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Abstract—

MapReduce has gradually become the framework of choice for
”big data”. The MapReduce model allows for efficient and swift
processing of large scale data with a cluster of compute nodes.
However, the efficiency here comes at a price. The performance of
widely used MapReduce implementations such as Hadoop suffers
in heterogeneous and load-imbalanced clusters. We show the
disparity in performance between homogeneous and heteroge-
neous clusters in this paper to be high. Subsequently, we present
MARLA, a MapReduce framework capable of performing well
not only in homogeneous settings, but also when the cluster
exhibits heterogeneous properties. We address the problems
associated with existing MapReduce implementations affecting
cluster heterogeneity, and subsequently present through MARLA
the components and trade-offs necessary for better MapReduce
performance in heterogeneous cluster and cloud environments.
We quantify the performance gains exhibited by our approach
against Apache Hadoop and MARIANE in data intensive and
compute intensive applications.

I. INTRODUCTION

Introduced in 2004 [1], MapReduce has slowly gained
popularity with its swift and efficient data-intensive processing
abilities. However, the performance of widely used MapRe-
duce implementations, such as Hadoop, suffers in heteroge-
neous environments. This deficiency stems from the uniform
application of a map and reduce function to nearly equally
split data amongst participating nodes. Such data is made local
to the nodes, as it is less expensive to bring the computation to
the data, rather than bringing the data to the computation [2].
However, uniform map and reduce methods, being applied
by all nodes holding similarly sized data, lends to performance
problems when such nodes have different performance abili-
ties. Should some nodes be faster than others, such nodes will
perform and finish quicker, while the cluster waits for the slow
nodes to complete their tasks before presenting the output to
the user. While Hadoop [3] tries to tackle this problem with
its straggler mitigating mechanism, [4] and [5] have shown
such a mechanism to be inefficient. Similarly, in [6] we have
shown Hadoop’s straggler mitigation scheme to be inefficient
in heterogeneous environments, in addition to having a limited
impact in homogeneous settings turned heterogeneous with
the addition of third party loads to parts of a shared cluster
or cloud. This can happen with new users logging in and
deploying their own applications. Other MapReduce imple-
mentations such as Twister [7] and LEMO-MR [8] altogether
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lack a mechanism to tackle this issue. Furthermore, solutions
presented to address this problem, such as LATE [4] and [5]
confront the issue with a static load-balancing approach. In
[5] for instance, the cluster is assessed and its faster nodes
are identified prior to application runtime. Input partition is
then skewed to favor those fast nodes. Faster nodes get more
data to process because they are rightly expected to perform
better. Even though LATE has been shown to perform to
expectations in static conditions, an obvious problem to note
is the following: should previously determined fast nodes
come under intense load during runtime, due perhaps to new
users logging in and starting heavy jobs, the input partition
cannot be adjusted, neither can the load be transferred due
to very large data sizes. To address this shortcoming, we
propose MARLA: (MApReduce with adaptive Load balancing
for heterogeneous and Load imbalAnced clusters). In this
paper, we present and discuss its architecture and design, then
subsequently show that not only does MARLA outperform
Hadoop in heterogeneous clusters, as it is designed to, it also
outperforms Hadoop in homogeneous settings. We present our
findings as we test MARLA both at the National Energy
Research Computing Center (NERSC) and the Binghamton
University Grid and Cloud Computing Laboratory across a
wide range of experimental scenarios, against Hadoop, and
MARIANE MapReduce [9], from CPU-intensive applications
to data-intensive applications, to fault-prone scenarios.

The contributions of this paper are as follows:

o« We present a dynamic load-balancing MapReduce im-
plementation, suited not only for homogeneous clusters,
but also for heterogeneous, and load-imbalanced environ-
ments.

« We show how the integrity and advantages of the MapRe-
duce model can be maintained while providing good
performance in heterogeneous and load-imbalanced en-
vironments.

« We present a performance comparison of our approach
with existing MapReduce implementations and present
the performance narrative emerging from our experi-
ments.
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II. THE ARCHITECTURE OF A DYNAMICALLY ADAPTIVE
MAPREDUCE PLATFORM

A. MapReduce for Shared-Disk file systems

MARLA is an implementation of the MapReduce model
that uses the underlying shared-file systems, such as GPFS
[10] and NFS [11], as its /O management mechanism.

