
On Tracking Information Flows through JNI in Android Applications

Chenxiong Qian†, Xiapu Luo†‡§, Yuru Shao†, and Alvin T.S. Chan†

Department of Computing, The Hong Kong Polytechnic University†

The Hong Kong Polytechnic University Shenzhen Research Institute‡

{cscqiang,csxluo,csyshao,cstschan}@comp.polyu.edu.hk

Abstract—Android provides native development kit through
JNI for developing high-performance applications (or simply
apps). Although recent years have witnessed a considerable
increase in the number of apps employing native libraries,
only a few systems can examine them. However, none of them
scrutinizes the interactions through JNI in them. In this paper,
we conduct a systematic study on tracking information flows
through JNI in apps. More precisely, we first perform a large-
scale examination on apps using JNI and report interesting
observations. Then, we identify scenarios where information
flows uncaught by existing systems can result in information
leakage. Based on these insights, we propose and implement
NDroid, an efficient dynamic taint analysis system for check-
ing information flows through JNI. The evaluation through real
apps shows NDroid can effectively identify information leaks
through JNI with low performance overheads.

I. INTRODUCTION

The popularity of Android platform is evident from the

tremendous number of activated devices and available ap-

plications. As of Sept. 2013, there are around one billion

activations and 1M apps in the Google Play market [1].

Although most apps were developed in pure Java, Android’s

native development kit (NDK) offers developers enormous

opportunities to extend apps using the Java native interface

(JNI), such as employing OpenGL ES and OpenSL ES, for

better performance, re-using native codes in C/C++, etc.

Since Android 2.3, developers can even create an entire app

using native codes. Recent years witnessed a considerable

increase in the number of Android apps employing native

libraries. For example, from 204,040 applications collected

in May-Jun. 2011 from several markets, Zhou et al. identified

4.52% of them using native codes [2]. This percentage

increased to 9.42% in 118,318 apps collected by the same

authors in Sept.-Oct. 2011 [3]. We downloaded 227,911 apps

from the Google Play market for a year (from Jun. 2012

to Jun. 2013) and found that 16.46% of them use native

libraries. A recent study showed that 24% apps crawled from

Asian third-party mobile markets contain native code [4]. At

the same time, malware also uses NDK to hide the program

logic and impede reverse engineering [2, 5].

Although there are many systems for analyzing apps or

detecting malware[2, 3, 6], only a few of them inspect the

native libraries in apps. However, none of them scrutinize

§ The corresponding author.

the interactions between an app’s Java codes and its native

codes, which may lead to security loopholes.

The dynamic taint analysis could overcome this shortcom-

ing because it inspects the information flow when the tainted

data is propagated through the program [7, 8]. Unfortu-

nately, existing dynamic taint analysis systems for Android,

including Taintdroid [9] and Droidscope [10], are

limited in the taint propagation logic related to JNI and its

performance, because they were not designed specifically

for apps using NDK. On one hand, although Taintdroid
could achieve real-time information flow checking, we found

that Taintdroid under-taints explicit information flows

from native code to Dalvik virtual machine (DVM). On

the other hand, Droidscope’s overhead is quite high,

because it reconstructs OS level and DVM level information

only from the machine instructions without exploiting JNI’s

semantic information. Moreover, its capability could be

restricted by Just-In-Time compilation. Note that no new

information flows than Taintdroid were reported in [10].

In this paper, we conduct a systematic study on tracking

information flows through JNI in apps. We first perform

a large-scale examination on apps using JNI, which are

identified from a set of 227,911 apps crawled from the

Google Play market. The number of examined apps is

much larger than that in previous works [2–4]. We observe

interesting behaviors on how apps utilize native libraries

and report them in Section III. Then, we identify scenarios

where information flows uncaught by existing dynamic taint

analysis systems can result in information leakage. As a

result, malicious apps can employ such information flows

to leak sensitive data without being noticed by existing

systems. This has motivated us to build a new system that

can capture these information flows.

Based on these insights, we propose and implement

NDroid, an efficient dynamic taint analysis system that

tracks information flows cross the boundary between Java

code and native code and the information flows within native

codes. NDroid also works seamlessly with TaintDroid
to track information flows from selected sources to specified

sinks in apps. To make NDroid effective and efficient, we

tackle many challenging issues, such as, multilevel function

hooking, ARM/Thumb instruction instrumentation, etc. The

evaluation through real apps with native libraries (e.g.,

QQPhoneBook v3.5, etc.), which can circumvent existing

2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

978-1-4799-2233-8/14 $31.00 © 2014 IEEE

DOI 10.1109/DSN.2014.30

180

2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

978-1-4799-2233-8/14 $31.00 © 2014 IEEE

DOI 10.1109/DSN.2014.30

180

2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

978-1-4799-2233-8/14 $31.00 © 2014 IEEE

DOI 10.1109/DSN.2014.30

180

systems, demonstrates NDroid’s effectiveness in discov-

ering information leaks through JNI. We further evaluate

NDroid’s performance using public benchmark tool and

find that NDroid introduces much lower overhead than

[10].

