end while

Fig. 3. Structure of a typical data-intensive iterative application.
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3.1.2. Map and Reduce API
Twister4Azure extends the Map and Reduce functions of

traditional MapReduce to include the loop-variant delta values
as an input parameter. This additional input parameter is a list
of key, value pairs. This parameter can be used to provide an
additional input through a broadcast operation or through a scatter
operation. Having this extra input allows theMapReduce programs
to perform Map side joins, avoiding the significant data transfer
and performance costs of Reduce side joins [12], and avoiding
the often unnecessary MapReduce jobs to perform Reduce side
joins. The PageRank computation presented by Bu et al. [15]
demonstrates the inefficiencies of usingMap side joins for iterative
computations. The Twister4Azure non-iterative computations can
also use this extra input to receive broadcasts or scatter data to the
Map and Reduce tasks.

Map(<key>, <value>, list_of <key,value>)
Reduce(<key>, list_of <value>,

list_of <key,value>).

Code 2 Data-intensive iterative computation using
Twister4Azure programming model
1: k← 0;
2: MAX←maximum iterations
3: δ[0] ← initial delta value
4: α← true

5: while ( k < MAX_ITER∥α)
6: distribute datablocks
7: broadcast δ[k]

8: map (datablock, δ[k])
9: foreach datum in datablock
10: β[datum]← process (datum, δ[k])
11: end foreach
12: emit (β)

13: reduce (list of β)
14: β ′ ← combine (list of β)
15: emit (β ′)
16: merge(list of β ′, δ[k])
17: δ[k+1] ← combine (list of β)
18: α← f (δ[k], δ[k−1])
19: emit (α, δ[k+1])

20: k← k+ 1
21: end while

Fig. 4. Twister4Azure iterative MapReduce programming model.
3.1.3. Merge
Twister4Azure introduces Merge as a new step to the MapRe-

duce programmingmodel to support iterativeMapReduce compu-
tations. The Merge task executes after the Reduce step. The Merge
Task receives all the Reduce outputs and the broadcast data for the
current iteration as the inputs. There can only be one Merge task
for a MapReduce job. With Merge, the overall flow of the iterative
MapReduce computation would look like the following sequence:

Map -> Combine -> Shuffle -> Sort -> Reduce
-> Merge -> Broadcast.

Since Twister4Azure does not have a centralized driver tomake
control decisions, the Merge step serves as the ‘‘loop-test’’ in the
Twister4Azure decentralized architecture. Users can add a new
iteration, finish the job or schedule a newMapReduce job from the
Merge task. These decisions can be made based on the number of
iterations, or by comparing the results from the previous iteration
with the current iteration, such as the k-value difference between
iterations for KMeans Clustering. Users can use the results of the
current iteration and the broadcast data tomake these decisions. It
is possible to specify the output of the Merge task as the broadcast
data of the next iteration.

Merge(list_of <key,list_of<value>>,
list_of <key,value>).

3.2. Data cache

Twister4Azure locally caches the loop-invariant (static) input
data across iterations in the memory and instance storage (disk)
of worker roles. Data caching avoids the download, loading and
parsing cost of loop-invariant input data, which are reused in the
iterations. These data products are comparatively larger sized, and
consist of traditional MapReduce key-value pairs. The caching of
loop-invariant data provides significant speedups for the data-
intensive iterative MapReduce applications. These speedups are
even more significant in cloud environments, as the caching and
reusing of data helps to overcome the bandwidth and latency
limitations of cloud data storage.

Twister4Azure supports three levels of data caching: (1) in-
stance storage (disk) based caching; (2) direct in-memory caching;
and (3) memory-mapped-file based caching. For the disk-based
caching, Twister4Azure stores all the files it downloads from the
Blob storage in the local instance storage. The local disk cache au-
tomatically serves all the requests for previously downloaded data
products. Currently, Twister4Azure does not support the eviction
of the disk cached data products, and it assumes that the input data
blobs do not change during the course of a computation.

The selection of data for in-memory and memory-mapped-file
based caching needs to be specified in the form of InputFormats.
Twister4Azure provides several built-in InputFormat types that
support both in-memory as well as memory-mapped-file based
caching. Currently Twister4Azure performs the least recently used
(LRU) based cache eviction for these two types of caches.

Twister4Azure maintains a single instance of each data cache
per worker-role shared across Map, Reduce and Merge workers,
allowing the reuse of cached data across different tasks, as well as
across any MapReduce application within the same job. Section 5
presents a more detailed discussion about the performance
trade-offs and implementation strategies of the different caching
mechanisms.



1040 T. Gunarathne et al. / Future Generation Computer Systems 29 (2013) 1035–1048
Code 3 Cache aware hybrid decentralized scheduling
algorithm. (Executed by all the map workers)
1: while (mapworker)
2: foreach jobiter in bulletinboard
3: cachedtasks[]← select tasks from

taskhistorieswhere
((task.iteration == jobiter.baseiteration) and
(memcache[] contains task.inputdata))

4: foreach task in cachedtasks
5: newtask← new Task

(task.metadata, jobiter.iteration, . . . )
6: if (newtask.duplicate()) continue;
7: taskhistories.add(newTask)
8: newTask.execute()
9: end foreach
10: // perform steps 3 to 8 for disk cache
11: if (no task executed from cache)
12: addTasksToQueue (jobiter)
13: end foreach

14: msg← queue.getMessage())
15: if (msg !=null)
16: newTask←new Task(msg.metadata,

msg.iter, . . . .)
17: if (newTask.duplicate()) continue;
18: taskhistories.add(newTask)
19: newTask.execute()
20: else sleep()
21: end while

Fig. 5. Cache-aware hybrid scheduling.