Hadoop makes use of the Hadoop Distributed File System
[12] as the need for data replication is essential for fault-
tolerance. With Apache Hadoop, each input file chunk is
replicated to the user’s liking, allowing the datanodes to
hold redundant copies of each others’ input. Should a node fail,
another node holding the same input chunk is called into action
to preserve the integrity of the running job. The use of the
HDEFS also allows Hadoop to execute speculative tasks when
faced with heterogeneous clusters. Chunks belonging to slow
nodes are also owned by other nodes, perhaps faster nodes.
Once a node is determined to be slow by Hadoop, duplicate
tasks are scheduled on nodes holding the same input chunk.
This, as shown in [8] [13] can be highly overhead-prone. This
is so because the Master node needs to account for integrity
tallies belonging to each block, for possibly several of them,
along with their replicas, their location and the health of the
nodes holding them. Nodes need to report their block condition
and their own condition to the Master. Such operations
as we discussed in [6] rob CPU cycles from the nodes,
which could be directed towards processing. Furthermore,
network channels used for output transfer can be obstructed by
extensive communication in the case of large clusters. Under
failures, blocks of input belonging to failed nodes also need
to be replicated. When unavailable due to substantial node
failures they need to be copied between nodes, potentially
overwhelming the network when it comes to failing data-
intensive applications. This analysis led us in MARLA’s case,
and MARIANE MapReduce [9] before MARLA, to make use
of shared-file systems instead of the HDFS. The use of shared-
file systems allows us to make use of more input space as
replicas do not exist at the user level, in the user’s directory
space. For more robust fault-tolerance, more space is required.
Hadoop needs dedicated node space to operate and thus can
be unfriendly to already existing Grid and Cloud computing
facilities not willing to rearrange their networks and disks for
Hadoop’s purpose. MARLA has been tested at NERSC, which
supports GPFS, and also on the Grid and Cloud Computing
Laboratory cluster at Binghamton University, which supports
NFS.

B. The NERSC case

Aside from logistical advantages as discussed in the previ-
ous section, the use of shared-file systems such as NFS, and
GPFS also absolves the MapReduce cluster from managing
the file system, thus potentially increasing its effectiveness,
as all of the framework’s resources are solely geared towards
mapping and reducing. As previously mentioned, the use of
a shared-file system with MapReduce also makes the model
compatible with many Grid/Cloud computing centers, as most
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of them already make use of one or more distributed file
system technologies espousing a node-shared disk layout. The
HDEFS is not a POSIX compliant file system and as such, it
is not suitable for scientific and legacy applications that rely
on POSIX compliant file systems in the Grid/Cloud setting.
The use of HDFS is much more limited, and in a facility
such as NERSC, requires resource isolation and cluster re-
arrangement [9]. NERSC [14] hosts over 7 central clusters, as
well as a myriad of specialized sub-clusters hosting various
energy research projects. NERSC totals approximately 17,000
available nodes setup for MPI use, used for research purposes,
and within which sit over 200,000 processing cores. NERSC
also offers over 2000 petabytes of storage space for compute
and data intensive applications. Apache Hadoop is installed
on its Magellan cloud and on the Carver cluster and benefits
from a subset of NERSC’s computing power. This stems
from Hadoop’s requirement to operate under HDFS. MARLA,
however, in such settings can inherently make use of all
available resources with no need for revamping as its mode
of operation is directly compatible with such environments.
It is thus logistically more convenient and more efficient
for MARLA’s purposes to operate on shared-file systems.
This is so, as given the same machines, both NFS in our
Laboratory and GPFS at NERSC, offered better file system
Read/Write performance than HDFS did in either setting. Even
as we acknowledge in [9] that file system speed does not
guarantee ultimate application performance when it comes to
MapReduce, it can certainly help as large number of items
are fetched from the disk during a data intensive application’s
runtime.

