
MapReduce for Data Intensive Scientific Analyses

Jaliya Ekanayake, Shrideep Pallickara, and Geoffrey Fox
Department of Computer Science

Indiana University
Bloomington, USA

{jekanaya, spallick, gcf}@indiana.edu

Abstract— Most scientific data analyses comprise analyzing
voluminous data collected from various instruments. Efficient
parallel/concurrent algorithms and frameworks are the key to
meeting the scalability and performance requirements entailed
in such scientific data analyses. The recently introduced
MapReduce technique has gained a lot of attention from the
scientific community for its applicability in large parallel data
analyses. Although there are many evaluations of the
MapReduce technique using large textual data collections,
there have been only a few evaluations for scientific data
analyses. The goals of this paper are twofold. First, we present
our experience in applying the MapReduce technique for two
scientific data analyses: (i) High Energy Physics data analyses;
(ii) Kmeans clustering. Second, we present CGL-MapReduce, a
streaming-based MapReduce implementation and compare its
performance with Hadoop.

MapReduce, Message passing, Parallel processing, Scientific
Data Analysis

I. INTRODUCTION
Computation and data intensive scientific data analyses

are increasingly prevalent. In the near future, it is expected
that the data volumes processed by applications will cross
the peta-scale threshold, which would in turn increase the
computational requirements. Two exemplars in the data-
intensive domains include High Energy Physics (HEP) and
Astronomy. HEP experiments such as CMS and Atlas aim to
process data produced by the Large Hadron Collider (LHC).
The LHC is expected to produce tens of Petabytes of data
annually even after trimming the datasets via multiple layers
of filtrations. In astronomy, the Large Synoptic Survey
Telescope produces data at a nightly rate of about 20
Terabytes.

Data volume is not the only source of compute intensive
operations. Clustering algorithms, widely used in the fields
such as chemistry and biology, are especially compute
intensive even though the datasets are comparably smaller
than the physics and astronomy domains.

The use of parallelization techniques and algorithms is
the key to achieve better scalability and performance for the
aforementioned types of data analyses. Most of these
analyses can be thought of as a Single Program Multiple
Data (SPMD) [1] algorithm or a collection thereof. These
SPMDs can be implemented using different techniques such
as threads, MPI [2], and MapReduce (explained in section 2)
[3].

There are several considerations in selecting an
appropriate implementation strategy for a given data
analysis. These include data volumes, computational
requirements, algorithmic synchronization constraints,
quality of services, easy of programming and the underlying
hardware profile.

We are interested in the class of scientific applications
where the processing exhibits the composable property.
Here, the processing can be split into smaller computations,
and the partial-results from these computations merged after
some post-processing to constitute the final result. This is
distinct from the tightly coupled parallel applications where
the synchronization constraints are typically in the order of
microseconds instead of the 50-200 millisecond coupling
constraints in composable systems. The level of coupling
between the sub-computations is higher than those in the
decoupled-model such as the multiple independent sub-tasks
in job processing systems such as Nimrod [4].

The selection of the implementation technique may also
depend on the quality of services provided by the
technology itself. For instance, consider a SPMD
application targeted for a compute cloud where hardware
failures are common, the robustness provided by the
MapReduce implementations such as Hadoop is an
important feature in selecting the technology to implement
this SPMD. On the other hand, the sheer performance of the
MPI is a desirable feature for several SPMD algorithms.

When the volume of the data is large, even tightly
coupled parallel applications can sustain less stringent
synchronization constraints. This observation also favors the
MapReduce technique since its relaxed synchronization
constraints do not impose much of an overhead for large data
analysis tasks. Furthermore, the simplicity and robustness of
the programming model supersede the additional overheads.

To understand these observations better, we have
selected two scientific data analysis tasks viz. HEP data
analysis and Kmeans clustering [5]. We have implemented
the tasks in the MapReduce programming model.
Specifically, we have implemented these programs using
Apache's MapReduce implementation – Hadoop [6], and
also using CGL-MapReduce, a novel streaming-based
MapReduce implementation developed by us. We compare
the performance of these implementations in the context of
these scientific applications and make recommendations
regarding the usage of MapReduce techniques for scientific
data analyses.