3.3. Cache-aware scheduling

In order to take maximum advantage of the data caching for
iterative computations, Map tasks of the subsequent iterations
need to be scheduled with an awareness of the data products
that are cached in the worker-roles. If the loop-invariant data
for a Map task is present in the DataCache of a certain worker-
role, then Twister4Azure should assign that particular Map task
to that particular worker-role. The decentralized architecture
of Twister4Azure presents a challenge in this situation, as
Twister4Azure does not have either a central entity that has a
global view of the data products cached in the worker-roles, nor
does it have the ability to push the tasks to a specific worker-role.

As a solution to the above issue, Twister4Azure opted for a
model in which the workers pick tasks to execute based on the
data products they have in their DataCache, and based on the
information that is published on a central bulletin board (an
Azure table). Naive implementation of this model requires all the
tasks for a particular job to be advertised, making the bulletin
board a bottleneck. We avoid this by locally storing the Map
task execution histories (meta-data required for execution of a
Map task) from the previous iterations. With this optimization,
the bulletin board only advertises information about the new
iterations. This allows the workers to start the execution of the
Map tasks for a new iteration as soon as the workers get the
information about a new iteration through the bulletin board, after
the previous iteration is completed. A high-level pseudo-code for
the cache-aware scheduling algorithm is given in Code 3. Every
free Map worker executes this algorithm. As shown in Fig. 5,
Twister4Azure schedules new MapReduce jobs (non-iterative
and the first iteration of the iterative) through Azure queues.
The Twister4Azure hybrid cache-aware scheduling algorithm is
currently configured to give priority for the iterations of the
already executing iterative MapReduce computations over new
computations, to get the maximum value out of the cached data.

Any tasks for an iteration that were not scheduled in the above
manner will be added back in to the task-scheduling queue and
will be executed by the first available free worker ensuring the
completion of that iteration. This ensures the eventual completion
of the job and the fault tolerance of the tasks in the event of a
worker failure; it also ensures the dynamic scalability of the system
when new workers are added to the virtual cluster. Duplicate
task execution can happen on very rare occasions due to the
eventual consistency nature of the Azure Table storage. However,
these duplicate executed tasks do not affect the accuracy of the
computations due to the side effect free nature of the MapReduce
programming model.

There are efforts that use multiple queues together to increase
the throughput of the Azure Queues. However, queue latency is not
a significant bottleneck for Twister4Azure iterative computations
as only the scheduling of the first iteration depends on Azure
queues.

3.4. Data broadcasting

The loop-variant data (δ values in Code 1) needs to be
broadcasted or scattered to all the tasks in an iteration. With
Twister4Azure, users can specify broadcast data for iterative as
well as for non-iterative computations. In typical data-intensive
iterative computations, the loop-variant data (δ) is orders of
magnitude smaller than the loop-invariant data.

Twister4Azure supports two types of data broadcasting meth-
ods: (1) using a combination of Azure blob storage and Azure ta-
bles; and (2) using a combination of direct TCP and Azure blob
storage. The first method broadcasts smaller data products using
Azure tables and the larger data products using the blob storage.
Hybrid broadcasting improves the latency and the performance
when broadcasting smaller data products. This methodworks well
for smaller numbers of instances and does not scale well for large
numbers of instances.

The second method implements a tree-based broadcasting
algorithm that uses the Windows Communication Foundation
(WCF) based Azure TCP inter-role communication mechanism
for the data communication, as shown in Fig. 6. This method
supports a configurable number of parallel outgoing TCP transfers
per instance (three parallel transfers in Fig. 6), enabling the users
and the framework to customize the number of parallel transfers
based on the I/O performance of the instance type, the scale of the
computation and the size of the broadcast data. Since the direct
communication is relatively unreliable in cloud environments, this
method also supports an optional persistent backup that uses the
Azure Blob storage. The broadcast data will get uploaded to the
Azure Blob storage in the background, and any instances that did
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Fig. 6. Tree based broadcast over TCPwith Blob storage as the persistent backup.N3
shows the utilization of data cache to share the broadcast data within an instance.

not receive the TCP based broadcast data will be able to fetch
the broadcast data from this persistent backup. This persistent
backup also ensures that the output of each iterationwill be stored
persistently, making it possible to roll back iterations if needed.

Twister4Azure supports the caching of broadcast data, ensuring
that only a single retrieval or transmission of broadcast data occurs
per node per iteration. This increases the efficiency of broadcasting
when there exists more than one Map/Reduce/Merge worker per
worker-role, and also, when there are multiple waves ofMap tasks
per iteration. Some of our experiments contained up to 64 such
tasks per worker-role per iteration.

3.5. Intermediate data communication

Twister4Azure supports two types of intermediate data com-
munication. The first is the legacy Azure Blob storage based trans-
fer model of the MRRoles4Azure, where the Azure Blob storage is
used to store the intermediate data products and the Azure tables
are used to store the meta-data about the intermediate data prod-
ucts. The data is always persistently stored in the Blob storage be-
fore it declares theMap task a success. Reducers can fetch data any
time from the Blob storage even in the cases where there are mul-
tiple waves of Reduce tasks or any re-execution of Reduce tasks
due to failures. This mechanism performed well for non-iterative
applications. Based on our experience, the tasks in the iterative
MapReduce computations are of a relatively finer granularity,mak-
ing the intermediate data communication overhead more promi-
nent. They produce a large number of smaller intermediate data
products causing the Blob storage based intermediate data trans-
fer model to under-perform. Hence, we optimized this method by
utilizing the Azure tables to transfer smaller data products up to
a certain size (currently 64 KB that is the limit for a single item in
an Azure table entry) and so we could use the blob storage for the
data products that are larger than that limit.

