
Improving Hadoop Performance in Intercloud
Environments

Shin­gyu Kim*, Junghee Won†, Hyuck Han*, Hyeonsang Eom*, Heon Y. Yeom*
*Seoul National University, †SAP Korea Ltd.

*{sgkim, hhyuck, hseom, yeom}@dcslab.snu.ac.kr, †jeong.hee.won@sap.com

ABSTRACT
Intercloud is a federated environment of private clusters and
public clouds. The performance of Hadoop could be de-
graded significantly in intercloud environments. Because
previous solutions for intercloud environments rely on spec-
ulative execution, they require additional cost in the cloud.
In this paper, we propose a new task scheduler that improves
performance without the help of speculative execution in in-
tercloud environments.

1. INTRODUCTION
Hadoop continues to increase in its popularity in large

scale data processing because of its scalability and fault
tolerance. When they need more computational power for
heavy workloads, the capability of the Hadoop platform can
be easily increased by just joining additional compute nodes.
However, it is expensive to acquire and maintain large-scale
clusters for unexpected heavy workloads. One of the afford-
able options is renting compute nodes from cloud computing
services. The flexible pay-as-you-go pricing model of the
cloud could help reduce the investment in private cluster
infrastructures.
Hadoop implicitly assumes that compute nodes are ho-

mogeneous. However, if additional compute nodes join from
the cloud, the above assumption does not hold any longer.
We call this environment an intercloud environment. It is
widely known that Hadoop’s performance can be degraded
significantly in intercloud environments [4, 1]. There are
several studies designed to solve this problem [4, 2, 1], and
most of them rely on speculative execution. It is noted that
speculative tasks are also charged in the cloud, and they
could elongate the execution time of other tasks by compet-
ing for scarce resources, such as the network.
In this paper, we propose ICMR (MapReduce for Inter-

Cloud environments) to solve the above problem without
speculative execution. The fundamental idea is that ICMR
dynamically adjusts workload for each compute node in pro-
portion to their processing speed. In intercloud environ-
ments, input data is stored only in private clusters, and the
compute nodes from the cloud read input from the private
clusters. Because map workers can make progress with read-
ing input data simultaneously, it is not necessary to copy
or move input data to the cloud prior to the start of map
tasks. In order to reduce total running time, the reduce
phase should be started as soon as possible [3]. For this
reason, ICMR aims to make all map worker nodes finish at
the same time.

2. HADOOP FOR INTERCLOUD ENVIRON­
MENTS

2.1 Execution Model of Hadoop
In this section, we present the execution model of Hadoop.

For simplicity, we assume that all map workers start at the
same time. Because the reduce phase is not controllable by
the task scheduler, we omit the reduce phase in explanation.
Figure 1 illustrates the execution model of Hadoop with two
worker nodes, and M and S mean map phase and shuffling
phase, respectively. Node 1 and node 2 represent the private
clusters and compute nodes from the cloud, respectively. In
node 1, map processing time is longer than shuffling time,
and in node 2, shuffling time is longer than map processing
time due to the slow wide-area network.

Total running time of node i (Ti) is composed of total
map processing time (Mi), total shuffling time (Si) and over-
lapped time between Mi and Si. The total map processing
time (Mi) is as follows:

Mi =
Wi

vi
, vi = min(fsi, pi) (1)

where Wi is the amount of input data for node i, and vi is

M
1

S
1

S
2

M
2

M
n

S
n

M
1

S
1

S
2

M
2

M
m

S
m

Node 1 Node 2

T
o
ta
l 
R
u
n
n
in
g
 T
im
e

T
o
ta
l 
M
ap
 P
ro
ce
ss
in
g
 T
im
e

T
o
tal S

h
u
ffllin

g
 T
im
e

T
o
ta
l 
R
u
n
n
in
g
 T
im
e 
o
f 
N
o
d
e 
1

Figure 1: Execution model of Hadoop, including
map and shuffle phases.

107



processing speed of node i. The processing speed vi is deter-
mined by two performance metrics, which are data reading
rate from storage (fsi) and the computing power of node i
(pi). In compute nodes from the cloud, fsi has a lower value
than pi. The total map shuffling time (Si) is as follows:

Si =
Ii

ti/Ni
(2)

where Ii is the amount of intermediate data produced at
node i, and ti is the data transfer rate to reduce workers.
Because shuffling can happen only one at a time in each
worker node, ti is divided by the number of map workers
in node i (Ni). From the above equations, we get a total
running time of node i (Ti):

Ti = Mi + Si − overlapped time (3)

If the total running time is not short enough, the overlapped
time is almost same as Mi or Si depending on the execution
environment. Thus, Ti can be represented as follows:

Ti ≈ max(Mi, Si) (4)

Finally we get a total running time for the whole job (T ) as
below.

T = max(T1, ... , Tn) (5)

2.2 ICMR Scheduler
The objective of the ICMR scheduler is to finish shuf-

fle phases of all map workers at the same time. By do-
ing this, idle resources are reduced, and the reduce phase
can be started as soon as possible. Because the original
Hadoop scheduler (the left part in Figure 2) does not con-
sider the performance of compute nodes and the network,
the end times of map workers could be different. However,
our ICMR scheduler (the right part in Figure 2) adjusts the
amount of input data (Wi) for each compute node in pro-
portion to its processing speed (vi), and achieves the goal.
We assume the amount of intermediate data (Ii) is pro-

portional to the amount of input data (Wi).

