2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

On Tracking Information Flows through JNI in Android Applications

Chenxiong QianT, Xiapu LuoTi§, Yuru Shaof, and Alvin T.S. Chanf

Department of Computing, The Hong Kong Polytechnic University®

The Hong Kong Polytechnic University Shenzhen Research Institute*
{cscgiang,csxluo,csyshao,cstschan} @comp.polyu.edu.hk

Abstract—Android provides native development Kit through
JNI for developing high-performance applications (or simply
apps). Although recent years have witnessed a considerable
increase in the number of apps employing native libraries,
only a few systems can examine them. However, none of them
scrutinizes the interactions through JNI in them. In this paper,
we conduct a systematic study on tracking information flows
through JNI in apps. More precisely, we first perform a large-
scale examination on apps using JNI and report interesting
observations. Then, we identify scenarios where information
flows uncaught by existing systems can result in information
leakage. Based on these insights, we propose and implement
NDroid, an efficient dynamic taint analysis system for check-
ing information flows through JNI. The evaluation through real
apps shows NDroid can effectively identify information leaks
through JNI with low performance overheads.

I. INTRODUCTION

The popularity of Android platform is evident from the
tremendous number of activated devices and available ap-
plications. As of Sept. 2013, there are around one billion
activations and 1M apps in the Google Play market [1].
Although most apps were developed in pure Java, Android’s
native development kit (NDK) offers developers enormous
opportunities to extend apps using the Java native interface
(JNI), such as employing OpenGL ES and OpenSL ES, for
better performance, re-using native codes in C/C++, etc.
Since Android 2.3, developers can even create an entire app
using native codes. Recent years witnessed a considerable
increase in the number of Android apps employing native
libraries. For example, from 204,040 applications collected
in May-Jun. 2011 from several markets, Zhou et al. identified
4.52% of them using native codes [2]. This percentage
increased to 9.42% in 118,318 apps collected by the same
authors in Sept.-Oct. 2011 [3]. We downloaded 227,911 apps
from the Google Play market for a year (from Jun. 2012
to Jun. 2013) and found that 16.46% of them use native
libraries. A recent study showed that 24% apps crawled from
Asian third-party mobile markets contain native code [4]. At
the same time, malware also uses NDK to hide the program
logic and impede reverse engineering [2, 5].

Although there are many systems for analyzing apps or
detecting malware[2, 3, 6], only a few of them inspect the
native libraries in apps. However, none of them scrutinize

§ The corresponding author.

978-1-4799-2233-8/14 $31.00 © 2014 IEEE
DOI 10.1109/DSN.2014.30

180

the interactions between an app’s Java codes and its native
codes, which may lead to security loopholes.

The dynamic taint analysis could overcome this shortcom-
ing because it inspects the information flow when the tainted
data is propagated through the program [7, 8]. Unfortu-
nately, existing dynamic taint analysis systems for Android,
including Taintdroid [9] and Droidscope [10], are
limited in the taint propagation logic related to JNI and its
performance, because they were not designed specifically
for apps using NDK. On one hand, although Taintdroid
could achieve real-time information flow checking, we found
that Taintdroid under-taints explicit information flows
from native code to Dalvik virtual machine (DVM). On
the other hand, Droidscope’s overhead is quite high,
because it reconstructs OS level and DVM level information
only from the machine instructions without exploiting JNI’s
semantic information. Moreover, its capability could be
restricted by Just-In-Time compilation. Note that no new
information flows than Taintdroid were reported in [10].

In this paper, we conduct a systematic study on tracking
information flows through JNI in apps. We first perform
a large-scale examination on apps using JNI, which are
identified from a set of 227,911 apps crawled from the
Google Play market. The number of examined apps is
much larger than that in previous works [2—4]. We observe
interesting behaviors on how apps utilize native libraries
and report them in Section III. Then, we identify scenarios
where information flows uncaught by existing dynamic taint
analysis systems can result in information leakage. As a
result, malicious apps can employ such information flows
to leak sensitive data without being noticed by existing
systems. This has motivated us to build a new system that
can capture these information flows.

Based on these insights, we propose and implement
NDroid, an efficient dynamic taint analysis system that
tracks information flows cross the boundary between Java
code and native code and the information flows within native
codes. NDroid also works seamlessly with TaintDroid
to track information flows from selected sources to specified
sinks in apps. To make NDroid effective and efficient, we
tackle many challenging issues, such as, multilevel function
hooking, ARM/Thumb instruction instrumentation, etc. The
evaluation through real apps with native libraries (e.g.,
QQPhoneBook v3.5, etc.), which can circumvent existing

IEEE
computer
® psouety

systems, demonstrates NDroid’s effectiveness in discov-
ering information leaks through JNI. We further evaluate
NDroid’s performance using public benchmark tool and
find that NDroid introduces much lower overhead than
[10].

The rest of this paper is organized as follows. Section
IT introduces the background and related work. Section III
reports the study of 37,506 apps using native codes. Section
IV describes the scenarios of information leaks through
JNI. We detail the design, implementation, and evaluation
of NDroid in Section V and Section VI. After discussing
NDroid’s limitations in Section VII, we conclude the paper
in Section VIII.

II. BACKGROUND
A. Java native interface and Android NDK

JNI facilitates the interoperation between Java and native
libraries [11]. On one hand, using JNI, Java codes can
pass parameters to native functions and obtain the return
values after invocations. On the other hand, the JNI allows
native codes to create and manipulate Java objects (e.g.,
invoking methods and accessing fields). To improve apps’
performance, Android supports JNI and provides a set of
native libraries, tools, and header files through its NDK [12].

We introduce an Android feature that brings challenges
to the design of NDroid. Since version 4.0, Android uses
indirect references in native code rather than direct pointers
to reference objects. By doing so, when the garbage collector
(GC) moves an object, it updates the indirect reference
table with the object’s new location. Consequently, native
codes will hold valid object pointers every time GC moves
objects around [13]. To track information flows through JNI,
NDroid has to handle both indirect references and direct
pointers as explained in Section V.

B. Taintdroid

TaintDroid is an information-flow tracking system
for monitoring sensitive information in Android [9]. By
modifying Android’s application framework and DVM,
TaintDroid attaches tags (i.e., taints) to sensitive data,
propagates the taints when apps are running, and checks
whether the taints will reach selected sinks. However, it
under-taints information flows through JNI as illustrated in
Section IV. NDroid not only overcomes these limitations
but also can work seamlessly with TaintDroid to track in-
formation flows in apps. For the ease of explaining NDroid
in Section V, we introduce some major data structures in
TaintDroid.

Stack Structure As shown in Fig. 1, TaintDroid
modifies DVM’s stack structure to increase stack size for s-
toring taint labels related to registers. For method invocation,
TaintDroid first stores the taint labels interleaved with
the parameters at the current stack frame’s outs area. Then
it allocates stack slots for callee’s local variables and lets the

181

Dalvik Method

StackSaveArea
cur frame — Native Method
pointer —> vO = localo
Y0 taint tag StackSaveArea
out0 - v1 ==in0 arg0 e fp
out0 taint tag = v1 taint tag arg1
outl - v2 ==in1 ret taint
out1 taint tag - V2 taint tag argO taint tag
unused - unused arg1 taint tag
StackSaveArea
v0 == local0 pre _frame InterpSaveState
pointer
v0 taint tag
v1 == locall ret value
v1 taint tag ret value taint tag
v4 taint tag
Figure 1. TaintDroid Stack Structure

frame pointer point to the new method’s first local variable.
After that, TaintDroid allocates a StackSaveArea on the
top of the stack for saving the caller’s information.