C. Designing MARLA

The design of MARLA rests upon a dynamic task schedul-
ing mechanism allowing each node to request tasks at its
own pace. Contrary to the traditional MapReduce approach
with Hadoop and most MapReduce implementations, where
tasks are equally divided and predefined for each node before
starting a given application, MARLA allows for participating
nodes to request work as they complete previous tasks. As
data items are derived through splitting of the input given
by the user, such items become tasks. The Master node
then registers the total number of tasks available to the nodes.
Nodes are afforded a processing identification tag, and use it to
request tasks. Tasks are requested for as many cores as a node
possesses (an option the user can control in the application
settings). As those tasks are collected by the processing nodes,
they become immediately unavailable to other processing
nodes, which have to move on to further tasks. Subsequently,
a node does not request a task before it has successfully
completed the tasks it previously requested for its cores. This
scheduling scheme ensures that slow and fast nodes alike will
process their fair-share. In testing, as we show in Section III,
an even load distribution between homogeneous nodes, and an
uneven one when slow and fast nodes, were mixed. Naturally,
fast nodes did more work than slow nodes in heterogeneous
cluster cases. Similarly in stressed homogeneous clusters, fast
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nodes originally start with much work, but end up requesting
less work as their performance decreases due to third-party
user impact. The same performance observation however, as
we will show, did not occur quite efficiently for Hadoop and
MARIANE. Finally, the granularity pertaining to the number
of tasks per node to process for MARLA can be adjusted and
depends on the user. Finer granularity means lots of smaller
tasks. This is beneficial for highly heterogeneous environments
and bigger input data. Coarse-grain tasks suit homogeneous
settings, and small files.

D. Architecture of MARLA

As illustrated in Figure 1, MARLA uses three principal
modules, each one representing one of the tenets pertaining to
the MapReduce model; those are:

The Splitter for Input/Output management, the
TaskController for concurrency management, and the
FaultTracker for fault-tolerance.

Figure 1 shows the design used for MARLA

E. Input Management

1) Input Splitting: While Hadoop and most MapReduce
applications partition the input equally amongst nodes, then
transfer each chunk to their destinations, MARLA relies on the
inherent shared-file system it sits atop for this feat. MARLA,
unlike Hadoop, does not produce a given number of chunks,
usually similar for each node. Instead, the framework considers
input chunk as tasks, and several of them, depending on the
user, are created. The framework leverages the data visibility
offered by the shared-disk file system to provide its input data
to the cluster nodes. Input management and split distribution
are thus not performed on top of an existing file system (FS),
but rather left to the underlying shared file system’s default
mechanisms. This absolves the MapReduce implementation
from the responsibility of low-level file management and from
the overhead of efficiently communicating with the FS through
additional system layers. Furthermore, MARLA benefits not
only from file system and data transfer optimizations provided
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by evolving shared-disk file system technology, but can solely
focus on mapping and reducing, rather than data management
at a lower level.

2) Input Distribution: Input distribution is directly operated
through the shared-file system (SFS). As the input is deposited
by the user, the SFS is optimized to perform caching and
pre-fetching to make the data visible to all nodes on-demand.
This frees the MapReduce framework from accounting, and
transferring input to the diverse nodes. Another benefit of
shared-disk file systems with MapReduce, one which became
apparent as the application was implemented is the follow-
ing: current MapReduce implementations, because of their
tightly coupled input storage model to their framework, require
cluster re-configuration upon node change. As with Hadoop,
nodes own their input chunks and as such fail with them.
Replacing a node means replacing its input. With MARLA,
nodes are simply workers, not data guardians. Should a node
failure occur, a rescuing node can be brought in and will
start requesting available tasks immediately. Similarly, more
nodes can be instantaneously added in between runs with no
need for time consuming data rearrangements if the departing
nodes held large input chunks. MARLA allows for storage
to be independent from the worker nodes. Separating the I/O
structure from the nodes allows for a swift reconfiguration
and a faster application turnaround time, when dealing with
iterative MapReduce applications. In Hadoop’s case, removing
a node holding a crucial input chunk means finding a node
holding a duplicate of the chunk held by the exiting node and
copying it to the arriving node, or just re-balancing the cluster,
as to redistribute the data evenly across all nodes.

F. Task tracker and task control

The task tracker, also known as Master, in addition to
making tasks available from data chunks provided by the
Splitter, makes the map and reduce code written by the
user available to all participating nodes through the shared-
file system. This results on the application level to a one time
instruction dispatch, rather than map and reduce instructions
streaming to as many participating nodes as there are in
the cluster. Upon launch, the nodes designated as mappers,
subsequently use the map function, while those designated as
reducers, use the reduce function. The task tracker monitors
task progress from the cluster nodes, and resubmits failed ones
into the task bag through the FaulTracker to be re-tried
by other available workers. In the interim, the worker carrying
the failed task is excused from processing for a short period
of time. This time-out counts as a strike if any other nodes
were able to successfully complete the task. Upon three strikes,
the worker is “out”, and no longer allowed to participate.
Completed tasks are moved to the completed task bag
and sent to the reducer which operates in a similar fashion.