Fourth IEEE International Conference on eScience

978-0-7695-3535-7/08 $25.00 © 2008 IEEE
DOI 10.1109/eScience.2008.59

277

The rest of the paper is organized as follows. Section 2
gives an overview of the MapReduce technique and a brief
introduction to Hadoop. CGL-MapReduce and its
programming model are introduced in Section 3. In section
4, we present the scientific applications, which we used to
evaluate the MapReduce technique while the section 5
presents the evaluations and a detailed discussion on the
results that we obtained. The related work is presented in
section 6 and in the final section, we present our conclusions.

II. THE MAPREDUCE
In this section, we present a brief introduction of the

MapReduce technique and an evaluation of existing
implementations.

A. The MapReduce Model
MapReduce is a parallel programming technique derived

from the functional programming concepts and is proposed
by Google for large-scale data processing in a distributed
computing environment. The authors [3] describe the
MapReduce programming model as follows:

 The computation takes a set of input key/value pairs,

and produces a set of output key/value pairs. The
user of the MapReduce library expresses the
computation as two functions: Map and Reduce.

 Map, written by the user, takes an input pair and
produces a set of intermediate key/value pairs. The
MapReduce library groups together all intermediate
values associated with the same intermediate key I
and passes them to the Reduce function.

 The Reduce function, also written by the user,
accepts an intermediate key I and a set of values for
that key. It merges together these values to form a
possibly smaller set of values. Typically, just zero or
one output value is produced per Reduce invocation.

Counting word occurrences within a large document
collection is a typical example used to illustrate the
MapReduce technique. The data set is split into smaller
segments and the map function is executed on each of these
data segments. The map function produces a <key, value>
pair for every word it encounters. Here, the “word” is the key
and the value is 1. The framework groups all the pairs, which
have the same key (“word”) and invokes the reduce function
passing the list of values for a given key. The reduce
function adds up all the values and produces a count for a
particular key, which in this case is the number of
occurrences of a particular word in the document set. Fig. 1
shows the data flow and different phases of the MapReduce
framework.

B. Existing Implementations
Google's MapReduce implementation is coupled with a

distributed file system named Google File System (GFS) [7].
According to J. Dean et al., in their MapReduce
implementation, the intermediate <key, value> pairs are first
written to the local files and then accessed by the reduce

Figure 1. The MapReduce programming model

tasks. The same architecture is adopted by the Apache's
MapReduce implementation - Hadoop. It uses a distributed
file system called the Hadoop Distributed File System
(HDFS) to store data as well as the intermediate results.
HDFS maps all the local disks to a single file system
hierarchy allowing the data to be dispersed at all the
data/computing nodes. HDFS also replicates the data on
multiple nodes so that a failure of nodes containing a portion
of the data will not affect computations, which use that data.
Hadoop schedules the MapReduce computation tasks
depending on the data locality and hence improving the
overall I/O bandwidth. This setup is well suited for an
environment where Hadoop is installed in a large cluster of
commodity machines.

Hadoop stores the intermediate results of the
computations in local disks, where the computation tasks are
executed, and then informs the appropriate workers to
retrieve (pull) them for further processing. Although this
strategy of writing intermediate result to the file system
makes Hadoop a robust technology, it introduces an
additional step and a considerable communication overhead,
which could be a limiting factor for some MapReduce
computations. Different strategies such as writing the data to
files after a certain number of iterations or using redundant
reduce tasks may eliminate this overhead and provide a
better performance for the applications.

Apart from Hadoop, we found details of few more
MapReduce implementations targeting multi-core and shared
memory architectures, which we will discuss in the related
work section.

III. CGL-MAPREDUCE
CGL-MapReduce is a novel MapReduce runtime that

uses streaming for all the communications, which eliminates
the overheads associated with communicating via a file
system. The use of streaming enables the CGL-MapReduce
to send the intermediate results directly from its producers to
its consumers. Currently, we have not integrated a distributed
file system such as HDFS with CGL-MapReduce, and hence
the data should be available in all computing nodes or in a
typical distributed file system such as NFS. The fault
tolerance support for the CGL-MapReduce will harness the
reliable delivery mechanisms of the content dissemination
network that we use. Fig. 2 shows the main components of
the CGL-MapReduce.

278

Figure 2. Components of the CGL-MapReduce

CGL MapReduce runtime comprises a set of workers,
which perform map and reduce tasks and a content
dissemination network that handles all the underlying
communications. As in other MapReduce runtimes, a master
worker (MRDriver) controls the other workers according to
instructions given by the user program. However, unlike
typical MapReduce runtimes, CGL-MapReduce supports
both single-step and iterative MapReduce computations.