The rest of this paper is organized as follows. Section

II introduces the background and related work. Section III

reports the study of 37,506 apps using native codes. Section

IV describes the scenarios of information leaks through

JNI. We detail the design, implementation, and evaluation

of NDroid in Section V and Section VI. After discussing

NDroid’s limitations in Section VII, we conclude the paper

in Section VIII.

II. BACKGROUND

A. Java native interface and Android NDK

JNI facilitates the interoperation between Java and native

libraries [11]. On one hand, using JNI, Java codes can

pass parameters to native functions and obtain the return

values after invocations. On the other hand, the JNI allows

native codes to create and manipulate Java objects (e.g.,

invoking methods and accessing fields). To improve apps’

performance, Android supports JNI and provides a set of

native libraries, tools, and header files through its NDK [12].

We introduce an Android feature that brings challenges

to the design of NDroid. Since version 4.0, Android uses

indirect references in native code rather than direct pointers

to reference objects. By doing so, when the garbage collector

(GC) moves an object, it updates the indirect reference

table with the object’s new location. Consequently, native

codes will hold valid object pointers every time GC moves

objects around [13]. To track information flows through JNI,

NDroid has to handle both indirect references and direct

pointers as explained in Section V.

B. Taintdroid

TaintDroid is an information-flow tracking system

for monitoring sensitive information in Android [9]. By

modifying Android’s application framework and DVM,

TaintDroid attaches tags (i.e., taints) to sensitive data,

propagates the taints when apps are running, and checks

whether the taints will reach selected sinks. However, it

under-taints information flows through JNI as illustrated in

Section IV. NDroid not only overcomes these limitations

but also can work seamlessly with TaintDroid to track in-

formation flows in apps. For the ease of explaining NDroid
in Section V, we introduce some major data structures in

TaintDroid.

Stack Structure As shown in Fig. 1, TaintDroid
modifies DVM’s stack structure to increase stack size for s-

toring taint labels related to registers. For method invocation,

TaintDroid first stores the taint labels interleaved with

the parameters at the current stack frame’s outs area. Then

it allocates stack slots for callee’s local variables and lets the

...

ret value

ret value taint tag

...

InterpSaveState

v1 == in0

v1 taint tag

v2 == in1

v2 taint tag

v0 == local0

v0 taint tag

cur frame
pointer

Dalvik Method

unused

StackSaveArea

ret taint

arg0

arg1

arg0 taint tag

arg1 taint tag

Native Method

fp

...
StackSaveArea

out0

out0 taint tag

out1

out1 taint tag

unused

v0 == local0

v0 taint tag

v1 == local1

v1 taint tag

...

v4 taint tag

pre frame
pointer

StackSaveArea

Figure 1. TaintDroid Stack Structure

frame pointer point to the new method’s first local variable.

After that, TaintDroid allocates a StackSaveArea on the

top of the stack for saving the caller’s information.

When a method returns, TaintDroid will save the

return value’s taint label into current thread’s InterpSaveS-
tate. If the target is a native method, TaintDroid will

store both the parameters’ taint labels and the return value’s

taint label that is appended to the parameters. The return

value’s taint label is set by JNI Call Bridge according to

TatintDroid’s taint propagation policy, because native

codes cannot directly access the return value’s taint label.

The retrun value’s taint label will also be copied to current

thread’s InterpSaveState after the native method returns.

Taint Storage For ArrayObject and StringObject that is

actually an array of chars, TaintDroid sets a taint label

in the array object. For class static field and class instance

field, the taint labels are stored interleaved with variables in

Class’s or Object’s instance data area. For other Java objects,

TaintDroid only keeps the taint label of their references.

Taint Propagation The taint propagation policy is a set

of rules that define when and how taint should be propa-

gated. TaintDroid adds taints to the sources of sensitive

information (GPS data, SMS messages, IMSI, IMEI, etc.)
of an Android device. The taint labels in TaintDroid
are represented by 32bit integers, each bit of a taint label

indicates one type of sensitive information, and different

types of sensitive information are combined by the union

operation of different taint labels. TaintDroid tracks

the taints of primitive type variables and object references

according to the logic of each DVM instruction. When

a native method is called, TaintDroid adopts the taint

propagation policy that the return value will be tainted if

any parameter is tainted.