G. FaultTracker and Fault-tolerance

While Hadoop uses task and input chunk replication for
the purpose of fault-tolerance, MARLA practices task specific
fault-tolerance. Failed tasks are simply resubmitted into the



task bag, the offending nodes are put on short temporary
leave while the task is re-tried. If the task succeeds with
another worker, the offending node is given a strike. Three
strikes and the node is considered faulty and no longer
allowed to participate in the ongoing processing. This fault-
tolerance scheme avoids expensive data relocation, and proves
beneficial performance-wise in fault-prone scenarios. One case
that became apparent to us in testing with Hadoop is the
need to increase Hadoop’s replication count as more nodes
are expected to fail. Failing to do so would result in total
application failure should a significant part of the cluster die.
In our case, we recorded total failures with a 32 node cluster
(128 cores total), and 5 replicas per input chunk, if such a
cluster lost more than 50% of its nodes. Understandably the
threshold for total failure can be raised with a higher replica
count. However, a higher replica count means that much more
space. MARLA’s scheme does not necessitate replications and
as such does not require the same space demands. Furthermore
the task model we espouse in this paper means that even as
we lose a significant part of our cluster, as long as one node
is still alive, tasks will get requested by that node until the
job is complete. Simply put, MARLA’s design offers a higher
total failure-threshold than Hadoop does if one cannot afford
extensive file chunk replication space. A drawback however
of our approach is that file-level fault-tolerance is completely
dependent on the underlying shared filesystem.

III. DISTRIBUTED LARGE-SCALE DATA PROCESSING

In this section, we test MARLA’s performance in both
heterogeneous and homogeneous cluster settings. We do this to
show that heterogeneous cluster performance was not acquired
at the expense of homogeneous cluster performance. Similarly,
we test MARLA and Hadoop under failing node conditions
to showcase MARLA’s fault-tolerance performance against
that of our past research endeavors, namely MARIANE’s [9].
Given that MARLA is partly based on MARIANE, we have
included it here as a comparison between not only MARLA
and Hadoop, but also between MARLA and MARIANE.

As heterogeneity is most common in high performance
computing due to various loads on various machines, rather
than wide physical differences between nodes, we simulate
cluster heterogeneity by running various third party CPU-
intensive and memory intensive loads on various nodes of
our testbed, using MPRIME [15], a well known benchmark
and machine stress-testing tool. We subsequently test all three
frameworks in a physically heterogeneous cluster and show
the load management capabilities exhibited by each tested
framework.

Our experiments were conducted on the National Energy
Research Scientific Computing Center’s cluster (NERSC), and
in the Binghamton University Grid and Cloud Computing
Research Lab. On NERSC, we performed our tests on the
Magellan cluster where MARLA was installed on top of
GPFS, and tested alongside the local Apache Hadoop v.20
installation running on the same test bed. The Binghamton
University Grid and Cloud Computing Research Lab has the
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same Hadoop version, and hosts MARLA using NFS. We
elected to consistently afflict 75% of our cluster with load,
while 25% of it remained idle. Furthermore, in both facilities,
exclusive access to the clusters was guaranteed to ensure the
integrity of the results portrayed below. All stressed nodes
received 50% CPU-utilization loads on all of their cores, while
every other node saw 50% of their memory consumed by
MPRIME.

In all the experiments discussed in this paper, we ran
MARLA, MARIANE and Hadoop using identical nodes, iden-
tical node counts, identical input data and similar user source
code.

IV. PERFORMANCE RESULTS
We run our tests on a selection of two clusters:

NERSC Magellan cluster

e 8 core — Intel Nehalem machines, with 2.66Ghz and 24
GB of ECC RAM. The file system in use here is GPFS.
Results on this class of machines are taken by averaging
the timings produced on these nodes.