A. MapReduce computations with CGL-MapReduce
The different stages, which the CGL-MapReduce passes

through during typical MapReduce computations, are shown
in Fig. 3 and the description of each stage follows.

Initialization Stage – The first step in using CGL-

MapReduce is to start the MapReduce workers and configure
both the map and reduce tasks. CGL-MapReduce supports
configuring map/reduce tasks and reusing them multiple
times with the aim of supporting iterative MapReduce
computations efficiently. The workers store the configured
map/reduce tasks and use them when a request is received
from the user to execute the map task. This configuration
step, which occurs only once, can be used to load any fixed
data necessary for the map tasks. For typical single pass
MapReduce computations, the user may not need to
implement the configuration step.

Map Stage – After the workers are initialized, the user

program instructs the MRDriver to start the map
computations by passing the variable data (<key, value>
pairs) to the map tasks. MRDriver relay this to the workers,
which then invoke the configured map tasks. This approach
allows the user program to pass the results from a previous
iteration to the next iteration in the case of iterative
MapReduce. The outputs of the map tasks are transferred
directly to the appropriate reduce workers using the content
dissemination network.

Reduce Stage – Reduce workers are initialized in the

same manner as the map workers. Once initialized, the
reduce workers wait for the map outputs. MRDriver instructs
the reduce workers to start executing the reduce tasks once

Figure 3. Various stages of CGL-MapReduce

all the map tasks are completed. Output of the reduce
computations are also sent directly to the user program.

Combine Stage – Once the user program receives all the

outputs of the reduce computations; it may perform a
combine operation specified by the user. For a typical single-
pass MapReduce computation this step can be used to
combine the results of the reduce tasks to produce the final
results. In the case of iterative MapReduce computations,
this step can be used to compute the deciding value to
continue the iterations.

Termination Stage – The user program informs the
MRDriver its status of completing the MapReduce
computation. The MRDriver also terminates the set of
workers used for the MapReduce computation.

B. Implementation
CGL-MapReduce is implemented in Java and utilizes

NaradaBrokering [8], a streaming-based content
dissemination network developed by us. The CGL-
MapReduce research prototype provides runtime capabilities
of executing MapReduce computations written in the Java
language. MapReduce tasks written in other programming
languages require wrapper map and reduce tasks in order for
them to be executed using CGL-MapReduce.

As mentioned in the introduction, the fault tolerance is an
important aspect for MapReduce computations since the
overall computation depends on the results produced by each
execution of the map and reduce functions. In CGL-
MapReduce, we have identified three crucial components,
which need to support, fault tolerance. They are: (i)
MRDriver, (ii) Map Worker, and (iii) Reduce Worker.
MRDriver can be made fault tolerant by using redundancy
and typical checkpointing strategies. Failure of a Map
Worker can easily be corrected by adopting a policy of re-
executing failed map tasks. Handling the failures of reduce
workers is more crucial in our implementation since a given
reduce worker may have the results of many map tasks
which have already completed and these intermediate results
are directly transferred to the Reduce Worker without writing
them to the persistence storage. We are planning to use the
reliable streaming feature of NaradaBrokering [9] to
implement the fault tolerance in CGL-MapReduce. We will
present details of our ongoing research in fault-tolerance in
subsequent articles.

279

IV. SCIENTIFIC APPLICATIONS
This section describes the scientific data analysis tasks,

which we implemented using both Hadoop and CGL-
MapReduce and the challenges we faced in implementing
them.

A. HEP Data Analysis
As part of an effort funded by the DoE we are working

with the High Energy Physics group at Caltech with their
particle physics data analysis tools. The data analysis
framework used by these tools is ROOT [10], and the
analysis functions are written using an interpreted language
of ROOT named CINT [11].

The goal of the analysis is to execute a set of analysis
functions on a collection of data files produced by high-
energy physics experiments. After processing each data file,
the analysis produces a histogram of identified features.
These histograms are then combined to produce the final
result of the overall analysis. This data analysis task is both
data and compute intensive and fits very well in the class of
composable applications. Fig. 4 shows the program flow of
this analysis once it is converted to a MapReduce
implementation.