The secondmethod is a TCP-based streamingmechanismwhere
the data products are pushed directly from the Mapper memory
to the Reducers similar to the MapReduce Online [16] approach,
rather than Reducers fetching the data products, as is the case
in traditional MapReduce frameworks such as Apache Hadoop.
This mechanism performs a best effort transfer of intermediate
data products to the available Reduce tasks using the Windows
Communications Foundation (WCF) based Azure direct TCP
communication. A separate thread performs this TCP data transfer,
freeing up the Map worker thread to start processing a new Map
task. With this mechanism, when the Reduce task input data
size is manageable, Twister4Azure can perform the computation
completely in thememory ofMap andReduceworkerswithout any
intermediate data products touching the disks offering significant
performance benefits to the computations. These intermediate
data products are uploaded to the persistent Blob store in the
background as well. Twister4Azure declares a Map task a success
only after all the data is uploaded to the Blob store. Reduce tasks
will fetch the persistent intermediate data from the Blob store
if a Reduce task does not receive the data product via the TCP
transfer. These reasons for not receiving data products via TCP
transfer include I/O failures in the TCP transfers, the Reduce task
not being in an execution or ready state while the Map worker is
attempting the transfer, or the rare case of having multiple Reduce
task waves. Twister4Azure users the intermediate data from the
Blob store when a Reduce task is re-executed due to failures as
well. Users of Twister4Azure have the ability to disable the above-
mentioned data persistence in Blob storage and to rely solely on
the streaming direct TCP transfers to optimize the performance
and data-storage costs. This is possible when there exists only one
wave of Reduce tasks per computation, and it comes with the risk
of a coarser grained fault-tolerance in the case of failures. In this
scenario, Twister4Azure falls back to providing an iteration level
fault tolerance for the computations, where the current iteration
will be rolled back and re-executed in case of any task failures.

3.6. Fault tolerance

Twister4Azure supports typical MapReduce fault tolerance
through re-execution of failed tasks, ensuring the eventual
completion of the iterative computations. Twister4Azure stores all
the intermediate output data products from Map/Reduce tasks, as
well as the intermediate output data products of the iterations
persistently in the Azure Blob storage or in Azure tables, enabling
fault-tolerant in task level as well as in iteration level. The
only exception to this is when a direct TCP only intermediate
data transfer (Section 3.5) is used, in which case Twister4Azure
performs fault-tolerance through the re-execution of iterations.

Recent improvements to the Azure queues service include the
ability to update the queue messages, the ability to dynamically
extend the visibility time outs and to provide support for much
longer visibility timeouts of up to 7 days.We are currentlyworking
on improving the queue based fault tolerance of Twister4Azure by
utilizing these newly introduced features of the Azure queues that
allows us to supportmuchmore finer grainedmonitoring and fault
tolerance, as opposed to the current time out based fault tolerance
implementation.

3.7. Other features

Twister4Azure supports the deployment of multiple MapRe-
duce applications in a single deployment, making it possible to
utilize more than one MapReduce application inside an itera-
tion of a single computation. This also enables Twister4Azure to
support workflow scenarios without redeployment. Twiser4Azure
also supports the capacity to have multiple MapReduce jobs
inside a single iteration of an iterative MapReduce computation,
enabling the users to more easily specify computations that are
complex, and to share cached data between these individual com-
putations. TheMulti-Dimensional Scaling iterativeMapReduce ap-
plication described in Section 4.2 uses this feature to perform
multiple computations inside an iteration.

Twister4Azure also provides users with a web-based monitor-
ing console fromwhich they canmonitor the progress of their jobs
as well as any error traces. Twister4Azure provides users with CPU
andmemory utilization information for their jobs and currentlywe
are working on displaying this information graphically from the
monitoring console as well. Users can develop, test and debug the
Twister4Azure MapReduce programs in the comfort of using their
local machines with the use of the Azure local development fabric.
Twister4Azure programs can be deployed directly from the Visual
Studio development environment or through the Azure web inter-
face, similar to any other Azure WorkerRole project.
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4. Twister4Azure scientific application case studies

4.1. Methodology

In this section, we present and analyze four real-world data-
intensive scientific applications that were implemented using
Twister4Azure. Two of these applications,Multi-Dimensional Scal-
ing and KMeans Clustering, are iterative MapReduce applications,
while the other two applications, sequence alignment and se-
quence search, are pleasingly parallel MapReduce applications.

We compare the performance of the Twister4Azure implemen-
tations of these applications with the Twister [8] and Hadoop [6]
implementations of these applications, where applicable. The
Twister4Azure applications were implemented using C#.Net,
while the Twister and Hadoop applications were implemented us-
ing Java. We performed the Twister4Azure performance experi-
ments in theWindows Azure Cloud using the Azure instance types
mentioned in Table 1. We performed the Twister and Hadoop ex-
periments in the local clusters mentioned in Table 2. Azure cloud
instances are virtual machines running on shared hardware nodes
with the network shared with other users; the local clusters were
dedicated bare metal nodes with dedicated networks (each local
cluster had a dedicated switch and network not shared with other
users during our experiments). Twister had all the input data pre-
distributed to the compute nodes with 100% data locality, while
Hadoop used HDFS [7] to store the input data, achievingmore than
90% data locality in each of the experiments. Twister4Azure in-
put data were stored in the high-latency off-the-instance Azure
Blob Storage. A much better raw performance is expected from
the Hadoop and Twister experiments on local clusters than from
the Twister4Azure experiments using the Azure instances, due to
the above stated differences. Our objective is to highlight the scal-
ability comparison across these frameworks and demonstrate that
Twister4Azure has less overheads and scales as well as Twister and
Hadoop, even when executed on an environment with the above
overheads and complexities.