181181181

C. Related work

Only a few existing systems take into account the native

libraries in Android applications. Some of them dynamically

collect system calls through system call hijacking [14] or

tools like ptrace [15], strace [16], and ltrace [4].

The sequence of system calls along with other function

calls within DVM could then be used to characterize an

application’s behavior [17]. CopperDroid combines sys-

tem calls obtained by instrumenting QEMU and Android

specific behaviors observed from binder to detect malware

[18]. Fedler et al. proposed measures to control the execution

of native code on the Android platform [19]. Since dynamic

analysis system is usually not scalable and could not cover

all execution paths, static analysis approaches have been

designed to scan native codes for detecting malware [3, 20].

However, static analysis is usually hindered by various

obfuscation techniques [21].

Orthogonal to monitoring functions calls, information

flow tracking empowers users to understand how a pro-

gram processes tainted data [17]. There are two pio-

neering systems for this purpose: TaintDroid [9] and

DroidScope [10]. TaintDroid modified DVM to carry

out dynamic taint analysis and introduces low performance

overhead. However, as illustrated in Section IV, it under-

taints information flows through JNI. AppFence is based

on TaintDroid and does not process third-party native

libraries [22]. DroidScope tracks information flow at

the instruction level by enhancing QEMU and it may incur

11 to 34 times slowdown [10]. Moreover, DroidScope
did not report new information flows through JNI than

TaintDroid [10, 23]. We identify the information flows

missed by these systems and NDroid can capture them with

much lower overhead than DroidScope.

The majority of existing security systems for Android

do not consider native libraries. Instead, they usually in-

spect required permissions [2, 24], invoked APIs[2], and

information flows within DVM [25]. The security of JNI

in the Java virtual machine (JVM) has been investigated.

Tan et al. discovered vulnerabilities in JNI based programs

through static analysis [26] and designed sandbox to enable

trustworthy execution of native codes [27]. Jinn defines

11 finite state machines and uses them to detect interface

violations related to JNI [28]. Note that these sandboxes

were designed for JVM instead of the DVM.

Dynamic taint analysis has been widely used in many

applications, such as detecting vulnerabilities [29], malware

analysis [30], understanding network protocols [31], to name

a few [7, 8]. Despite many dynamic taint systems have

been designed for either binary executables [7, 32, 33] or

managed runtimes [34], there are still many open questions

in dynamic taint analysis, such as conduct control flow taint

and deal with implicit information flows [7, 8]. Although

NDroid shares the limitations of dynamic taint analysis,

it decreases the false negatives related to native codes by

carefully tracking information flows through JNI.

III. ANALYSIS OF APPS USING JNI

From 227,911 apps fetched from the Google Play mar-

ket, we pick out three types of apps that may use JNI

for analysis, including (I) apps that invoke System.load()
or System.loadLibrary() to load native libraries; (II) apps

that contain native libraries without calling System.load()
or System.loadLibrary(); (III) apps written in pure native

code. Note that if the Java code in an app wants to invoke

methods in native code, it has to first use either System.load()
or System.loadLibrary() load the native library into the

memory. Type I apps have explicitly called these methods.

Although type II apps do not contain such invocations, as

explained in the following paragraphs, we found that some

apps may equip themselves with the capability to load native

libraries by dynamically loading dex files containing the

above invocations.

A. Type I apps

Game

Music And Audio

Personalization

Communication

Entertainment

Tools

0%%%0%%%%%%%%%%%%%%%%1%%%1%%0%%00%%0%%%%000%%0%%%%00000%%%%%%%%%%%%%%0%%0%%0%%0%%0%%%%%0%0%%0%00%0%%%0%0%0%000000000000000000000000%%%%0000000000000000000000000000000000000001%0000000001110000000011111000000000000%%%11%%%%11111111000%%111111111111111111111111000000000001%1111111111%%%%%11111111%%%%%11111111111111111111111%%%1111111111111%1111%1%%11%%1111111111111%%%%1111111%111111%1%%%1111111111111111%%%1112%2222%22222222%2%22%222
2%2%2

2%2%2
2%

3%
3%

3%

3%

3%

3%

3%
4%

4%
4% 5% 5%

42%

Figure 2. Native Libraries’ Category Distribution

Category Distribution: There are 37,506 type I apps.