When a method returns, TaintDroid will save the
return value’s taint label into current thread’s InterpSaveS-
tate. If the target is a native method, TaintDroid will
store both the parameters’ taint labels and the return value’s
taint label that is appended to the parameters. The return
value’s taint label is set by JNI Call Bridge according to
TatintDroid’s taint propagation policy, because native
codes cannot directly access the return value’s taint label.
The retrun value’s taint label will also be copied to current
thread’s InterpSaveState after the native method returns.

Taint Storage For ArrayObject and StringObject that is
actually an array of chars, TaintDroid sets a taint label
in the array object. For class static field and class instance
field, the taint labels are stored interleaved with variables in
Class’s or Object’s instance data area. For other Java objects,
TaintDroid only keeps the taint label of their references.

Taint Propagation The taint propagation policy is a set
of rules that define when and how taint should be propa-
gated. TaintDroid adds taints to the sources of sensitive
information (GPS data, SMS messages, IMSI, IMEI, etc.)
of an Android device. The taint labels in TaintDroid
are represented by 32bit integers, each bit of a taint label
indicates one type of sensitive information, and different
types of sensitive information are combined by the union
operation of different taint labels. TaintDroid tracks
the taints of primitive type variables and object references
according to the logic of each DVM instruction. When
a native method is called, TaintDroid adopts the taint
propagation policy that the return value will be tainted if
any parameter is tainted.

C. Related work

Only a few existing systems take into account the native
libraries in Android applications. Some of them dynamically
collect system calls through system call hijacking [14] or
tools like ptrace [15], strace [16], and 1trace [4].
The sequence of system calls along with other function
calls within DVM could then be used to characterize an
application’s behavior [17]. CopperDroid combines sys-
tem calls obtained by instrumenting QEMU and Android
specific behaviors observed from binder to detect malware
[18]. Fedler et al. proposed measures to control the execution
of native code on the Android platform [19]. Since dynamic
analysis system is usually not scalable and could not cover
all execution paths, static analysis approaches have been
designed to scan native codes for detecting malware [3, 20].
However, static analysis is usually hindered by various
obfuscation techniques [21].

Orthogonal to monitoring functions calls, information
flow tracking empowers users to understand how a pro-
gram processes tainted data [17]. There are two pio-
neering systems for this purpose: TaintDroid [9] and
DroidScope [10]. TaintDroid modified DVM to carry
out dynamic taint analysis and introduces low performance
overhead. However, as illustrated in Section IV, it under-
taints information flows through JNI. AppFence is based
on TaintDroid and does not process third-party native
libraries [22]. DroidScope tracks information flow at
the instruction level by enhancing QEMU and it may incur
11 to 34 times slowdown [10]. Moreover, DroidScope
did not report new information flows through JNI than
TaintDroid [10, 23]. We identify the information flows
missed by these systems and NDroid can capture them with
much lower overhead than DroidScope.

The majority of existing security systems for Android
do not consider native libraries. Instead, they usually in-
spect required permissions [2, 24], invoked APIs[2], and
information flows within DVM [25]. The security of JNI
in the Java virtual machine (JVM) has been investigated.
Tan et al. discovered vulnerabilities in JNI based programs
through static analysis [26] and designed sandbox to enable
trustworthy execution of native codes [27]. Jinn defines
11 finite state machines and uses them to detect interface
violations related to JNI [28]. Note that these sandboxes
were designed for JVM instead of the DVM.

Dynamic taint analysis has been widely used in many
applications, such as detecting vulnerabilities [29], malware
analysis [30], understanding network protocols [31], to name
a few [7, 8]. Despite many dynamic taint systems have
been designed for either binary executables [7, 32, 33] or
managed runtimes [34], there are still many open questions
in dynamic taint analysis, such as conduct control flow taint
and deal with implicit information flows [7, 8]. Although
NDroid shares the limitations of dynamic taint analysis,

182

it decreases the false negatives related to native codes by
carefully tracking information flows through JNI.

III. ANALYSIS OF APPS USING JNI

From 227,911 apps fetched from the Google Play mar-
ket, we pick out three types of apps that may use JNI
for analysis, including (I) apps that invoke System.load()
or System.loadLibrary() to load native libraries; (II) apps
that contain native libraries without calling System.load()
or System.loadLibrary(); (IIl) apps written in pure native
code. Note that if the Java code in an app wants to invoke
methods in native code, it has to first use either System.load()
or System.loadLibrary() load the native library into the
memory. Type I apps have explicitly called these methods.
Although type II apps do not contain such invocations, as
explained in the following paragraphs, we found that some
apps may equip themselves with the capability to load native
libraries by dynamically loading dex files containing the
above invocations.

A. Type I apps

@ Game
Music And Audio
Personalization
@ Communication
@ Entertainment

Tools

Figure 2.

Native Libraries’ Category Distribution

Category Distribution: There are 37,506 type I apps.
Following the taxonomy of apps used by Google, we found
that 42% of them belong to the Game category, as shown in
Fig.2. It is as expected because game apps care their perfor-
mance and many popular game engines are implemented in
C/C++ code. The following game engines are widely used in
the apps under investigation, include Unity, Box2D, Libgdx,
and Cocos2D. Moreover, we found that apps in the category
of “Music And Audio” always reuse existing native libraries
and apps in the category of “Communication” often employ
native code to hide communication protocols or encrypt data.

apps without libraries: 4,034 type I apps do not contain
native libraries. We extracted the Java classes containing
native method declarations from these apps and sorted these
Java classes according to the number of applications using
them. We identified eight classes, which belong to an AdMob
plugin and are used by 48.1% of such apps. The dynamic
analysis showed that they are repackaged apps with many
advertisement components. Other reasons for such apps
include (1) the required libraries have been loaded by the

system; (2) the App will not call the functions in native
libraries but the related codes have not been deleted.
Library Distribution We collected the statistics of all
the native libraries and manually analyzed 20 most popular
libraries. Most of the libraries are from the famous game
engine companies, such as Unity, Libgdx, Box2D, etc. There
are a large portion of libraries relevant to video or audio
processing. Other libraries, such as “libstlport_shared.so”,
“libcore.so”, “libstagefright_froyo.so”, etc, are originally
included in NDK or the system. They are bundled with the
applications for addressing Android’s poor compatibility.

B. Type II apps

Among 1,738 type two apps, we found 394 apps that
have the capability to load native libraries. More precisely,
these apps have additional compressed dex files that can load
native libraries. Therefore, once these apps dynamically load
these dex files, they can load the native libraries. Note that
many apps use similar approaches to hide the core business
logic or enhance their functionality.

Other type two apps may not use their native libraries.
One possible reason is that the native libraries would not
be used during runtime (e.g., some libraries are for x86 and
other platforms) but the developers forgot to remove them.
For instance, for some libraries in open source projects, the
codes for invoking them have been removed.

C. Type Il apps

We only found 16 type three apps, including 11 game
apps and 5 apps for entertainment. The small number of
such apps may be due to the difficulty of developing such
apps and the limitations of NDK APIs.

IV. INFORMATION LEAKS THROUGH JNI

In this section, we analyze the scenarios of leaking
information through JNI, and explain why in some cas-
es the information leaks cannot be detected by exist-
ing systems. Although currently there are, to the best
of our knowledge, two dynamic taint analysis systems
for Android (i.e., Taintdroid [9] and Droidscope
[10]), we use Taintdroid as the representative because
Taintdroid is open-source and available but the taint
tracker in Droidscope has not been released yet. To
detect information leaks, Taintdroid propagates the taint
of sensitive source and checks whether it will reach any
of the selected sinks in Java context. For native methods,
Taintdroid taints the returned value of a JNI function if
at least one parameter is tainted.