Although there are many examples for using MapReduce
for textual data processing using Hadoop, we could not find
any schemes for using MapReduce for these types of
applications. Hadoop expects the data for the MapReduce
tasks to be in its distributed file system but currently there is
no support from accessing the data in HDFS using other
languages such as C++. Hadoop supports map and reduce
functions written in other languages via a special API called
Hadoop streaming, which executes the functions as separate
processes and then collects the output of the function from
standard output and feeds it to the reduce tasks. However, we
could not use the above approach since the output of the map
task is also in the binary format (a histogram file) and the
reduce function expects it as a data file. We could modify the
analysis function used for the map task in such a way that it
will output the histogram file name instead of the data and
then let Hadoop transfer this file name to the appropriate
reduce task. This approach does not work either since the
outputs are created in the local file system and the reduce
tasks cannot access them unless they are stored in the HDFS.

Figure 4. MapReduce for the HEP data analysis

The solution we came up with this is to write wrapper
functions for the map and reduce tasks in Java, and use these
wrapper functions to execute the data analysis functions
written in CINT. The data is placed on a high-speed/high-
bandwidth network file system so that all the map tasks can
access them without reading them via HDFS.

The input to the map function is the names of the data
files. Each map task will process some of these files and
produce a histogram file. The map wrapper function reads
this histogram file and saves it using HDFS. The output of
the map wrapper will be the location of this file in HDFS.
Hadoop's runtime collects these locations and send them to
the appropriate reduce tasks (reduce wrappers). The reduce
wrapper reads these histogram files from the HDFS and
copies them to the local disk, where it has been executing,
and invokes the reduce task written in CINT to perform the
merging of the histograms. The merged histogram is again
stored in HDFS by the reduce wrapper and the location is
passed to the user program, which then performs a similar
operation to merge them all into a single histogram.

We adopted the same technique to implement the CGL-
MapReduce version of the above data analysis. However, in
CGL-MapReduce version, the output histograms are directly
transferred to the appropriate reduce tasks via
NaradaBrokering. The reduce wrapper saves the data as local
files and executes the reduce task written in CINT. The
output of the reduce task is also read by the reduce wrapper
and transferred directly to the user program where a similar
computation to merge all the histograms to a single
histogram is performed.

B. Kmeans Clustering
The HEP data analysis task discussed in the previous

section represents a class of MapReduce computations where
the entire computation is performed in a single pass of data
through the map and the reduce functions. Kmeans clustering
is within the class of applications where multiple iterations
of MapReduce computations are necessary for the overall
computation. For this purpose, we used the Kmeans
clustering algorithm to cluster a collection of 2D data points.

In Kmeans clustering, the target is to cluster a set of data
points to a predefined number of clusters. An iteration of the
algorithm produces a set of cluster centers where it is
compared with the set of cluster centers produced during the
previous iteration. The total error is the difference between
the cluster centers produced at nth iteration and the cluster
centers produced at (n-1)th iteration. The iterations continue
until the error reduces to a predefined threshold value. Fig. 5
shows the MapReduce version of the Kmeans algorithm that
we developed.

In Kmeans clustering, each map function gets a portion
of the data, and it needs to access this data split in each
iteration. These data items do not change over the iterations,
and it is loaded once for the entire set of iterations. The
variable data is the current cluster centers calculated during
the previous iteration and hence used as the input value for
the map function.

280

Figure 5. MapReduce for Kmeans clustering

Hadoop’s MapReduce API does not support configuring
and using a map task over multiple iterations and hence in
the Hadoop version of the Kmeans algorithm, the map task
loads the data in each iteration.

As mentioned in section 3, CGL-MapReduce allows the
map tasks to be configured and used for multiple iterations.
This gives the CGL-MapReduce a performance advantage
over Hadoop in addition to the performance gain obtained by
the use of streaming.

 The output of the map task is a set of partial cluster
centers. Hadoop handles the transfer of these partial centers
to the reduce tasks via its distributed file system. In CGL-
MapReduce these outputs are directly transferred to the
reduce task by the runtime using the content dissemination
network.