Grid and Cloud Computing Research Lab Cluster at Bingham-
ton University

e Dual core — One desktop-class machine, which has a
single 2.66Ghz Intel Core 6600 with 8GB of ECC RAM,
and quad cores running Linux. The file system in use
here is NFS v.4.

e Quad core — 1U nodes in a cluster, each of which has
two 2.66Ghz Intel Xeon CPUs, 8GB of RAM, 4 cores,
and run a 64-bit version of Linux. The file system in use
in the test directory is NFS v.4

e 2 x quad core — 1U nodes in a cluster, each of which
has two 2.6Ghz Intel Xeon CPUs, 8GB of RAM, 8 cores,
and run a 64-bit version of Linux. The file system in use
in the test directory is NFS v.4

Experiments 2, 3, 4, 5, 6 were run on NERSC, under GPFS
with MARLA, whereas experiments 1 and 7 were run at
Binghamton University under NFS.

Figure 2: In this heterogeneous cluster, prior to application
runtime, Hadoop first partitions the same amount of work
for each participating node. As the application starts running,
Hadoop struggles to determine a speed standard, as nodes do
not follow the same performance standard. Thrashing over
load shift with speculative execution occurs, causing one of
the 2 core machines involved to do more work than all of
the machines on the cluster. As a consequence, the 4 core
node and the other 2 core node process approximately the
same load, leaving the 8 core computer, the fastest on this
cluster, to process the least amount of matrices. MARLA in
contrast apportions work according to the node’s performance
profile. The framework divides fine input chunks into tasks,
and lets the participating nodes request tasks as they complete
previous tasks. This results in each node processing its fair
share, leading to the best performance. MARIANE as stated
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Fig. 2. 4 node heterogeneous Hadoop, MARLA and MARIANE clusters,
each processing over 6 Million 33 x 33 matrices. Nodel and node2 are 2
core 2.66Ghz machines. Node3 has 4 cores at 2.66Ghz, and node4 has 8
cores at the same clock speed. All nodes feature 8GB of RAM. The load
here is shown per machine. While Hadoop struggles to determine a speed
standard, its slower nodes end up processing similar loads, and in the case of
nodel, more matrices, than its mid-range machine, the 4 core machine and
its fastest machine the 8 core machine. In this case, with Hadoop, the fastest
node on the cluster processes the least amount of data. MARIANE, devoid of
any mechanism for heterogeneity or load balancing ends up scheduling the
same amount of work regardless of node performance. MARLA on the other
hand, is seen here with the two slowest nodes doing approximately the same
amount of work, while the 8 core machine does most of the work, leaving
the 4 core machine to sit in between the 2 core nodes and the 8 core node.
The load balance here shown by MARLA is more in line with the machine’s
performance profile, and as such MARLA performs fastest here.

in [9] does not feature a load-balancing mechanism and thus,
as Hadoop, and traditional MapReduce implementation would
have it, before application runtime partitions the data equally
between all participating nodes. As MARIANE lacks a load
balancer, given that node3 and node4 are fastest, they have to
wait for nodel and node2 to complete their tasks. MARIANE
here performs worst.

Figure 3: In this homogeneous cluster, prior to application
runtime, during input placement, Hadoop and MARIANE
partition the same amount of work for each participating node.
In this particular case, such a scheme is not a bad performance
bearer as the cluster is homogeneous. Homogeneous nodes
subjected to the same user application source code and with
the same input split data sizes can be expected to process such
data at a uniform speed. Although MARLA does not practice
even splitting of data between nodes its fair share algorithm
allows just about the same outcome. As homogeneous nodes
progressively request tasks at their own pace, they end up
processing the same amount of data.

Figure 4 shows a 75 node (600 cores) cluster with 75%
of its nodes under various CPU and memory loads, while the
remaining 25% are idle prior to runtime. This experiment is
meant to simulate a cloud environment where virtual machines
are deployed on shared nodes, and even though homogeneous
in nature, they are likely to be subjected to different loads,
making them capable of widely different performance. We use
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Fig. 3. 4 node homogeneous Hadoop, MARLA and MARIANE clusters,
each processing over 6 Million 33 x 33 matrices. Nodel, node2, node3 and
node4 all 4 core machines running at the same speed - 2.66Ghz with the same
memory at 8GB of RAM. The load here is shown per machine. Hadoop,
MARIANE and MARLA all process about the same load per machine.
Hadoop, due to a slight uneven data partition at input placement, processes
slightly more data on 2 of the 4 core machines. Overall, all machines do about
the same amount of work. It is worth mentioning that speculative execution
occurs no matter what the condition of a job is, be it slow or fast. So this
slight disparity in load processed per node could also have been speculative
execution at work.
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Fig. 4. 10 to 300 Million 33 x 33 matrices being gradually processed