Information leakage occurs if there is an information
flow from a sensitive source to a sink that can leak out
the information. We regard the functions that can obtain
sensitive information as the sources. The source and the sink
can be in the Java context or the native context. If both the
source and the sink are in the same context, the information

183

Table I
THE COMBINATIONS OF {SOURCE,INTERMEDIATE,SINK } IN
INFORMATION FLOWS THROUGH JNI.

Sink Java Native
Intermediate Java Native Java [Native
Source Java N/A | Case 1 | Case I’ Case 2
Native Case 3 Case 4 [N/A

flow through JNI must go through an intermediate in a
different context. Table I lists the possible combinations
of {source,intermediate,sink} in information flows through
JNI. Since we do not consider the case when the source,
the intermediate and the sink are in the same context, the
corresponding cells are filled with "N/A”. When both the
source and the sink are in the Java context, there must be
an intermediate in the native context as shown in case 1
and case 1’. Similarly, when both the source and the sink
are in the native context, there is an intermediate in the
Java context as shown in case 4. For case 2 and case 3,
since the source and the sink are in different contexts, the
intermediate’s location does not matter to the analysis. As
explained in the following paragraphs, Taintdroid can
only detect case 1.

Case 1: After obtaining the sensitive data, the Java code
calls native methods to process it and finally sends it to
a sink. For example, as shown in Fig. 3(a), the Java code
first calls a native method with parameters carrying sensitive
data, collects the return value (i.e., step 1), and then sends it
out (i.e., step 2). Taintdroid can detect such information
leaks because it taints the method’s return value.

Case 1’: As shown in Fig. 3(b), the Java code invoking
the native method with sensitive parameters will not send
out the returned value (i.e., step 1). Instead, another piece of
Java code fetches the sensitive information from the native
method (i.e., step 2”), or the native code calls Java code
to move the sensitive data from the native context to the
Java context (i.e., step 2’). Finally, the Java code leaks the
data (i.e., step 3). Since Taintdroid does not taint data
obtained from a native method (e.g., data in step 2’ and step
2”), it cannot detect such information leaks.

Case 2: As illustrated in Fig. 3(b), the native code will
send the sensitive information out (i.e., step 2) after receiving
it from the Java code (i.e., step 1). Taintdroid misses
such leaks because it does not trace taint in the native context
and its sinks do not include native methods.

Case 3: The native code collects sensitive data and passes
it to the Java code for transmission. Taintdroid does not
taint the data because it is collected by the native code. Fig.
3(c) illustrates that the native code can transmit the sensitive
information obtained in step 1 to the Java context by calling
the Java method (i.e., step 3) or waiting for the invocation
from the Java code (i.e., step 3’). Finally, the Java code sends
the information out (i.e., step 4).

Case 4: As shown in Fig. 3(c), the native code first gets

Java Context

Java Context Android
Java

Code 2

Java
Code
3

Android

Java Context Android

Java coye sends out

sensitive] i

Send sensitive

to native code

and return / Javafod@ sendsg\ut\
sensitive informaion

Native Context Code

Native
Native Contexi code

Java
code
qva codle sends out
Java call ngtive method N b information
to get sengitive informatiol ‘

Native dode call Java code to return sens
to get sensitive ini atiol

Native
Native Context\. %%

le sends out
information

Native cqde sends out
sensitive information

(a) Case 1

Figure 3.

the sensitive data from the Java context through JNI (i.e.,
step 1) and then leaks it (i.e., step 2). Similar to case 3,
Taintdroid misses such leaks because it does not taint
the data.

V. NDRoOID

Android

Framewrok

System Libs

OS-Level View
Reconstructor

D Modified by TaintDroid . Instrumented by NDroid

D Modified by NDroid ' Developed by NDroid

Figure 4. NDroid Architecture
A. Architecture

Android apps run in DVM on top of a modified Linux
kernel with the support of Android application framework.
The Android platform contains a set of system libs offering
functions to the framework, DVM, and developers. Fig.
4 illustrates the architecture of NDroid, a virtualization-
based dynamic taint analysis system. QEMU is an open-
source machine emulator [35], through which we can get all
ARM/Thumb instructions generated by the Android system.
To track information flows through JNI, NDroid introduces
four new modules into QEMU including (1) a DVM hook
engine dealing with JNI related functions; (2) an instruction
tracer processing ARM/Thumb instructions in native codes;
(3) a system lib hook engine handling standard functions,
and (4) a taint engine directing the taint propagation. We
will detail them in the following subsections.

(b) Case 1’ and 2

(c) Case 3 and 4

Examples of information leaks through JNI

NDroid contains a customized OS-level view recon-
structor motivated by Droidscope for obtaining the in-
formation of processes and memory map in Linux. Since
Taintdroid carefully handles the taint propagation in the
framework and DVM, we re-use the modules modified by
Taintdroid and let the taints added by NDroid follow
Taintdroid’s format so that they can work together
smoothly.

B. DVM Hook Engine

A critical step in tracking information flow through JNI
is to maintain and propagate taints between two different
runtime contexts (i.e., the Java context and the native con-
text). A challenging issue lies in how to correctly get and
set taints when the context switches. For example, although
TaintDroid properly handles the taints when an App is
in the Java context, it does not store the corresponding taints
to the native runtime stack when information flows enter the
native context, thus failing to track such information flows.
To address this issue, the DVM Hook Engine instruments
important JNI-related functions, through which information
flows cross the boundary between the Java context and the
native context. These functions can be roughly classified into
five groups according to their functionality, including (1) JNI
entry; (2) JNI exit; (3) object creation; (4) field access; and
(5) exception, each of which is detailed as follows.

JNI Entry: This category includes functions facilitating
Java codes to invoke native methods. We define a structure
SourcePolicy to record the taints to be propagated from
the Java context to the native context. As shown in Listing 1,
SourcePolicy includes method_address, the address of
the native method’s first instruction; tRO - tR3, the taints of
the first four parameters in registers Ro-Rs; stack_args_num,
the number of remaining parameters on stack.

Note that the ARM/Thumb procedure call standard defines
that the first four parameters are passed in Rg to Rs, and the
remaining parameters are pushed onto stack, and the return
value is put in Rg ; method_shorty describes the types of
the parameters and the return value; access_flag indicates
the method’s access mode. Note that the first parameter of
non-static method is “this”; handler points to the handler

184

responsible for completing the taint initialization, whose
second parameter (i.e., ‘CPUState’) saves the runtime CPU
state. Each native method receiving tainted parameters will
have a SourcePolicy and we use a hash map to store
the pairs of <addr, SourcePolicy>, where addr is
the native method’s address.

1| typedef struct _SourcePolicy{

2 int method_address;

3| int tRO, tR1, tR2, tR3;

4 int stack_args_num;

5 int* stack_args_taints;

6 char* method_shorty;

7 int access_flag;

8 void (xhandler) (struct _SourcePolicyx, CPUStatex);
9/} SourcePolicy;

Listing 1. ‘SourcePolicy’

1| void dvmCallJNIMethod (const u4* args, JValuex pResult,
const Methodx method, Threads self);

Listing 2. ‘dvmCallJNIMethod’

NDroid initializes the taint for tracking an information
flow entering a native method in two steps. The first step
creates and populates a SourcePolicy by hooking the
method “dvmCallJNIMethod” (i.e., JNI Call Bridge), as
showed in listing 2. More precisely, NDroid locates the
parameters and their taints according to the first parameter of
“dvmCallJNIMethod”, which is the frame pointer. Note that
these taints are set by the modified DVM. Moreover, we i-
dentify the method_address, access_flag, and method_shorty
through the third parameter of “dvmCallJNIMethod”, which
points to the structure Method.