Equal numbers of compute cores from the local cluster and
from the Azure Cloud were used in each experiment, even though
the raw compute powers of the cores differed. For example,
the performance of a Twister4Azure application on 128 Azure
small instances was compared with the performance of a Twister
application on 16 HighMem (Table 2) cluster nodes.

We use the custom defined metric ‘‘adjusted performance’’
to compare the performance of an application running on two
different environments. The objective of this metric is to negate
the performance differences introduced by some of the underlying
hardware differences. The Twister4Azure adjusted (ta) line in
some of the graphs depicts the performance of Twister4Azure
for a certain application normalized according to the sequential
performance difference for that application between theAzure (tsa)
instances and the nodes in the Cluster (tsc) environment used for
Twister and Hadoop. We estimate the Twister4Azure ‘‘adjusted
performance’’ for an application using ta × (tsc/tsa), where tsc is
the sequence performance of that application on a local cluster
node, and tsa is the sequence performance of that application on
a given Azure instance when the input data is present locally.
This estimation, however, does not account for the framework
overheads that remain constant irrespective of the computation
time, the network difference or the data locality differences.

4.2. Multi-dimensional scaling—iterative MapReduce

The objective of Multi-Dimensional Scaling (MDS) is to map
a data set in high-dimensional space to a user-defined lower-
dimensional space with respect to the pairwise proximity of
the data points [17]. Dimensional scaling is used mainly in
the visualizing of high-dimensional data by mapping them onto
to two- or three-dimensional space. MDS has been used to
visualize data in diverse domains, including but not limited to bio-
informatics, geology, information sciences, and marketing. We use
MDS to visualize dissimilarity distances for hundreds of thousands
of DNA and protein sequences to identify relationships.

In this paper, we use Scaling by MAjorizing a COmplicated
Function (SMACOF) [18], an iterative majorization algorithm. The
input for MDS is an N∗N matrix of pairwise proximity values,
where N is the number of data points in the high-dimensional
space. The resultant lower-dimensional mapping in D dimensions,
called the X values, is an N∗D matrix.

The limits of MDS are more bounded by memory size than by
CPU power. The main objective of parallelizing MDS is to leverage
the distributed memory to support the processing of larger data
sets. In this paper, we implement the parallel SMACOF algorithm
described by Bae et al. [19]. This results in iterating a chain of
three MapReduce jobs, as depicted in Fig. 7. For the purposes of
this paper, we perform an unweightedmapping that results in two
MapReduce jobs steps per iteration, BCCalc and StressCalc. Each
BCCalc Map task generates a portion of the total X matrix. MDS
is challenging for Twister4Azure due to its relatively finer grained
task sizes and multiple MapReduce applications per iteration.

We compared the Twister4Azure MDS performance with
Java HPC Twister MDS implementation. The Java HPC Twister
experiment was performed in the HighMem cluster (Table 2). The
Twister4Azure tests were performed on Azure Large instances
using the Memory-Mapped file based (Section 5.3) data caching.
Java HPC Twister results do not include the initial data distribution
time. Fig. 8(a) presents the execution time for weak scaling, where
we increase the number of compute resources while keeping the
work per core constant (work ∝ number of cores). We notice
that Twister4Azure exhibits encouraging performance and scales
similar to the Java HPC Twister. Fig. 8(b) shows that the MDS
performance scales well with increasing data sizes.

The HighMem cluster is a bare metal cluster with a dedicated
network, very large memory and with faster processors. It is
expected to be significantly faster than the cloud environment
for the same number of CPU cores. The Twister4Azure adjusted
(ta) lines in Fig. 8 depicts the performance of the Twister4Azure
normalized according to the sequential performance difference
of the MDS BC calculation, and the Stress calculation between
the Azure instances and the nodes in the HighMem cluster. In
the above testing, the total number of tasks per job ranged from
10,240 to 40,960, proving Twister4Azure’s ability to support large
numbers of tasks effectively.

Fig. 9(a) depicts the execution time of individual Map tasks
for 10 iterations of Multi-Dimensional Scaling of 204,800 data
points on 32 Azure Large instances. The higher execution time
of the tasks in the first iteration is due to the overhead of initial
data downloading, parsing and loading. This overhead is overcome
in the subsequent iterations through the use of data caching,
enabling Twister4Azure to provide large performance gains
relative to a non-data-cached implementation. The performance
gain achieved by data caching for this specific computation can
be estimated as more than 150% per iteration, as a non-data
cached implementation would perform two data downloads (one
download per application) per iteration. Fig. 9(b) presents the
number ofMap tasks executing at a givenmoment for 10 iterations
for the above MDS computation. The gaps between the bars
represent the overheads of our framework. The gaps between
the iterations (gaps between a grey MDSStressCalc bar and a
subsequent black MDSBCCalc bar) are small, which depicts that
the between-iteration overheads that include Map to Reduce
data transfer time, Reduce and Merge task execution time, data
broadcasting cost and new iteration scheduling cost, are relatively
smaller forMDS. Gaps between applications (gaps between a black
MDSBCCalc bar and a subsequent grey MDSStressCalc bar) of an
iteration are almost non-noticeable in this computation.
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Table 2
Evaluation cluster configurations.