Once the reduce task receives all the partial cluster
centers it computes new cluster centers. In the Hadoop
version of this algorithm, the new cluster centers are written
to HDFS and then read by the user program, which
calculates the difference (error) between the new cluster
centers and the previous cluster centers. If the difference is
greater than a predefined threshold, the user program starts a
new iteration of MapReduce using this new cluster centers as
the input data. CGL-MapReduce version performs the same
computations as the Hadoop version. However, the data
transfer happens much faster because it uses streaming
instead of a file system.

C. Experimental Setup
The amount of data we have for the HEP data analysis is

about 1 Terabytes (TB). The data is stored in IU Data
Capacitor: a high-speed and high-bandwidth storage system
running the Lustre File System. For HEP data, we processed
them using a cluster of 12 computing nodes. For Kmeans
clustering, which uses a small data set of around 2GB, we
used a cluster of 5 nodes.

 All machines involved in the benchmarks had Dual
Quad Core Intel Xeon processors and 8GB of memory and
were running Red Hat Enterprise Linux operating system
version 4. The JVM version 1.6.0_07 was used for the
benchmarks and the gcc version 3.4.6 compiler was used for
the C++ code. LAM MPI version 7.1.4 was used for the MPI
implementations.

V. EVALUATION
To evaluate the MapReduce technique for the HEP data

analysis we first measured the total execution time it takes to
process the data under different implementations by
increasing the amount of data. As we increase the amount of
data, we also increase the number of map tasks so that each
map task processes almost the same amount of data in every
run. Fig. 6 depicts our results.

Hadoop and CGL-MapReduce both show similar
performance. The amount of data accessed in each analysis
is extremely large and hence the performance is limited by
the I/O bandwidth of a given node rather than the total
processor cores. The overhead induced by the MapReduce
implementations has negligible effect on the overall
computation.

We performed another benchmark to see how the two
MapReduce implementations scale as the number of
processing units increases. We fixed the volume of the data
at 100 GB, and measured the execution time by varying the
number of nodes in the cluster. Since the overall
performance is limited by the I/O bandwidth, we use only
one processor core in each node for this evaluation. We also
measured the time it takes to process the same 100GB of
data using a sequential program and calculated the speedups
achieved by Hadoop and CGL-MapReduce. The results
shown in Fig. 7 and Fig. 8 highlight the scalability of the
MapReduce technique itself and the two implementations.
The results also indicate how the speed gain diminish after a
certain number of parallel processing units (after around 10
units) for the data set that we used. This is because after this
threshold the overhead associated with the parallelization
technique negates the effect of increased concurrency.

For the Kmeans clustering, we first evaluate the overall
performance of Hadoop and CGL-MapReduce by measuring
the execution time as we increase the number of data points
for clustering. We also evaluate the performance of an MPI
version of the same Kmeans clustering algorithm
implemented in C++. The results are shown in Fig. 9.

The lack of support for iterative MapReduce tasks and
the large overhead caused by the file system based
communication have largely affected the overall

Figure 6. HEP data analysis, execution time vs. the volume of data (fixed

compute resources)

Each test is performed using 12 compute nodes
(Total of 96 processor cores)

281

Figure 7. Total time vs. the number of compute nodes (fixed data)

Figure 8. Speedup for 100GB of HEP data

performance of Hadoop. CGL-MapReduce shows a
performance close to the MPI implementation for higher
number of data points.

To verify the above observation we calculated the
overhead () associated in each approach using the following
formula:

In Eq. (1) P denotes the number of hardware processing
units used and TP denotes the total execution time of the
program when P processing units are used. T1 denotes the
total execution time for a single threaded program. T1 is
measured using programs, implemented in Java for Hadoop
and CGL-MapReduce and C++ for the MPI version, which
are run on a single node of the same cluster. The result of
this analysis is shown in Fig. 10.

The results in Fig. 9 and Fig. 10 show how the approach
of configuring once and re-using of map/reduce tasks for
multiple iterations and the use of streaming have improved
the performance of CGL-MapReduce for iterative
MapReduce tasks making it almost comparable to the results
of MPI for higher number of data points. The
communication overhead and the loading of data multiple

Figure 9. Total Kmeans time against the number of data points (Both axes

are in log scale)

times have caused the Hadoop results to be almost hundred
times more than that of CGL-MapReduce.

Cheng-Tao et al. [12] and Colby Ranger et al. [13] both
used Kmeans clustering algorithm to evaluate their
MapReduce implementations for multi-core and multi-
processor systems. However, other clustering algorithms
such as Deterministic Annealing [14], which we are
investigating in our current research, will have much higher
computation requirements and hence for such algorithms we
expect that Hadoop’s overhead will be smaller than the
above.