The second step adds taints to the native context. It occurs
right before the native method executes. NDroid looks up
the method’s SourcePolicy from the hash map according
to its address. Once found, based on the information on
SourcePolicy, NDroid initializes the corresponding
registers and memories with proper taint values.

Table II
JNI METHODS FOR INVOKING JAVA METHODS. TYPE € {OBJECT,
BOOLEAN, BYTE, CHAR, SHORT, INT, LONG, FLOAT, DOUBLE, VOID}

CallTypeMethod
CallNonvirtual TypeMethod
CallStaticTypeMethod
CallTypeMethodV
CallNonvirtual TypeMethodV
CallStaticTypeMethodV
CallTypeMethod A
CallNonvirtual TypeMethod A
CallStaticTypeMethod A

dvmCallMethodV

dvmmCallMethodV

dvmCallMethodA

JNI Exit: This category includes functions helping native
codes to call Java methods. The second column of Table
Il lists the methods used by native methods to call Java

methods. These methods will eventually call the correspond-
ing methods in the first column, which do similar things
include (1) allocating the method frame on the DVM stack;
(2) putting the parameters onto the stack; (3) scanning the
parameters and converting the indirect reference of any ob-
ject reference to the real object address through the method
“dvmDecodelndirectRef”. We use ‘“dvmCallMethod*” to
denote these methods.

Note that neither the modified DVM nor Android’s Linux
kernel knows how to propagate taints associated with the
parameters from the native context. NDroid accomplishes
it by properly setting the taints in the DVM stack when
native codes invoke Java methods through these functions.

It is challenging to handle these methods because of
two reasons. First, the parameters of “dvmCallMethod*” do
not contain the taint information. Second, when ‘dvmCall-
Method*’ executes, it will clear the slots in the DVM stack,
which are used to save the taints. To tackle the first issue,
NDroid creates shadow registers and memory to save the
taints in the native context and refers to them when the taints
are propagated to the Java context.

To solve the second issue, NDroid hooks the “dvmCall-
Method*” method and the “dvmlinterpret” method that is
called by “dvmCallMethod*”. Instrumenting “dvmlInterpret”
is to set taints in the DVM stack. Hooking “dvmCall-
Method*” is to get the indirect references of Java objects to
be tainted. More precisely, in the native context, as the direct
pointers of Java objects (i.e., the real address in memory)
may be changed [13], the shadow memory uses the indirect
reference as key to locate the taint information. Since the
“dvmCallMethod*” method converts the indirect references
to direct pointers and passes them to “dvmlinterpret”, we
keep the indirect references for looking up the corresponding
taint in the shadow memory.

CallVoidMethodA

native code Start1
o record taints of parameters
native code call method B—>| lump Start2 of "dvmcal\Mett?od”
"CallVoidMethodA" B+4—>]
A jump Start1

A+4—>
0 6

return to third party
native code

dvmcCallMe¢thodA

dvminterpret
Start3q——>———

P3) C — | jump Start3
set taints to DVM stack C+4 =%
before"dvminterpret"
executes

return to "CallVoidMethodA"

(4]

return to "dvmCallMethodA"

Figure 5. Multilevel Hooking
Since the methods “dvmCallMethod*” and “dvmlnter-
pret” may also be invoked by other codes rather than the
native codes under investigation, the overhead will be high
if we hook these two functions whenever they are called.

Table IIT
JNI — CREATE NEW OBJECT

Memory Allocation Function (MAF)
dvmAllocObject

dvmCreateStringFromUnicode

New Object Function (NOF)
NewObject, NewObjectV, NewObjectA
NewString
NewStringUTF
NewObjectArray

dvmCreateStringFromCstr

dvmAllocArrayByClass

dvmAllocPrimitiveArray NewPrimitiveTypeArray

To address this issue, we propose a multilevel hooking
technique to assure that the instrumentation of “dvmCall-
Method*” and “dvmlInterpret” is triggered only by the native
codes under examination. Its basic idea is to define and
check a sequence of preconditions before hooking certain
methods.

We use the method “dvmCallVoidMethodA” as an exam-
ple to explain the multilevel hooking technique, as shown in
Fig. 5. We define six conditions Ty, Ty ..., Tg to determine
whether the corresponding steps in Fig. 5 can be executed.
Let I¢,om represent the address of the current instruction
and I, denote the target address of the jump instruction:

1) Ty is true if If.qpm, is within the native code and Iy,
equals the start address of “CallVoidMethodA”.

T, is true if Ty is true and Iy, equals the start address
of “dvmCallMethodA”.

Tj is true if Tq is true and Iy, equals the start address
of “dvmlInterpret”.

Ty is true if Tg is true and I, equals C'+4, the address
next to the instruction that calls “dvmlInterpret”.

T is true if Ty is true and Iy, equals B+4, the address
next to the instruction that calls “dvmCallMethodA”.
T is true if Ty is true and I3, equals A+4, the address
next to the instruction that calls “dvmCallVoidMetho-
dA” in the native code.

2)
3)
4)
5)

6)

With multilevel hooking, we can determine whether “d-
vmCallMethodA” (or “dvmlInterpret”) should be instrument-
ed according to Ts (or Tj3).

Object Creation: Native codes can create new Java object
through JNI functions listed in the second column of Table
III, which are denoted as NOF. These functions will invoke
the corresponding methods in the first column of Table III,
which are denoted as MAF. MAF allocates memory for an
object or an array. Note that NOF will convert the real object
address returned by MAF to indirect reference. NDroid
maintains the mapping between the indirect reference and
the taint of the new object in the native context. The
real object address is also required because NDroid needs
to locate the newly created object (i.e., StringObject or
ArrayObject) before tainting it. Therefore, to get the new
object’s indirect reference and real address, we apply the
multilevel hooking technique to instrument both NOF and
the corresponding MAF.

Field Access: Since native codes can access a Java

186

Table IV
JNI METHODS TO GET/SET FIELD. PRIMITIVE € {BYTE, SHORT, INT,
LONG, FLOAT, DOUBLE, BOOLEAN, CHAR}.

Get Field Functions Set Field Functions

GetObjectField SetObjectField
GetPrimitiveField SetPrimitiveField
GetStaticObjectField SetStaticObjectField

GetStaticPrimitiveField | SetStaticPrimitiveField

object’s fields through the functions listed in Table IV,
by hooking these methods, NDroid can add taints to the
corresponding field before executing “Ser*Field” functions
or get a field’s taint after executing “Get*Field” functions.

Exception: Native codes can communicate with Java
codes through throwing an exception carrying sensitive
information. The JNI function “ThrowNew” first creates a
new exception object and then initializes it by invoking
“initException”, which creates a string object based on the
third parameter of “ThrowNew” and calls the exception
object’s constructor through “dvmCallMethod”. To track this
information flow, we use the multilevel hooking technique
to instrument functions including “ThrowNew”, “initExcep-
tion”, “dvmCallMethod” and “dvmlinterpret”’, and add the
taint of the third parameter of “ThrowNew” to the string
object in the new exception object.