Cluster/instance
type

CPU cores (GHz) Memory
(GB)

I/O performance Compute resource OS

Azure small 1× 1.6 1.75 100 MBPS, shared network
infrastructure

Virtual instances on shared
hardware

Windows server

Azure large 4× 1.6 7 400 MBPS, shared network
infrastructure

Virtual instances on shared
hardware

Windows server

Azure extra large 8× 1.6 14 800 MBPS, shared network
infrastructure

Virtual instances on shared
hardware

Windows server

HighMem 8× 2.4 (Intel R⃝Xeon R⃝CPU E5620) 192 Gigabit ethernet, dedicated switch Dedicated bare metal hardware Linux
iDataPlex 8× 2.33 (Intel R⃝Xeon R⃝CPU E5410) 16 Gigabit ethernet, dedicated switch Dedicated bare metal hardware Linux
Fig. 7. Twister4Azure multi-dimensional scaling.
Fig. 8. Left (a) MDSweak scaling where the workload per core is constant. Ideal is a straight horizontal line. Right (b) data size scaling using 128 Azure small instances/cores,
20 iterations.
Fig. 9. Twister4Azure Map Task histograms for MDS of 204,800 data points on 32 Azure Large Instances (graphed only 10 iterations out of 20). Left (a) Map Task execution
time histogram. Two adjoining bars (taller black MDSBCCalc bar and shorter grey MDSStressCalc bar) represent an iteration (2048 tasks per iteration), where each bar
represents the different applications inside the iteration. Right (b) number of executing Map Tasks in the cluster at a given moment. Two adjoining bars (black and grey)
represent an iteration.
4.3. KMeans clustering—iterative MapReduce

Clustering is the process of partitioning a given data set into
disjoint clusters. The use of clustering and other data mining
techniques to interpret very large data sets has become increas-
ingly popular, with petabytes of data becoming commonplace. The
KMeans Clustering [20] algorithm has been widely used in many
scientific and industrial application areas due to its simplicity and
applicability to large data sets. We are currently working on a sci-
entific project that requires clustering of several terabytes of data
using KMeans Clustering and millions of centroids.

KMeans Clustering is often implemented using an iterative
refinement technique, in which the algorithm iterates until
the difference between cluster centers in subsequent iterations,
i.e. the error, falls below a predetermined threshold. Each iteration
performs two main steps, the cluster assignment step, and the
centroids update step. In the MapReduce implementation, the
assignment step is performed in the Map task and the update step
is performed in the Reduce task. Centroid data is broadcast at the
beginning of each iteration. Intermediate data communication is
relatively costly in KMeans Clustering, as each Map task outputs
data equivalent to the size of the centroids in each iteration.

Fig. 11(a) depicts the execution time of Map tasks across the
whole job. The higher execution time of the tasks in the first
iteration is due to the overhead of initial data downloading,
parsing and loading, which is an indication of the performance
improvement we get in subsequent iterations due to the data
caching. Fig. 11(b) presents the number of Map tasks executing
at a given moment throughout the job. The job consisted of 256
Map tasks per iteration, generating two waves of Map tasks per
iteration. The dips represent the synchronization at the end of
the iterations. The gaps between the bars represent the total
overhead of the intermediate data communication, Reduce task
execution, Merge task execution, data broadcasting and the new
iteration scheduling that happens between iterations. According
to the graph, such overheads are relatively small for the KMeans
Clustering application.
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Fig. 10. KMeans Clustering scalability. Left (a) Relative parallel efficiency of strong scaling using 128 million data points. Right (b) Weak scaling. Workload per core is kept
constant (ideal is a straight horizontal line).
Fig. 11. Twister4Azure Map task histograms for KMeans Clustering 128 million data points on 128 Azure Small instances. 10 iterations with 256 Map tasks per iteration.
Left (a) Map task execution time histogram. Right (b) Number of executing Map tasks in the cluster at a given moment.
We compared the Twister4Azure KMeans Clustering perfor-
mance with implementations of the Java HPC Twister and Hadoop.
The Java HPC Twister and Hadoop experiments were performed in
a dedicated iDataPlex cluster (Table 2). The Twister4Azure tests
were performed using the Azure Small instances that contain a
single CPU core. The Java HPC Twister results do not include the
initial data distribution time. Fig. 10(a) presents the relative (rel-
ative to the smallest parallel test with 32 cores/instances) paral-
lel efficiency of KMeans Clustering for strong scaling, in which we
keep the amount of data constant and increase the number of in-
stances/cores. Fig. 10(b) presents the execution time for weak scal-
ing, wherein we increase the number of compute resources while
keeping the work per core constant (work ∝ number of nodes).
We notice that Twister4Azure performance scales well up to 256
instances in both experiments. In 10(a), the relative parallel effi-
ciency of Java HPC Twister for 64 cores is greater than one. We
believe the memory load was a bottleneck in the 32 core experi-
ment, whereas this is not the case for the 64 core experiment. We
used a direct TCP intermediate data transfer and tree-based TCP
broadcastingwhen performing these experiments. Tree-based TCP
broadcasting scaledwell up to the 256Azure Small instances. Using
this result,we canhypothesize that our tree-based broadcasting al-
gorithm will scale well for 256 Azure Extra Large instances (2048
total number of CPU cores) as well, since the workload, communi-
cation pattern and other properties remain the same, irrespective
of the instance type.

The Twister4Azure adjusted line in Fig. 10(b) depicts the
KMeans Clustering performance of Twister4Azure normalized
according to the ratio of the sequential performance difference
between the Azure instances and the iDataPlex cluster nodes.
All tests were performed using 20-dimensional data and 500
centroids.