Following the taxonomy of apps used by Google, we found

that 42% of them belong to the Game category, as shown in

Fig.2. It is as expected because game apps care their perfor-

mance and many popular game engines are implemented in

C/C++ code. The following game engines are widely used in

the apps under investigation, include Unity, Box2D, Libgdx,

and Cocos2D. Moreover, we found that apps in the category

of “Music And Audio” always reuse existing native libraries

and apps in the category of “Communication” often employ

native code to hide communication protocols or encrypt data.

apps without libraries: 4,034 type I apps do not contain

native libraries. We extracted the Java classes containing

native method declarations from these apps and sorted these

Java classes according to the number of applications using

them. We identified eight classes, which belong to an AdMob
plugin and are used by 48.1% of such apps. The dynamic

analysis showed that they are repackaged apps with many

advertisement components. Other reasons for such apps

include (1) the required libraries have been loaded by the

182182182

system; (2) the App will not call the functions in native

libraries but the related codes have not been deleted.

Library Distribution We collected the statistics of all

the native libraries and manually analyzed 20 most popular

libraries. Most of the libraries are from the famous game

engine companies, such as Unity, Libgdx, Box2D, etc. There

are a large portion of libraries relevant to video or audio

processing. Other libraries, such as “libstlport shared.so”,

“libcore.so”, “libstagefright froyo.so”, etc, are originally

included in NDK or the system. They are bundled with the

applications for addressing Android’s poor compatibility.

B. Type II apps

Among 1,738 type two apps, we found 394 apps that

have the capability to load native libraries. More precisely,

these apps have additional compressed dex files that can load

native libraries. Therefore, once these apps dynamically load

these dex files, they can load the native libraries. Note that

many apps use similar approaches to hide the core business

logic or enhance their functionality.

Other type two apps may not use their native libraries.

One possible reason is that the native libraries would not

be used during runtime (e.g., some libraries are for x86 and

other platforms) but the developers forgot to remove them.

For instance, for some libraries in open source projects, the

codes for invoking them have been removed.

C. Type III apps

We only found 16 type three apps, including 11 game

apps and 5 apps for entertainment. The small number of

such apps may be due to the difficulty of developing such

apps and the limitations of NDK APIs.

IV. INFORMATION LEAKS THROUGH JNI

In this section, we analyze the scenarios of leaking

information through JNI, and explain why in some cas-

es the information leaks cannot be detected by exist-

ing systems. Although currently there are, to the best

of our knowledge, two dynamic taint analysis systems

for Android (i.e., Taintdroid [9] and Droidscope
[10]), we use Taintdroid as the representative because

Taintdroid is open-source and available but the taint
tracker in Droidscope has not been released yet. To

detect information leaks, Taintdroid propagates the taint

of sensitive source and checks whether it will reach any

of the selected sinks in Java context. For native methods,

Taintdroid taints the returned value of a JNI function if

at least one parameter is tainted.

Information leakage occurs if there is an information

flow from a sensitive source to a sink that can leak out

the information. We regard the functions that can obtain

sensitive information as the sources. The source and the sink

can be in the Java context or the native context. If both the

source and the sink are in the same context, the information

Table I
THE COMBINATIONS OF {SOURCE,INTERMEDIATE,SINK} IN

INFORMATION FLOWS THROUGH JNI.

Sink Java Native

Intermediate Java Native Java Native

Source
Java N/A Case 1 Case 1’ Case 2

Native Case 3 Case 4 N/A

flow through JNI must go through an intermediate in a

different context. Table I lists the possible combinations

of {source,intermediate,sink} in information flows through

JNI. Since we do not consider the case when the source,

the intermediate and the sink are in the same context, the

corresponding cells are filled with ”N/A”. When both the

source and the sink are in the Java context, there must be

an intermediate in the native context as shown in case 1

and case 1’. Similarly, when both the source and the sink

are in the native context, there is an intermediate in the

Java context as shown in case 4. For case 2 and case 3,

since the source and the sink are in different contexts, the

intermediate’s location does not matter to the analysis. As

explained in the following paragraphs, Taintdroid can

only detect case 1.

Case 1: After obtaining the sensitive data, the Java code

calls native methods to process it and finally sends it to

a sink. For example, as shown in Fig. 3(a), the Java code

first calls a native method with parameters carrying sensitive

data, collects the return value (i.e., step 1), and then sends it

out (i.e., step 2). Taintdroid can detect such information

leaks because it taints the method’s return value.