C. Instruction Tracer

By instrumenting third-party native libraries, the instruc-
tion tracer monitors each ARM/Thumb instruction to deter-
mine how the taint propagates. It takes time to decide each
instruction because there are 148 ARM instructions and 73
Thumb instructions and each instruction does not have fixed
bits to denote the opcode. To speed up the identification of
the instruction type and the search of the handler, NDroid
caches hot instructions and the corresponding handlers.
Currently, NDROID only supports arithmetic and copy op-
erations, while others will be included in our future work.

1| //void *memcpy (void xdest,const void #src,size_t)

2| void memcpy_handler (TrustCallPolicy* policy, CPUStatex env
, int isBegin) {

3 if (isBegin) {

4 int destAddr = env->regs[0];

5 int srcAddr = env->regs|[l];

6 int nBytes = env->regs[2];

7 int i = 0;

8 for(; 1 < nBytes; i++){

9 //propagate the srcAddr’s taint to destAddr

0 addTaint (destAddr + i, getTaint (srcAddr + 1));}}}

Listing 3. ‘memcpy’ Taint Operation

Table V lists the taint propagation logic for ARM/Thumb
instruction. We manually analyze all 148 ARM and 73
Thumb instructions and NDROID handles 101 ARM and 55
Thumb instructions that affect taint propagation. “binary-
op” represents the binary operations(e.g., add, etc.); “unary-
op” denotes the unary operation(e.g., NOT, etc.); “Rgy”,

Table V
TAINT PROPAGATION LOGIC FOR ARM/THUMB INSTRUCTIONS

Insn Format Insn Semantics

Taint Propagation

Description

binary-op Rg, Ry, , Ry Rq =Rp op Ry

(Rq) = (Rp) OR t(Ryp)

set Ry taint to R,, taint OR R,,, taint

binary-op Ry, Ry, Rg =Ry op Ry,

t(R4) = t(Rq) OR t(Rm)

add R,,, taint to Ry taint

binary-op R4, R, #imm R4 =Ry, op #imm

t(Rq) = t(Rm)

set Ry taint to R,,, taint

unary Ry, Ry, R4 =op Ry, t(Rg) = t(Ryn) set Ry taint to R,,, taint

mov Ry, #imm R4 = #imm t(Rg) = TAINT_CLEAR clear the R taint

mov Ry, R, Ry =R, t(Rg) = t(Ryn) set Ry taint to R,,, taint

LDRx* Ry, R,,, #imm addr = Cal(R,,, #imm), R; = M[addr] t(Rg) = t(M[addr]) OR t(R,,) set Ry taint to M[addr] taint OR R,, taint

LDM(POP) regList, R,,, #imm startAddr = Cal(R,,, #imm), endAd- t({Rs, R;j}) = t(Ry,) OR t({M[startAddr], set R; taint to M[startAddr] taint OR R,,
dr = Cal(R,, #imm), {R;, R;} = | M[endAddr]}) taint, set R;41 taint to M[startAddr+4]

{M[startAddr], M[endAddr]}

taint OR R, taint, .., set R; taint to
M[endAddr] taint OR R,, taint

STRx* Ry, R,,, #imm addr = Cal(R,,, #imm), M[addr] = Ry

t(M[addr]) = t(Rq)

set M[addr] taint to Ry taint

STM(PUSH) regList, R,,, #imm startAddr Cal(R,,, #imm), endAd-
dr Cal(R,,, #imm), {M[startAddr],

M[endAddr]} = {R;, R; }

t({M[startAddr], M[endAddr]}) = t({R;,

R;})

set M(startAddr] taint to R; taint, set
M([startAddr+4] taint to R; 41 taint, ..., set
M[endAddr] taint to R; taint

“R,,”, and “R,,,” indicate the ARM registers; “#imm” is the
immediate number; “M[addr]” denotes the memory at ad-
dress “addr”; “OR” represents the union operation; “Cal(R,,,
#imm)” calculates the result based on “R,,” and “#imm”;
“t(Rq)” represents the taint of register “R;”; “t(M[addr])”
denotes the taints of the memories starting from ‘“addr”;
“LDM”/“STM” denotes the load/store multiple values in-
struction and “POP”/“PUSH” represents the special case
of “LDM”/“STM” where “R,,” = “SP”. For “LDR” like
instructions, we set the taint of “Ry;” to the union of
“t(M[addr])” and “t(R,,)”, because “addr” is calculated based
on “R,,” and “#imm”. That is, if the tainted input is the
address of an untainted value, the taint will be propagated
to 1t.

Table VI
MODELED STANDARD METHODS

libc | memcpy, free, malloc, memset, strlen, strcmp, realloc,
strcpy, memcmp, strncmp, memmove, sprintf, strncpy,
fprintf, strchr, snprintf, calloc, strstr, atoi, strrchr, memchr,
strcat, sscanf, vsnprintf, strcasecmp, strdup, strncasecmp,

strtoul, sysconf, vsprintf, viprintf, atol

libm | sin, pow, cos, sqrt, floor, log, strtod, strtol, exp, atan2, sinf,
ceil, cosf, sqrtf, tan, acos, logl0, atan, asin, ldexp, sinh,

cosh, fmod, powf, atan2f, expf

D. System Lib Hook Engine

Since the system standard functions will be frequently
called by native libraries, instrumenting every instruction in
these standard functions will take a long time and incur
heavy overhead. Instead, we model the taint propagation
operations for popular functions listed in Table VI. They are
selected after we analyzed 5,000 apps with native libraries.
Using the function “memcpy” as an example, Listing 3
shows how to model its taint propagation operation.

187

Table VII
IMPORTANT STANDARD LIBRARY CALLS

fwritex, fclose, fopen, fread, close, writex, fputcx, read, fputsx,
open, fentl, fstat, munmap, mmap, dlopen, stat, fgets, sock-
et, connect, sendx, recv, dlsym, bind, dlclose, ioctl, listen,
mkdir, accept, select, getc, rename, sendtox, recvfrom, fdopen,
mprotect, remove, kill, fork, execve, chown, ptrace, sysconf,
Dalvik_dalvik_system_DexFile_openDexFile_bytearray

NDroid hooks selected system calls (e.g., file read/write,
network, etc.) as listed in Table VII. Particulary, if the data
carrying taint reaches calls with %, NDroid regards it as a
possible information leak.

E. Taint Engine

NDroid maintains shadow registers to store the related
registers’ taints and a taint map to store the memories’ taints.
The taint granularity of NDroid is byte. The general prop-
agation logic behind NDroid follows the “or” operation.
That is, if NDroid propagates A’s taint T4 to B, then B’s
taint Tp will be updated with “Tp U T4”. However, if the
tainted operand is used as the memory address, NDroid
will taint the memory at this address. Currently, the taint
engine only handles arithmetic and move/load operations,
while others will be included in future work.

F. OS-Level View Reconstructor

Motivated by Droidscope, NDroid employs virtual
machine introspection to collect the information of processes
and memory maps in Android’s Linux kernel by only
analyzing ARM/Thumb instructions [10].

G. Hooking functions through QEMU

NDroid realizes hooking functions by inserting TCG
(Tiny Code Generator) instructions during QEMU’s code
translation phase. More precisely, we insert TCG codes to

the beginning (and the end) of this function so that our
analysis functions will be invoked before (and after) the
execution of this function.