VI. RELATED WORK
The SPMD programming style introduced by Frederica

Darema has been a core technique in parallelizing
applications since most applications can be considered as a
collection of SPMD programs in different granularities.
Parallel Virtual Machine [15] became the first standard of
the SPMD programming and currently the MPI is the de-
facto standard in developing SPMD programs.

MapReduce was first introduced in the Lisp
programming language where the programmer is allowed to
use a function to map a data set into another data set, and
then use a function to reduce (combine) the results [16].

Figure 10. Overheads associated with Hadoop, CGL-MapReduce and MPI

for iterative MapReduce (Both axes are in log scale)

100GB of data processed by varying
the number of compute nodes. One
processor core is used in each node

Each test is performed using 5 compute
nodes (Total of 40 processor cores)

282

Swazall is an interpreted programming language for
developing MapReduce programs based on Google's
MapReduce implementation. R. Pike et al. present its
semantics and its usability in their paper [17]. The language
is geared towards processing large document collections,
which are typical operations for Google. However, it is not
clear how to use such a language for scientific data
processing.

M. Isard et al. present Dryad - a distributed execution
engine for coarse grain data parallel applications [18]. It
combines the MapReduce programming style with dataflow
graphs to solve the computation tasks. Dryad's computation
task is a set of vertices connected by communication
channels, and hence it processes the graph to solve the
problem.

Hung-chin Yang et al. [19] adds another phase “merge”
to MapReduce style programming, mainly to handle the
various join operations in database queries. In CGL-
MapReduce, we also support the merge operation so that the
outputs of the all reduce tasks can be merged to produce a
final result. This feature is especially useful for the iterative
MapReduce where the user program needs to calculate some
value depending on all the reduce outputs.

Disco [20] is an open source MapReduce runtime
developed using a functional programming language named
Erlang [21]. Disco architecture shares clear similarities to the
Google and Hadoop MapReduce architectures where it stores
the intermediate results in local files and access them later
using HTTP from the appropriate reduce tasks. However,
disco does not support a distributed file system as HDFS or
GFS but expects the files to be distributed initially over the
multiple disks of the cluster.

The paper presented by Cheng-Tao et al. discusses their
experience in developing a MapReduce implementation for
multi-core machines [12]. Phoenix, presented by Colby
Ranger et al., is a MapReduce implementation for multi-core
systems and multiprocessor systems [13]. The evaluations
used by Ranger et al. comprises of typical use cases found in
Google's MapReduce paper such as word count, reverse
index and also iterative computations such as Kmeans. As
we have shown under HEP data analysis, in data intensive
applications, the overall performance depends greatly on the
I/O bandwidth and hence a MapReduce implementation on
multi-core system may not yield significant performance
improvements. However, for compute intensive applications
such as machine learning algorithms, the MapReduce
implementation on multi-core would utilize the computing
power available in processor cores better.

VII. CONCLUSION
In this paper, we have presented our experience in

applying the map-reduce technique for scientific
applications. The HEP data analysis represents a large-scale
data analysis task that can be implemented in MapReduce
style to gain scalability. We have used our implementation to
analyze up to 1 Terabytes of data. The Kmeans clustering
represents an iterative map-reduce computation, and we have

used it to cluster up to 40 million data points requiring
around 250 MapReduce iterations.

We performed the above two data analyses using Hadoop
and CGL-MapReduce and compared the results. Our results
confirm the following observations.

 Most scientific data analyses, which has some form

of SMPD algorithm can benefit from the
MapReduce technique to achieve speedup and
scalability.

 As the amount of data and the amount of
computation increases, the overhead induced by a
particular runtime diminishes.

 Even tightly coupled applications can benefit from
the MapReduce technique if the appropriate size of
data and an efficient runtime are used.

Our experience shows that some features such as the
necessity of accessing binary data, the use of different
programming languages, and the use of iterative algorithms,
exhibited by scientific applications may limit the
applicability of the existing MapReduce implementations
directly to the scientific data processing tasks. However, we
strongly believe that MapReduce implementations with
support for the above features as well as better fault tolerance
strategies would definitely be a valuable tool for scientific
data analyses.