4.4. Sequence alignment using SmithWaterman GOTOH—MapReduce

The SmithWaterman [21] algorithm with GOTOH [22] (SWG)
improvement is used to perform a pairwise sequence alignment
on two FASTA sequences. We used the SWG application kernel
in parallel to calculate the all-pairs dissimilarity of a set of n
sequences, resulting in an n ∗ n distance matrix. A set of Map tasks
for a particular job are generated using the blocked decomposition
of a strictly upper triangular matrix of the resultant space. Reduce
tasks aggregate the output from a row block. In this application,
the size of the input data set is relatively small, while the
size of the intermediate and the output data are significantly
larger, due to the n2 result space, stressing the performance of
inter-node communication and output data storage. SWG can
be considered as a memory-intensive application. Ekanayake
et al. [2] presents more details about the Hadoop-SWG application
implementation. The Twister4Azure SWG implementation also
follows the same architecture and blocking strategy as in
the Hadoop-SWG implementation. Twister4Azure SWG uses
NAligner [23] as the computational kernel.

We performed the SWG weak scaling test from Gunarathne
et al. [4] using Twister4Azure to compare the performance
of the Twister4Azure SWG implementation on Azure Small
instances (Table 2) with a Apache Hadoop implementation on the
iDataPlex cluster (Table 2). Fig. 12 shows that the Twister4Azure
SWG performs comparably to the Apache Hadoop SWG. The
performance of the Twister4Azure SWG fell between+/−2% of the
MRRoles4Azure SWG performance [4], confirming that the extra
complexity of Twister4Azure has not adversely affected the non-
iterative MapReduce performance of Twister4Azure.

4.5. Sequence searching using BLAST

NCBI BLAST+ [1] is the latest version of the popular BLAST
program that is used to handle sequence similarity searching.
Queries are processed independently and have no dependencies
between them, making it possible to use multiple BLAST instances
to process queries in a pleasingly parallel manner. We performed
the BLAST+ scaling speedup performance experiment from
Gunarathne, et al. [3] using Twister4Azure BLAST+ to compare
the performance with that of the Apache Hadoop BLAST+
implementation. We used Azure Extra Large instances (Table 2)
with 8 Map workers per node for the Twister4Azure BLAST
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Fig. 12. Twister4Azure SWG performance. Left (a) Raw and adjusted execution times. Right (b) Parallel efficiency relative to the 64∗1024 test case.
Fig. 13. Twister4Azure BLAST performance. Left (a) Time to process a single query file. Right (b) Absolute parallel efficiency.
experiments. We used a sub-set of a real-world protein sequence
data set (100 queries perMap task) as the input BLAST queries, and
used NCBI’s non-redundant (NR) protein sequence database. Both
the implementations downloaded and extracted the compressed
BLAST database to the local disk of each worker prior to processing
of the tasks. Twister4Azure’s ability to specify deployment-time
initialization routines was used to download and extract the
database. The performance results do not include the database
distribution times.

The Twister4Azure BLAST+ absolute efficiency (Fig. 13) was
better than theHadoop implementation. Additionally, the Twister-
4Azure performance was comparable to the performance of the
Azure Classic Cloud BLAST results that we had obtained earlier.
This shows that the performance of BLAST+ is sustained in
Twister4Azure, evenwith the added complexity ofMapReduce and
iterative MapReduce.

5. Performance considerations for data caching on Azure

In this section, we present a performance analysis of several
data caching strategies that affect the performance of large-
scale parallel iterative MapReduce applications on Azure, in the
context of a Multi-Dimensional Scaling application presented
in Section 4.2. These applications typically perform tens to
hundreds of iterations. Hence, we focus mainly on optimizing the
performance of the majority of iterations, while assigning a lower
priority to optimizing the initial iteration.

In this section, we use a dimension-reduction computation of a
204800 ∗ 204800 element input matrix, partitioned into 1024 data
blocks (number ofMap tasks is equal to the number of data blocks),
using 128 cores and 20 iterations as our use case. We focus mainly
on the BCCalc computation, as it is much more computationally
intensive than the StressCalc computation. Table 3 presents
the execution time analysis of this computation under different
mechanisms. The ‘‘Task Time’’ in Table 3 refers to the end-to-
end execution time of the BCCalc Map Task, including the initial
scheduling, data acquiring and the output data processing time.
The ‘‘Map F n Time’’ refers to the time taken to execute the Map
function of the BCCalc computation excluding the other overheads.
In order to eliminate the skewedness of the ‘‘Task Time’’ introduced
by the data download in the first iterations, we calculated the
averages and standard deviations excluding the first iteration. The
‘‘# of slow tasks’’ is defined as the number of tasks that take more
than twice the average time for that particular metric. We used a
single Map worker per instance in the Azure Small instances, and
four Map workers per instances in the Azure Large instances.

5.1. Local storage based data caching

As discussed in Section 3.2, it is possible to optimize iterative
MapReduce computations by caching the loop-invariant input data
across the iterations. We use the Azure Blob storage as the input
data storage for the Twister4Azure computations. Twister4Azure
supports local instance (disk) storage caching as the simplest
form of data caching. Local storage caching allows the subsequent
iterations (or different applications or tasks in the same iteration)
to reuse the input data from the local disk based storage rather
than fetching them from the Azure Blob Storage. This resulted
in speedups of more than 50% (estimated) over a non-cached
MDS computation of the sample use case. However, local storage
caching causes the applications to read and parse data from the
instances storage each time the data is used. On the other hand,
on-disk caching puts minimal strain on the instance memory.

5.2. In-memory data caching

Twister4Azure also supports the ‘‘in-memory caching’’ of the
loop-invariant data across iterations. With in-memory caching,
Twister4Azure fetches the data from the Azure Blob storage,
parses and loads them into the memory during the first iteration.
After the first iteration, these data products remain in memory
throughout the course of the computation for reuse by the
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Table 3
Execution time analysis of a MDS computation. 204800 ∗ 204800 input data matrix, 128 total cores, 20 iterations. 20480 BCCalc Map tasks.