To hook the selected JNI functions and standard library
calls, we manually disassemble “libdvm.so”, “libc.so”, “lib-
m.so”, etc. and determine the offsets of these functions.
When examining an App, NDroid obtains the start address-
es of the system libraries from the memory map through
the OS-level view reconstructor. For both the selected JNI
functions and standard library functions, NDroid maintains
a list of their addresses and the corresponding analysis
functions. When processing a branch instruction, if the target
method is in the list, NDroid will call its analysis functions
before/after the method is executed. The instruction tracer
parses each ARM/Thumb instruction and calls the related
handler to complete the taint propagation before the instruc-
tion is executed.

VI. EXPERIMENTS

NDroid is implemented in QEMU with 20,261 lines of
C/C++ code measured by CLOC 1.6 and 200 lines of Python
scripts. Executing Taintdroid in the modified QEMU,
NDroid employs it to run apps and track information flow
in the Java context. NDroid handles the information flows
through JNI.

It is worth noting that identifying all apps using JNI to
leak information requires an input generation system that
can exhaustively exercise those apps’ functionality. Unfortu-
nately, designing such a system is still an open problem and
out-of-the-scope of this paper. In our experiment, we first
used one simple tool(i.e., Monkeyrunner) to generate random
input to drive those 37,506 apps using JNI. Since this tool
may miss many functions involving JNI, we just found
that QQPhoneBook3.5, a popular App that has 500,000-
1,000,000 downloads in the Google Play market, may leak
sensitive information through JNI. Then, we manually gen-
erated input and executed 8 randomly selected apps, which
use JNI and are related to phone/SMS/contacts. NDroid
found that 3 apps delivered the contact and SMS information
to native code. One app (i.e., ephone3.3) further sends out
the contact information through native code. Moreover, we
use two proof-of-concept (PoC) apps (one for case 2 and the
other one for case 3) to further evaluate NDroid’s capability
of tracking information leaks through JNI. Finally, follow-
ing [10], we use the CF-Bench by Chainfire to evaluate
NDroid’s overhead.

Experiments were performed in a Virtual Box virtual
machine with 1GB memory running Linux Mint (LDME
MATE Edition) and the host is MacBook Pro (MD101xx/A)
with a Core i5 @ 2.5GHz and 4GB of RAM. We run
TaintDroid for Android 4.1 with 2.6.29 Linux kernel
and XATTR support for the YAFFS2 filesystem in NDroid.
We modified TaintDroid to enable it to load third-party
native libraries.

188

: 2]
name: getPostUrl

shorty: LI

class: Lcom/tencent/tccsync/LoginUtil;
NewStringUTF Begin
dvmCreateStringFromCstr Begin

/ D
http://sync.3g.qq.com/xpimlogin?
sid=PFI3NSY3Y1YJGSQD8BDO7CJAYYXZGDJK16970618043
591660120
dvmCreateStringFromCstr return 0x412a3320
dvmCreateStringFromCstr End
realStringAddr:0x412a3320
add taint 514 to new string object@0x412a3320
t(412a3320) := 0x202
NewStringUTF End

name: makeLogi |

shorty: ILLLLLLLLII

class: Lcom/tencent/tccsync/LoginUtil;
args[3]@0x4127deb8 L Ljava/lang/String;
taint: 0x202

J— _Add taint o Taint Map"
Taint Map

 0xa127debs | 0x202 |

Get taint from **Taint Map"

X

Figure 6. Log of QQPhoneBook

A. QQPhoneBook

NDroid found that QQPhoneBook3.5 may send sensitive
information related to contacts and SMS to a server named
“info.3g.qq.com”. Fig. 6 shows the major functions in the
information flow identified by NDroid, which is an example
of Case 1°. In the first step, by invoking the native method
“makeLoginRequestPackageMd5”, the Java code transmits
sensitive information through the fourth parameter (i.e.,
“args[3]”) to the native context. This parameter is of the type
String and its taint is “0x202”. NDroid creates an entry in
the taint Map to associate the memory address 0x4127deb8
with the taint “0x202”.

Then the Java code calls another native method “getPos-
tUrl” (i.e., step 2) with parameters that do not have taints.
“getPostUrl” will invoke “NewStringUTF” (i.e., step 2.1)
to create a new String object based on the tainted memory
(i.e., 0x4127deb8) and return this new String object to the
Java code that will eventually send out the sensitive data.
NDroid not only adds a taint to the new String object and
the return value but also tracks the information flow until
it reaches the sink “send”, thus capturing this information
leakage. Note that TaintDroid alone cannot detect such
information leakage because it does not taint the new String
object and the return value of “getPostUrl”.

Java Code

name: callregister

shorty: ILLLLLLLII
class:Lcom/vnet/asip/general/general;
args[2]@4174a7a0 L Ljava/lang/String
taint:0x2

i
1

memcpy, memmove, fwrite, | !
memcmp ... !

i

1

1

GetStringU
TFChars

sendto(36, REGISTER
sip:softphone.comwave.net
Via: SIP/2.0/UDP

From: "4804001849"

|
|
!
|
!
|
i |
L | |
softphone.comwave. L SEoo————rerrereeen
net

Figure 7.

Log of ePhone

B. ePhone

NDroid found that ePhone3.3 may send contacts related
information to a name named “soft phone.comwave.net”.

dvmcCall,
name: recordContact
class: Lcom/ndroid/demos/Demos;
shorty: ZLLL
insnAddr: 4a2c7d88
args[1]@0x410b7770 L Ljava/lang/String;
taint: 2
args[2]@0x410b7818 L Ljava/lang/String;
taint: 2
args[3]@0x410bb350 L Ljava/lang/String;
taint: 2 /

TrustCallHandler[fopen] begin
Open !/sdcard/CONTACTS'
TrustCallHandler[fopen] end
Return FILE@0x4006fd44

(4]

SinkHandler[fprintf] begin
fprintf(FILE@0x4006fd44, %s %s %s , ...)
t[2a141b90] = 2

write: 1

t[2a139060] = 2

write: Vincent

[2a1220d8] = 2

write: cx@gg.com

SinkHandler[fprintf] end

j recordCefitact

Find a source function @0x4a2c7d88
SourceHandler

(5f80001d) := 2

1(98000021) :=2

(a9000025) := 2

TrustCallHandler[GetStringUTFChars] begin
jstring taint:2
TrustCallHandler[GetStringUTFChars] end
1st Call: t(2a141b90) := 2

1st Call: RETURN 1!

2nd Call: 1(2a139060) := 2

2nd Call: RETURN Vincent'

3rd Call: t(2a1220d8) := 2

3rd Call: RETURN 'cx@gg.com'

TrustCallHandler[fclose] begin
Close FILE@0x4006fd44
TrustCallHandler[fclose] end

Figure 8. PoC of case 2

Fig. 7 shows the major functions in the information flow
tracked by NDroid. ePhone’s Java code first calls a native
method “callregister” that passes tainted information related
to contacts to its native code. After that, the native code
converts the tainted Java string to C string through the
method “GetStringUTFChars” and further invokes many
system calls, such as, “memcpy”, “memmove”, “fwrite”,
etc. to process the tainted information. Finally, it invokes
“sendto” to send the tainted information to the server.

C. PoC of case 2 in information leakage

This PoC first fetches sensitive data by querying the
contact information and then passes it to the native code
that will write the data to a file. Fig. 8 depicts the major
functions in this information flow.

By hooking “dvmCallJNIMethod”, NDroid obtains the
information of the invoked native method before its ex-
ecution, such as the method’s name (i.e., “recordContac-
t”), class (i.e., “Lcom/ndroid/demos/Demos’), and the start
address (i.e., 0x4a2c7d88). This method takes in three
String parameters, all of which are tainted with the value
“0x2”, and returns a boolean value. NDroid constructs a
SourcePolicy torecord such information and save it into
the hash map with the key value “Ox4a2c7d88”. When the
native method’s first instruction at “Ox4a2c7d88” is execut-
ed, NDroid looks up the corresponding SourcePolicy
and initializes the taints in the native context according
to the information in SourcePolicy. More precisely, it
sets the taint value “0x2” to memories at “0x5f80001d”,
“0x98000021” and “0xa9000025”.