In our future works, we are planning to improve the
CGL-MapReduce in two key areas: (i) the fault tolerance
support; (ii) integration of a distributed file system so that it
can be used in a cluster of commodity computers where there
is no shared file system. We are also studying the
applicability of the MapReduce technique in cloud
computing environments.

ACKNOWLEDGMENT
This research is supported by grants from the National

Science Foundation’s Division of Earth Sciences project
number EAR-0446610, and the National Science
Foundation's Information and Intelligent Systems Division
project number IIS-0536947.

REFERENCES

[1] F. Darema, “SPMD model: past, present and future,” Recent
Advances in Parallel Virtual Machine and Message Passing Interface,
8th European PVM/MPI Users' Group Meeting, Santorini/Thera,
Greece, 2001.

[2] MPI (Message Passing Interface), http://www-unix.mcs.anl.gov/mpi/
[3] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing

on large clusters,” ACM Commun., vol. 51, Jan. 2008, pp. 107-113.
[4] R. Buyya, D. Abramson, and J. Giddy, “Nimrod/G: An Architecture

for a Resource Management and Scheduling System in a Global
Computational Grid,” HPC Asia 2000, IEEE CS Press, USA, 2000.

[5] J. B. MacQueen , “Some Methods for classification and Analysis of
Multivariate Observations,” Proceedings of 5-th Berkeley
Symposium on Mathematical Statistics and Probability, Berkeley,
University of California Press, vol. 1, pp. 281-297.

[6] Apache Hadoop, http://hadoop.apache.org/core/

283

[7] S. Ghemawat, H. Gobioff, and S. Leung, “The Google file system”,
Symposium on Op-erating Systems Principles, 2003, pp 29–43.

[8] S. Pallickara and G. Fox, “NaradaBrokering: A Distributed
Middleware Framework and Architecture for Enabling Durable Peer-
to-Peer Grids,” Middleware 2003, pp. 41-61.

[9] S. Pallickara, H. Bulut, and G. Fox, “Fault-Tolerant Reliable Delivery
of Messages in Distributed Publish/Subscribe Systems,” 4th IEEE
International Conference on Autonomic Computing, Jun. 2007, pp.
19.

[10] ROOT - An Object Oriented Data Analysis Framework,
http://root.cern.ch/

[11] CINT - The CINT C/C++ Interpreter,
http://root.cern.ch/twiki/bin/view/ROOT/CINT/

[12] C. Chu, S. Kim, Y. Lin, Y. Yu, G. Bradski, A. Ng, and K. Olukotun.
Map-reduce for machine learning on multicore. In B. Sch¨olkopf, J.
Platt, and T. Hoffman, editors, Advances in Neural Information
Processing Systems 19, pages 281–288. MIT Press, Cambridge, MA,
2007.

[13] C. Ranger, R. Raghuraman, A. Penmetsa, G. R. Bradski, and C.
Kozyrakis. “Evaluating MapReduce for Multi-core and
Multiprocessor Systems,” Proc. International Symposium on High-
Performance Computer Architecture (HPCA), 2007, pp. 13-24.

[14] K. Rose, E. Gurewwitz, and G. Fox, “A deterministic annealing
approach to clustering,” Pattern Recogn. Lett, vol. 11, no. 9, 1995,
pp. 589-594.

[15] PVM (Parallel Virtual Machine), http://www.csm.ornl.gov/pvm/
[16] G. L. Steel, Jr. “Parallelism in Lisp,” SIGPLAN Lisp Pointers, vol.

VIII(2),1995, pp.1-14.
[17] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan, “Interpreting the

data: Parallel analysis with sawzall,”Scientific Programming Journal
Special Issue on Grids and Worldwide Computing Programming
Models and Infrastructure, vol. 13, no. 4, pp. 227–298, 2005.

[18] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly,
“Dryad:Distributed data-parallel programs from sequential building
blocks,” European Conference on Computer Systems , March 2007.

[19] H. Chih, A. Dasdan, R. L. Hsiao, and D. S. Parker, “Map-
reducemerge: Simplified relational data processing on large clusters,”
Proc. ACM SIGMOD International Conference on Management of
data (SIGMOD 2007), ACM Press, 2007, pp. 1029-1040.

[20] Disco project, http://discoproject.org/
[21] Erlang programming language, http://www.erlang.org/

284