Ii = α×Wi (6)

In equation 6, α is the ratio between Ii and Wi. α is mea-
sured and updated whenever one map task is completed.
The total amount of input data (Wtotal) is invariant as be-
low.

Wtotal = W1 +W2 + ... +Wn (7)

If all map workers finish shuffle phases at the same time, we
get the following relation from equations 1, 2, 4, and 6.

max

((
W1

v1

)
,

(
αW1

t1/N1

))
= ... = max

((
Wi

vi

)
,

(
αWi

t1/Ni

))
From the above relation, we can derive Wi (1 ≤ i ≤ n).(

W1

v1

)
= ... =

(
αWj

tj/Nj

)
=

(
Wk

vk

)
= ...

Wj =

(
W1

v1
× α

tj/Nj

)
, Wk =

(
W1

v1
× vk

)
, ... (8)

Because vi, α, ti and Ni can be measured at the early time
of a job, we can calculate W1 from equations 7 and 8.
ICMR dynamically adjusts Wi in proportion to the per-

formance of each compute node. First, ICMR assigns equal

R
ed
u
ced
 

R
u
n
n
in
g
 

T
im
e

Original Scheduler ICMR Scheduler

M
1

S
1

S
2

M
2

M
n

S
n

Node 1

M
1

S
1

S
2

M
2

M
m

S
m

Node 2

M
1

S
1

S
2

M
2

M
n’

S
n’

Node 1

S
2

M
2

M
m’

S
m

Node 2

T
o
ta
l 
R
u
n
n
in
g
 T
im
e

T
o
tal R

u
n
n
in
g
 T
im
e

Figure 2: Overview of the ICMR scheduler which
considers shuffling time as well as map processing
time.

amount of task to all compute nodes, because it has no mea-
sured values for essential metrics of α, vi and ti. After sev-
eral tasks are finished, the central job tracker of Hadoop
gathers initial values for the metrics, and ICMR can calcu-
lateWi for all compute nodes. During processing of jobs, the
performance of network and CPU would be varied. There-
fore, the performance metrics which include α, vi, ti, are
measured and updated periodically. Then, ICMR dynam-
ically adjusts the amount of workloads by recalculating all
Wi.

The original Hadoop scheduler cuts up input data into
equal chunks. However, we modified Hadoop to be able
to have different sizes of chunks. This modification plays
an important role at the last phase. As shown at the last
phase of node 2 in the ICMR scheduler part of Figure 2,
the last chunk is smaller than the former chunks. If the
size of the last data chunk is equal to other chunks, the
running time of node 2 is increased and the start of the
reduce phase should be delayed. Although the amount of
managing information of ICMR scheduler is increased, we
modified Hadoop to improve overall performance.

2.3 Preliminary Result
We implemented the prototype of ICMR in Hadoop 0.19.2,

and conducted an experiment on Amazon EC2. We used
four small instances from U.S. west and east each, and the
total number of compute nodes was eight. The small in-
stance of Amazon EC2 has one virtual CPU and 1.7 GB
of memory, and the network bandwidth between the two
regions was about 70 Mbps. We executed a wordcount ap-
plication with 10GB data. The data was stored only at
U.S. east, and the replication factor of Hadoop file system
(HDFS) was three. We configured Hadoop to have 4 map
workers at U.S. east and west each, and 4 reduce workers
only at U.S. east.

Figure 3 shows the experimental result. The left bar is for
the original Hadoop scheduler, and the right bar is for our
ICMR scheduler. In this experiment, ICMR reduced total
map and shuffling time by about 19%. Because all compute
nodes had almost same performance, the difference was due
to the limitation of the network bandwidth between U.S.
east and U.S. west clouds. If a data consuming rate of a

108



Figure 3: Performance comparison between original
Hadoop scheduler and ICMR scheduler when exe-
cuting a wordcount application.

map worker is higher than a data transfer rate, the map
worker should wait for the next data without progress. In
this experiment, the data transfer rate was slower than the
data consuming rate. Because the processing speed of node
vi in our ICMR scheduling model measures not a CPU clock
rate but data processing speed, the total running time of
map processing time was also decreased.

3. CONCLUSION
In this paper, we proposed an ICMR scheduler that im-

proves Hadoop performance in intercloud environments with-
out the help of speculative execution. In future work, we will
evaluate ICMR with various workloads on large scale clus-
ters and the clouds. In addition to this, we are also planning
to design a new cloud instance scheduler for Hadoop.

4. ACKNOWLEDGMENTS
This work was supported by Mid-career Researcher Pro-

gram through NRF grant funded by the MEST (No. 2011-
0018022). The ICT at Seoul National University provided
research facilities for this study.

5. REFERENCES
[1] G. Ananthanarayanan, S. Kandula, A. Greenberg,

I. Stoica, Y. Lu, B. Saha, and E. Harris. Reining in the
outliers in map-reduce clusters using mantri. In
Proceedings of OSDI 2010.

[2] H. Lin, X. Ma, J. Archuleta, W.-c. Feng, M. Gardner,
and Z. Zhang. Moon: Mapreduce on opportunistic
environments. In Proceedings of HPDC 2010.

[3] A. Verma, N. Zea, B. Cho, I. Gupta, and R. H.
Campbell. Breaking the mapreduce stage barrier. In
Proceeding of CLUSTER 2010.

[4] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and
I. Stoica. Improving mapreduce performance in
heterogeneous environments. In Proceedings of OSDI
2008.

109