The native code converts Java strings to C strings through
“GetStringUTFChars” (i.e., step 1, 2, 3) and obtains the
contact id (i.e., “1”), contact name (i.e., “Vincent”) and
contact email (i.e., “cx@gg.com”). The taints are also prop-
agated to memories at “0x2al41b90”, “0x2a139060” and

189

“0x2a1220d8”. Then, the native code calls “fopen” (i.e., step
4) to open the file “/sdcard/CONTACTS”, and the returned
file pointer (i.e., FILE®¥) is stored at “0x4006fd44”. After
that, “fprintf” is invoked to write the three stings to that
file (i.e., step 5). Since “fprintf” is a sink, NDroid checks
the parameters and notices that the three parameters are
associated with the taint value “0x2”. In step 6, the file is
closed through “fclose”.

dvmCreateStringFromCstr Begin
"...Line1Number = 15555215554
NetworkOperator = 310260..."
dvmCreateStringFromCstr return 0x410ca268
dvmCreateStringFromCstr End

NewStringUTF Begin

realStringAddr:410ca268

add taint 0x1602 to new string
object@0x410ca268
t(a8900025) := 0x1602
NewStringUTF return
0xa8900025

NewStringUTF End

dvmcCallMethodV Begin

dvmCaliMethodV End

dvminterpret Begin

Method Name: nativeCallback
Method Shorty: VL

Method insSize: 2

Method registerSize: 5

curFrame @0x44bf8bf0

Method AccessFlag: Ox1

this's class: Lcom/ndroid/demos/Demos;
args[1]@Ljava/lang/String;
taint: 0x1602

add taint to new method frame
[44bf8c14] = 0x1602
dvminterpret End

evadeTaintDroid

CallVoidMethod Begin

CallVoidMethod End

nativeCallback

Handle control to
Java method

Figure 9. PoC of case 3

D. PoC of case 3 in information leakage

In this PoC, the Java code first obtains the device’s
information, including device ID, network Operator, etc. and
then transfers it to the native context by calling the native
method “evadeTaintDroid”. After receiving the information,
the native code creates a new Java String object to wrap
the sensitive information by calling “NewStringUTF” (i.e.,
step 1) and then invokes the Java method “nativeCallback”
(i-e., step2) to send out the information. Fig. 9 illustrates the
major functions in this information flow.

By hooking “dvmCallJNIMethod”, NDroid obtains the
information of the native method “evadeTaintDroid” before
its execution and sets the taints in the native context.
The native method calls “NewStringUTF” (i.e., step 1) to
create a new Java String object and gains the indirect
reference “0xa8900025”. “NewStringUTF” invokes “dvm-
CreateStringFromCstr” to create the Java String object and
receives the real object address “0x410ca268” (i.e., step
1.1). By instrumenting “NewStringUTF”, NDroid adds this
method’s parameter’s taint value “0x1602” to the Java String
object.

After that, the native code calls “CallVoidMethod” (i.e.,
step 2) which invokes “dvmCallMethodV” (i.e., step 2.1).
Eventually, “dvmInterpret” is called (i.e., step 2.3) before the
Java method “nativeCallback” executes. By instrumenting
“dvmlInterpret”, NDroid obtains the Java method’s infor-
mation including method name (“nativeCallback”), method
shorty (“VL”), method local variable size (“2”), method

register size (“5”), method’s frame address (“0x44bf8bf0”),
and method access flag (“Ox1”). Then, by checking each
parameter’s taint and type, NDroid gets the first argument’s
(i.e., “args[1]”) taint value (i.e., “0x1602”) and adds it to the
Java method’s method frame slot at address “Ox44bf8c14”.
In step 2.3, the Java method “nativeCallback” is invoked to
send out the tainted information. Since the network related
methods are sinks, this information leakage is caught.

E. Performance

To measure NDroid’s performance, we ran CF-Bench
30 times on both NDroid and a vanilla QEMU with the
Android platform. In average, NDroid incurs 5.4540.414
times slowdown (showed in Fig. 10), which is much smaller
than the result of Droidscope (i.e., at least 11 times
slowdown). Note that our experiments were conducted in
a virtual machine while the experiments in Droidscope
were performed in a real machine with a similar config-
uration as our host of the virtual machine. The reason
may be two-fold: (1) NDroid uses modified DVM and
application framework to track information flows in the Java
context whereas Droidscope does it through analyzing
each ARM/Thumb instruction, which costs much time. (2)
NDroid adopts several new approaches to increase its
efficiency, such as, employing multilevel hooking to avoid
unnecessary instrumentation, targeting on selected JNI func-
tions, modelling the propagation logic of popular standard
methods, and using caches to speed up the search, etc.

Times of Overhead

Native MIPS

Java MIPS

Native MSFLOPS
Java MSFLOPS
Native MDFLOPS
Java MDFLOPS
Native MALLOCS
Native Memory Read
Java Memory Read
Native Memory Write
Java Memory Write
Native Disk Read
Native Disk Write
Native Score

Java Score

Overall Score

85.17

0 225

45.0

67.5 90.0

Figure 10. CF-Bench results

VII. DISCUSSION

Similar to all dynamic analysis systems, NDroid exe-
cutes one path at a time and cannot cover all execution
paths. It is difficult to test apps because their behaviors
are usually triggered by user interactions (e.g., clicking a
button, turning off the screen) and they can extend their
functionality through dynamical class loading. Experiment
results in Section VI have showed that simple tools like

190

monkeyrunner cannot enumerate all possible paths in an
app and thus NDroid may miss information leakage. In
future work, we will equip NDroid with advanced input
generation system [36] to check apps.

We will realize a protection mechanism for taints before
applying NDroid to analyze advanced malicious apps be-
cause they may modify or remove the taints. For example,
an app without root privileges can manipulate the taints
in DVM. With root privileges, an app can further manip-
ulate stacks, modify trusted functions, and even establish
the communication between Java and native code without
following JNI specification. NDroid can be easily extended
to protect taints and prevent evasions through stack manip-
ulation or trusted function modification, because it monitors
the memory, hooks major file and memory functions, and
inspects every native instruction. Although we exclude apps
with root privileges in this paper, NDroid can incorporate
the functions in RootGuard [37], which monitors system
calls for protecting rooted Android smartphones, to detect
the abnormal behaviors of malware with root privileges.

Common to most virtualization-based systems is the dif-
ficulty of emulating the whole real hardware environment.
The Android emulator misses some important information
sources (e.g., GPS). Hence, NDroid cannot track infor-
mation flows from these sources. On possible solution is
to provide fake information that cannot be emulated as
suggested by [38]. Moreover, advanced malware may exploit
the difference between an emulator and a real smartphone
to perform emulator detection. Using the virtualization tech-
nology supported by CPUs (e.g., Trustzone in ARM [39])
may be a promising approach to evade such detection.

Similar to TaintDroid and Droidscope, NDroid
does not track control flows. Therefore, it could be evaded
by apps that use the same control flow based techniques
for circumventing those systems [40]. Since fully supporting
control flow tracking may cause high overhead and false pos-
itives, we will investigate it and support more ARM/Thumb
operations in future work.