by MARIANE, Hadoop and MARLA with each 75 nodes (600 cores). This
test occurs while 75% of the cluster is under different types of third-party
CPU and memory loads, while the remaining 25% of the machines are idle
prior to runtime. This simulate a laboratory environment where although
machines can be homogeneous, due to user utilization, are most likely
under different loads, and thus provide different performance. Hadoop starts
upstaged by an inherently faster MARIANE, but even despite its struggles in
heterogeneous environments, Hadoop catches up to MARIANE which devoid
of any mechanism to balance load here, struggles even more with 320 Million
matrices. While Hadoop and MARIANE take approximately 32 minutes of
processing, MARLA performs best here with close to 22 minutes on the same
task, with the same nodes, the same input data, and the same level of stress
on 75% of its nodes.
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MARIANE, Hadoop and MARLA with each 75 nodes (600 cores). This test
in contrast to Figure 4 occurs with the same 75 nodes (600 cores) under
no-stress whatsoever. All machines here are idle before runtime and return
to idling after runtime. As we previously showed in [9] here MARIANE’s
lightweight design gets the better of Hadoop. MARLA performs slightly below
MARIANE as its task scheduler requires task management, in the form of
responding to task requests, and recording successful tasks. MARIANE on
the other hand, simply equally divides work and starts the workers. No task
management takes place during runtime. MARIANE here performs best by
less than a 1% margin on MARLA, while Hadoop performs about 25% worse
than both MARLA and MARIANE.

MPRIME [15] here to induce different CPU and memory loads
on different machines. MARIANE even though faster than
Hadoop at first due to its low overhead nature [9], performs
worst in the end as Hadoop catches up to it. MARIANE is de-
void of any load balancing capability and as such suffers in this
scenario. Hadoop, although featuring a somewhat inefficient
load-balancing model, copes better than MARIANE. Hadoop’s
load shifting strategy is however upstaged here by MARLA
which performs best. While Hadoop’s speculative execution
shifts load back and forth between stressed and stress-free
machines, MARLA does not operate any load shift, but lets
each machine request jobs as they complete their prior tasks.
This, results in the lowest runtime and thus best performance
of all three frameworks.

Figure 5 shows a homogeneous cluster of 75 nodes (600
cores), all of which are stress-free. Devoid of the need to load-
balance, and due to its lightweight nature, MARIANE does
best. The margin between it and MARLA here is however
slightly below 1% with 300 Million matrices to process. Given
that MARLA was inspired from MARIANE, this latency is
the result of task scheduling. In this case, we minimized the
granularity of MARLA’s tasks as the environment at hand
is homogeneous. In a homogeneous environment, less tasks
means less scheduling. While this is ideal in a homoge-
neous environment, it is not in a heterogeneous cluster. The
cost of managing those tasks however causes a performance
footprint exhibited by MARLA against MARIANE shown
here, even under MARLA’s best setup for a homogeneous
environment. Hadoop performs worst here; however, rather
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Fig. 6.  Speedup between stress-free and stressed cluster runs for MARLA

over Hadoop. This shows how much faster MARLA is over Hadoop in stress-
free clusters vs stressed ones.

than load-balancing, as the performance narrative has been so
far, instead, the lightweight nature of MARLA and MARIANE
combined with the use of GPFS give both MARLA and
MARIANE the upper hand. The same conclusions were found
between Hadoop and MARIANE in [6].

Figure 6 shows how much faster MARLA proves to be
over Hadoop in two types of scenarios: Stress-free clusters and
stressed clusters. In the stressed case, the stress is induced on
75% of the participating nodes. Although faster than Hadoop
by up to 38% in the homogeneous cluster, MARLA shows
here to be faster in the heterogeneous case with a little over
78% better performance over Hadoop. As mentioned in the
introduction to our performance section, the stressed induced
here occupies all cores of the stressed node at 50% utilization,
while every other node is subjected to 25% memory utilization.

It is worth noting in Figure 7 that as more data is present
on the cluster, MARLA’s file granularity is reduced. With
bigger input data, previously finer input files become bigger
and with bigger tasks, slow nodes do more task work, thus
slowing down the job overall. We elected not to increase the
file granularity setting in between data increases in this graph
for consistency, as granularity increases would yield constantly
finer files, which benefits MARLA in this instance. This fact
is illustrated in Figure 8, where as tasks get finer, MARLA
performs better in the stressed cluster environment it operates
in. Also, as the data grows from 10 to 40 millions matrices,
for the same granularity settings, the runtime disparity between
adjacent granularity settings is greater for bigger input, for 2
and 4 input pieces per node. The runtime difference shows a
greater disparity with 40 million matrices, than for the same
granularity settings for 10 million matrices. This shows that
as data grows, MARLA’s granularity setting is best raised in
value depending on the size of the data.