Mechanism Instance type Total execution time (s) Task time (BCCalc) Map F n time (BCCalc)
Average (ms) STDEV (ms) # of slow tasks Average (ms) STDEV (ms) # of slow tasks

Disk cache only Small∗1 2676 6390 750 40 3662 131 0

In-memory cache Small∗1 2072 4052 895 140 3924 877 143
Large∗4 2574 4354 5706 1025 4039 5710 1071

Memory-mapped
file (MMF) cache

Small∗1 2097 4852 486 28 4725 469 29
Large∗4 1876 5052 371 6 4928 357 4
Fig. 14. Execution traces of MDS iterative MapReduce computations using Twister4Azure showing the execution time of tasks in each iteration. The taller bars represent
the MDSBCCalc computation, while the shorter bars represent the MDSStressCalc computation. A pair of BCCalc and StressCalc bars represents an iteration. Left (a) Using
in-memory caching on small instances. Right (b) Using Memory-Mapped file based caching on Large instances.
subsequent iterations, eliminating the overhead of reading and
parsing data from the disk. As shown in Table 3, this in-memory
caching improved the average run time of the BCCalc Map task
by approximately 36%, and the total run time by approximately
22% over disk based caching. Twister4Azure performs cache-
invalidation for in-memory cache using a Least Recently Used
(LRU) policy. In a typical Twister4Azure computation, the loop-
invariant input data stays in the in-memory cache for the duration
of the computation, while the Twister4Azure caching policy will
evict the broadcast data for iterations from the data cache after the
particular iterations.

As mentioned in Section 3.3, Twister4Azure supports cache-
aware scheduling for in-memory cached data as well as for local-
storage cached data.

5.2.1. Non-deterministic performance anomalies with in-memory
data caching

Whenusing in-memory caching,we started to notice occasional
non-deterministic fluctuations of the Map function execution
times in some of the tasks (143 slow Map F n time tasks in
row 2 of Table 3). These slow tasks, even though few, affect
the performance of the computation significantly because the
execution time of a whole iteration is dependent on the slowest
task of the iteration. Fig. 14(a) offers an example of an execution
trace of a computation that shows this performance fluctuation
wherewe can notice occasional unusual high task execution times.
Even though Twister4Azure supports the duplicate execution of
the slow tasks, duplicate tasks for non-initial iterations are often
more costly than the total execution time of a slow task that uses
data from a cache, as the duplicate task would have to fetch the
data from the Azure Blob Storage. With further experimentation,
we were able to narrow down the cause of this anomaly to the use
of a large amount of memory, including the in-memory data cache,
within a single .NET process. Onemay assume that using only local
storage caching would offer a better performance, as it reduces the
load onmemory.We in fact found that theMap function execution
timeswere very stablewhen using local storage caching (zero slow
tasks and smaller standard deviation in Map F n time in row 1 of
Table 3). However, the ‘‘Task Time’’ that includes the disk reading
time is unstable when a local-storage cache is used (40 slow ‘‘Task
Time’’ tasks in row 1 of Table 3).
5.3. Memory-mapped file based data cache

A memory-mapped file contains the contents of a file mapped
to the virtual memory and can be read or modified directly
through memory. Memory-mapped files can be shared across
multiple processes and can be used to facilitate inter-process
communication. .NET framework version 4 introduces first class
support for memory-mapped files to .NET world. .NET memory-
mapped files facilitate the creation of a memory-mapped file
directly in thememory,with no associatedphysical file, specifically
to support inter-process data sharing. We exploit this feature by
using suchmemory-mapped files to implement the Twister4Azure
in-memory data cache. In this implementation, Twister4Azure
fetches the data directly to the memory-mapped file, and the
memory-mapped file will be reused across the iterations. The Map
function execution times become stablewith thememory-mapped
file based cache implementation (rows 4 and 5 of Table 3).

With the Twister4Azure in-memory cache implementation,
the performance on larger Azure instances (with the number of
workers equal to the number of cores) was very unstable (row
3 of Table 3). By contrast, when using memory-mapped caching,
the execution times were more stable on the larger instances than
for the smaller instances (rows 4 vs 5 in Table 3). The ability to
utilize larger instances effectively is a significant advantage, as the
usage of larger instances improves the data sharing acrossworkers,
facilitates better load balancing within the instances, provides
better deployment stability, reduces the data-broadcasting load
and simplifies the cluster monitoring.

The memory-mapped file based caching requires the data to be
parsed (decoded) each time the data is used; this adds an overhead
to the task execution times. In order to avoid a duplicate loading
of data products to memory, we use real time data parsing in the
case of the memory-mapped files. Hence, the parsing overhead
becomes part of the Map function execution time. However, we
found that the execution time stability advantage outweighs the
added cost. In Table 3, we present results using Small and Large
Azure instances. Unfortunately, we were not able to utilize Extra
Large instances during the course of our testing due to an Azure
resource outage bound to our ‘‘affinity group’’. We believe the
computations will be even more stable in Extra Large instances.
Fig. 14(b) presents an execution trace of a job that uses Memory
Mapped file based caching.
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6. Related work

CloudMapReduce [24] for Amazon Web Services (AWS) and
Google AppEngine MapReduce [25] follow an architecture similar
to that of MRRoles4Azure, as they utilize cloud services as
their building blocks. Amazon ElasticMapReduce [26] offers
Apache Hadoop as a hosted service on the Amazon AWS
cloud environment. However, none of them supports iterative
MapReduce. Spark [27] is a framework implemented using Scala
to support interactive MapReduce-like operations to query and
process read-only data collections, while supporting in-memory
caching and the re-use of data products.