VIII. CONCLUSION

We conduct a systematic study on tracking information
flows through JNI in apps. Our large-scale examination on
apps using JNI results in interesting observations on how
apps use native libraries. We identify a set of scenarios
where the information flows uncaught by existing systems
can result in information leaks or characterize polymorphic
malicious apps. Based on these insights, we propose and
implement NDroid, an efficient dynamic taint analysis sys-
tem for checking information flows through JNI, by tackling
many challenge issues. The evaluation through real apps
illustrates that NDroid can effectively identify information
leaks through JNI and discover polymorphic malicious apps
realized by JNI with low performance overheads. We will
release NDroid later.

IX. ACKNOWLEDGMENT

We thank the reviewers for their comments and sugges-
tions and Angelos Stavrou, in particular, for shepherding
our paper. This work is supported in part by the Hong
Kong ITF (No. ITS/073/12), the Hong Kong GRF (No.
PolyU 5389/13E), the National Natural Science Foundation
of China (No. 61202396), the Open Fund of Key Lab of Dig-
ital Signal and Image Processing of Guangdong Province,
and Shenzhen City Special Fund for Strategic Emerging
Industries (No. JCYJ20120830153030584)

(1]

(2]

(3]

[4

—

(5

—

(6]

(71

[8

—

[9

[

(10]

(11]
[12]

[13]

[14]

[15]

[16]

(17]

REFERENCES
C. Smith, “25 amazing android statistics,”
http://expandedramblings.com/index.php/android-statistics/,
Apr. 2014.

Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get
off of my market: Detecting malicious apps in official and
alternative android markets,” in Proc. NDSS, 2012.

M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang,
“Riskranker: Scalable and accurate zero-day android malware
detection,” in Proc. MobiSys, 2012.

M. Spreitzenbarth, F. Echtler, and J. Hoffmann, “Mobile-
sandbox: Having a deeper look into android applications,”
in Proc. SAC, 2013.

Y. Zhou and X. Jiang, “Dissecting android malware: Charac-
terization and evolution,” in Proc. IEEE Symp. Security and
Provacy, 2012.

X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “Profile-
droid: Multi-layer profiling of android applications,” in Proc.
MobiCom, 2012.

E. Schwartz, T. Avgerinos, and D. Brumley, “All you ever
wanted to know about dynamic taint analysis and forward
symbolic execution (but might have been afraid to ask),” in
Proc. IEEE Secur. Pri. Symp., 2010.

B. Livshits, “Dynamic taint tracking in managed runtimes,”
Microsoft Research, Tech. Rep. MSR-TR-2012-114, 2012.
W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung, P. McDaniel,
and A. Sheth, “Taintdroid: An information-flow tracking
system for realtime privacy monitoring on smartphones,” in
Proc. USENIX OSDI, 2010.

L. Yan and H. Yin, “Droidscope: Seamlessly reconstructing
OS and Dalvik semantic views for dynamic Android malware
analysis,” in Proc. USENIX Sec, 2012.

S. Liang, The Java Native Interface: Programmer’s Guide
and Specification. Addison-Wesley, 1999.

“Android NDK,” http://developer.android.com/tools/sdk/ndk/
index.html, 2013.

E. Hughes, “JNI local reference changes in ICS,”
http://android-developers.blogspot.hk/2011/11/jni-local-
reference-changes-in-ics.html, 2011.

T. Blasing, L. Batyuk, A. Schmidt, S. Camtepe, and S. Al-
bayrak, “An android application sandbox system for suspi-
cious software detection,” in Proc. MALWARE, 2010.

G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos,
“Paranoid android: Versatile protection for smartphones,” in
Proc. ACSAC, 2010.

I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid:
behavior-based malware detection system for android,” in
Proc. SPSM, 2011.

M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on
automated dynamic malware-analysis techniques and tools,”
ACM Computing Surveys, vol. 44, no. 2, 2012.

191

[18]

[19]

(20]

(21]

[22]

(23]

droidscope-seamlessly-reconstructing-os-and-dalvik-semantic- views,

[24]

[25]

(26]
[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]
[36]

(37]
(38]
[39]

(40]

A. Reina, A. Fattori, and L. Cavallaro, “A system call-
centric analysis and stimulation technique to automatically
reconstruct android malware behaviors,” in Proc. EuroSec,
2013.

R. Fedler, M. Kulicke, and J. Schutte, “Native code execution
control for attack mitigation on Android,” in Proc. SPSM,
2013.

A. Schmidt, R. Bye, H. Schmidt, J. Clausen, O. Kiraz,
K. Yuksel, S. Camtepe, and S. Albayrak, “Static analysis of
executables for collaborative malware detection on android,”
in Proc. ICC, 2009.

A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis
for malware detection,” in Proc. ACSAC, 2007.

P. Hornyaick, S. Han, J. Jung, S. Schechter, and D. Wether-
all, “These arent the droids youre looking for: Retrofitting
android to protect data from imperious applications,” in Proc.
CCS, 2011.

L. Yan and H. Yin,
https://www.usenix.org/conference/usenixsecurity 12/

“Presentation of DroidScope,”

Aug. 2012.

H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju,
C. Nita-Rotaru, and I. Molloy, “Using probabilistic generative
models for ranking risks of android apps,” in Proc. CCS,
2012.

L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: statically
vetting android apps for component hijacking vulnerabili-
ties,” in Proc. CCS, 2012.

G. Tan and J. Croft, “An empirical security study of the native
code in the jdk,” in Proc. USENIX Sec, 2008.

M. Sun and G. Tan, “Jvm-portable sandboxing of java’s
native libraries,” in Proc. ESORICS, 2012.

B. Lee, B. Wiedermann, M. Hirzel, R. Grimm, and K. S.
McKinley, “Jinn: Synthesizing dynamic bug detectors for
foreign language interfaces,” in Proc. PLDI, 2010.

J. Newsome and D. Song, “Dynamic taint analysis for
automatic detection, analysis, and signature generation of
exploits on commodity software,” in Proc. NDSS, 2005.

H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda,
“Panorama: Capturing system-wide information flow for mal-
ware detection and analysis,” in Proc. CCS, 2007.

G. Wondracek, P. Comparetti, C. Kruegel, and E. Kirda,
“Automatic network protocol analysis,” in Proc. NDSS, 2008.
D. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall, “Tain-
teraser: Protecting sensitive data leaks using application-level
taint tracking,” SIGOPS Oper. Syst. Rev., vol. 45, no. 1, 2011.
V. Kemerlis, G. Portokalidis, K. Jee, and A. Keromytis,
“libdft: Practical dynamic data flow tracking for commodity
systems,” in Proc. VEE, 2012.

V. Haldar, D. Chandra, and M. Franz, “Dynamic taint prop-
agation for Java,” in Proc. ACSAC, 2005.

“Qemu,” http://wiki.qemu.org/Main_Page, 2013.

A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input
generation system for Android Apps,” in Proc. FSE, 2013.
Y. Shao, X. Luo, and C. Qian, “Rootguard: Protecting rooted
android phones,” IEEE Computer, June 2014.

“Appuse - Android pentest platform unified standalone envi-
ronment,” https://appsec-labs.com/AppUse, 2013.

ARM Ltd.,, “Trustzone,” http://www.arm.com/products/
processors/technologies/trustzone/index.php, visited 2014.
G. Sarwar, O. Mehani, R. Boreli, and M. Kaafar, “On the
effectiveness of dynamic taint analysis for protecting against
private information leaks on Android-based devices,” in Proc.
SECRYPT, 2013.