Figure 9 shows MARLA’s fault-tolerance abilities. As we
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here, showing a better outlook than MARIANE, as MARIANE proves to
be much slower than Hadoop in stressed environments. MARLA however
shows positive performance throughout the experiment. We elected to keep
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purposes. This is shown as a slight performance decrease as file sizes increase.
MARLA’s overall performance however shows over 16% better performance
from stress-free clusters to stressed clusters over Hadoop.
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Fig. 8. The effect of task granularity on performance under load imbalanced
clusters.

changed our traditional input specific fault-mechanism, as seen
in MARIANE [9], to a task oriented fault-tolerance mechanism
to accommodate MARLA'’s fair-share scheme, it was impera-
tive to test this fault-tolerance scheme against Hadoop’s and
MARIANE’s. As expected, MARIANE and MARLA perform
closely, as Hadoop falls behind under failing node conditions.

V. RELATED WORK

While a fair body of work exists with regard to Task
Scheduling in MapReduce [16] [17] [18] [19], often con-
sidering heterogeneity of clusters, these works seek to re-
define task scheduling in order to improve performance when
scheduling multiple jobs at once, rather than scheduling within
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Fig. 9. Parsing of 0.6TB file full of words, in a word frequency count,
under failing conditions. MARTANE Hadoop and MARLA all start with 32
nodes each, then progressively lose 6, 8, 10, 12, 14, and 16 nodes.

each individual job. Zaharia et al. [4] and Chen et al. [20]
in a different approach, focus on improving speculative task
execution in order for it to efficiently determine which tasks
should be picked for duplicate execution. While there can be
improvements to Hadoop’s speculative execution model, in
highly active clusters with a large number of users, nodes may
idle and resume work in a constant fashion. In such settings,
speculative execution would cause constant duplicate tasks to
be scheduled every time nodes are detected to be burdened,
even if such a condition is temporary, as the case may be.
While [5] espouses a static load-balancing model by assessing
the cluster and accordingly splitting the data, such an approach
is inefficient should “surprise” third-party loads arise in the
middle of a MapReduce job.

In the domain of MapReduce, Twister [7] is an iterative
MapReduce application devoid of load-balancing as the frame-
work focuses on catering to iterative applications. LEMO-MR
[8] is a lightweight, low-overhead MapReduce framework.
LEMO-MR however, much like DELMA [21], is also devoid
of load-balancing. Amazon has produced EMR [22], a cloud
computing framework allowing for MapReduce applications to
be implemented. In a similar fashion, Microsoft has produced
Azure [23]. EMR and Azure are proprietary applications, and
hence an insightful analysis on their design decisions is not
possible. However EMR hosts Hadoop, and as such the same
approach to load-balancing as in Hadoop might be at play.

VI. CONCLUSIONS

Used by Yahoo!, Facebook and Google, to name a few, the
MapReduce model has become a widely acclaimed processing
model for big data. As the MapReduce paradigm promotes
the applications of uniform map and reduce functions to
traditionally similar (size-wise) split input data chunks, it is
trivial to see the source of its deficiencies in heterogeneous
environments. Fortunately, the lack of performance displayed
in such settings is rooted in its implementations, rather than
in the model itself. In the traditional case, such as with
Hadoop, Twister and MARIANE, nodes showing different
performance profiles are given similar loads to process through
equal data partition. Attempts at a solution to this problem



range from re-inventing Hadoop’s speculative model, to static
load-balancing schemes. All of these, however, mitigate the
problem rather than solve it, and none directly address the
performance ability of the individual worker node, which is the
source of cluster heterogeneity. Faced with this condition, we
presented MARLA, a load-adaptive MapReduce framework
espousing a task-oriented approach to MapReduce application
processing. Rather than equally splitting the input for its nodes,
as in traditional MapReduce frameworks, MARLA creates a
multitude of tasks born from input splits, many times greater
in number than the sum of its nodes. This approach allows the
participating nodes to request tasks at their own pace.
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