The Azure HPC scheduler is a new Azure feature that enables
the users to launch and manage high-performance computing
(HPC) and other parallel applications in the Azure environment.
The Azure HPC scheduler supports parametric sweeps, Message
Passing Interface (MPI) and LINQ to HPC applications togetherwith
a web-based job submission interface. AzureBlast [28] is an im-
plementation of a parallel BLAST on an Azure environment that
uses Azure cloud serviceswith an architecture similar to the Classic
Cloud model, which is a predecessor to Twister4Azure. CloudClus-
tering [29] is a prototype KMeans Clustering implementation that
uses Azure infrastructure services. CloudClustering uses multiple
queues (single queue per worker) for job scheduling and supports
caching of loop-invariant data.

Microsoft Daytona [11] is a recently announced iterative
MapReduce runtime developed by Microsoft Research for the
Microsoft Azure Cloud Platform. It builds on some of the ideas of
the earlier Twister system. Daytona utilizes Azure Blob Storage
for storing intermediate data and final output data enabling data
backup and easier failure recovery. Daytona supports the caching
of static data between iterations. Daytona combines the output
data of the Reducers to form the output of each iteration. Once
the application has completed, the output can be retrieved from
Azure Blob storage or can be continually processed by using other
applications. In addition to the above features, which are similar to
Twister4Azure, Daytona also provides automatic data splitting for
MapReduce computations and claims to support a variety of data
broadcast patterns between the iterations. However, as opposed
to Twister4Azure, Daytona uses a single master node based
controller to drive and manage the computation. This centralized
controller substitutes the ‘‘Merge’’ step of Twister4Azure, but
makes Daytona prone to single point of failures. Daytona is
available as a ‘‘Community Technology Preview’’ for academic and
non-commercial usage.

Haloop [15] extends Apache Hadoop to support iterative
applications and supports on-disk caching of loop-invariant data
as well as loop-aware scheduling. Similar to Java HPC Twister
and Twister4Azure, Haloop also provides a new programming
model, which includes several APIs that can be used for expressing
iteration related operations in the application code. However,
Haloop does not have an explicit Merge operation similar to
Twister4Azure and uses a separate MapReduce job to perform
the Fixpoint evaluation for the terminal condition evaluation.
Haloop provides a high-level query language, which is not
available in either Java HPC Twister or Twister4Azure. Haloop
performs centralized loop-aware task scheduling to accelerate
iterative MapReduce executions. Haloop enables data reuse across
iterations, by physically co-locating tasks that process the same
data in different iterations. In Haloop, the first iteration is
scheduled similarly to traditional Hadoop. After that, the master
node remembers the association between data and node, and
the scheduler tries to retain previous data-node associations in
the following iterations. Haloop also supports on-disk caching
for Reducer input data and Reducer output data. Reducer input
data cache stores the intermediate data generated by the Map
tasks, which optimizes the Reduce side joins. The Twister4Azure
additional input parameter for Map API eliminates the need for
such Reduce side joins. The Reducer output data-cache is specially
designed to support Fixpoint Evaluations using the output data
from older iterations. Twister4Azure currently does not support
this feature.

7. Conclusions and future work

We presented Twister4Azure, a novel iterative MapReduce dis-
tributed computing runtime for Windows Azure Cloud. Twiser4-
Azure enables the users to perform large-scale data-intensive
parallel computations efficiently onWindows Azure Cloud, by hid-
ing the complexity of scalability and fault tolerance when using
clouds. The key features of Twiser4Azure presented in this pa-
per include the novel programming model for iterative MapRe-
duce computations, the multi-level data caching mechanisms to
overcome the latencies of cloud services, the decentralized cache-
aware task scheduling utilized to avoid single point of failures and
the framework managed fault tolerance drawn upon to ensure
the eventual completion of the computations. We also presented
optimized data broadcasting and intermediate data communica-
tion strategies that sped up the computations. Users can perform
debugging and testing operations for the Twister4Azure compu-
tations in their local machines with the use of the Azure local
development fabric. We also analyzed the performance anomalies
of Azure instances with the use of in-memory caching; we then
proposed a novel caching solution based onMemory-Mapped Files
to overcome those performance anomalies.

We discussed four real-world data-intensive scientific applica-
tions which were implemented using Twister4Azure so as to show
the applicability of Twister4Azure; we compared the performance
of those applications with that of Java HPC Twister and Hadoop
MapReduce frameworks.We presentedMulti-Dimensional Scaling
(MDS) and KMeans Clustering as iterative scientific applications of
Twister4Azure. Experimental evaluation showed that MDS using
Twister4Azure on a shared public cloud scaled similar to the Java
HPC Twister MDS on a dedicated local cluster. Further, the KMeans
Clustering using Twister4Azurewith shared cloud virtual instances
outperformed Apache Hadoop in a local cluster by a factor of 2–4,
and also exhibited a performance comparable to that of Java HPC
Twister running on a local cluster. These iterativeMapReduce com-
putations were performed on up to 256 cloud instances with up to
40,000 tasks per computation. We also presented sequence align-
ment and BLAST sequence searching pleasingly parallel MapRe-
duce applications of Twister4Azure. These applications running on
the Azure Cloud exhibited performance comparable to the Apache
Hadoop on a dedicated local cluster.

Twister4Azure presents a viable architecture and a program-
ming model for scalable parallel processing in the cloud environ-
ments: this architecture can also be implemented for other cloud
environments as well. We are currently working on improving the
Twister4Azure programming model by introducing novel iterative
MapReduce collective communication primitives to increase the
usability prospects, and also to further enhance the performance
of Twister4Azure computations.
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