Case 1’: As shown in Fig. 3(b), the Java code invoking

the native method with sensitive parameters will not send

out the returned value (i.e., step 1). Instead, another piece of

Java code fetches the sensitive information from the native

method (i.e., step 2”), or the native code calls Java code

to move the sensitive data from the native context to the

Java context (i.e., step 2’). Finally, the Java code leaks the

data (i.e., step 3). Since Taintdroid does not taint data

obtained from a native method (e.g., data in step 2’ and step

2”), it cannot detect such information leaks.

Case 2: As illustrated in Fig. 3(b), the native code will

send the sensitive information out (i.e., step 2) after receiving

it from the Java code (i.e., step 1). Taintdroid misses

such leaks because it does not trace taint in the native context

and its sinks do not include native methods.

Case 3: The native code collects sensitive data and passes

it to the Java code for transmission. Taintdroid does not

taint the data because it is collected by the native code. Fig.

3(c) illustrates that the native code can transmit the sensitive

information obtained in step 1 to the Java context by calling

the Java method (i.e., step 3) or waiting for the invocation

from the Java code (i.e., step 3’). Finally, the Java code sends

the information out (i.e., step 4).

Case 4: As shown in Fig. 3(c), the native code first gets

183183183

Java Context

Native Context

Java
Code

Native
Code

Android

Send sensitive
to native code
and return Java code sends out

sensitive information

1

2

(a) Case 1

Java Context

Native Context

Java
Code

Native
code

Java
Code

Android

1 2''

Send sensitive
to native code

Native code sends out
sensitive information

Java code sends out
sensitive information

Native code call Java method
to return sensitive information

Java call native method
to get sensitive information

2'

2

3

(b) Case 1’ and 2

Java Context

Native Context

Java
code

Native
Code

Java
Code

Android

Java code sends out
sensitive information

Native code sends out
sensitive information

Native code call Java code
to get sensitive information

Native code call Java method
to return sensitive information

Java call native method
to get sensitive information

1

2

3

3'

4

(c) Case 3 and 4

Figure 3. Examples of information leaks through JNI

the sensitive data from the Java context through JNI (i.e.,

step 1) and then leaks it (i.e., step 2). Similar to case 3,

Taintdroid misses such leaks because it does not taint

the data.

V. NDROID

App

OS-Level View
Reconstructor

DVM Hook
Engine

Instruction
Tracer

System
Lib Hook
Engine

Taint
Engine

Modified by TaintDroid

Modified by NDroid

Instrumented by NDroid

Developed by NDroid

Figure 4. NDroid Architecture

A. Architecture

Android apps run in DVM on top of a modified Linux

kernel with the support of Android application framework.

The Android platform contains a set of system libs offering

functions to the framework, DVM, and developers. Fig.

4 illustrates the architecture of NDroid, a virtualization-

based dynamic taint analysis system. QEMU is an open-

source machine emulator [35], through which we can get all

ARM/Thumb instructions generated by the Android system.

To track information flows through JNI, NDroid introduces

four new modules into QEMU including (1) a DVM hook

engine dealing with JNI related functions; (2) an instruction

tracer processing ARM/Thumb instructions in native codes;

(3) a system lib hook engine handling standard functions,

and (4) a taint engine directing the taint propagation. We

will detail them in the following subsections.

NDroid contains a customized OS-level view recon-

structor motivated by Droidscope for obtaining the in-

formation of processes and memory map in Linux. Since

Taintdroid carefully handles the taint propagation in the

framework and DVM, we re-use the modules modified by

Taintdroid and let the taints added by NDroid follow

Taintdroid’s format so that they can work together

smoothly.

B. DVM Hook Engine

A critical step in tracking information flow through JNI

is to maintain and propagate taints between two different

runtime contexts (i.e., the Java context and the native con-

text). A challenging issue lies in how to correctly get and

set taints when the context switches. For example, although

TaintDroid properly handles the taints when an App is

in the Java context, it does not store the corresponding taints

to the native runtime stack when information flows enter the

native context, thus failing to track such information flows.

To address this issue, the DVM Hook Engine instruments

important JNI-related functions, through which information

flows cross the boundary between the Java context and the

native context. These functions can be roughly classified into

five groups according to their functionality, including (1) JNI

entry; (2) JNI exit; (3) object creation; (4) field access; and

(5) exception, each of which is detailed as follows.

JNI Entry: This category includes functions facilitating

Java codes to invoke native methods. We define a structure

SourcePolicy to record the taints to be propagated from

the Java context to the native context. As shown in Listing 1,

SourcePolicy includes method address, the address of

the native method’s first instruction; tR0 - tR3, the taints of

the first four parameters in registers R0-R3; stack args num,

the number of remaining parameters on stack.

Note that the ARM/Thumb procedure call standard defines

that the first four parameters are passed in R0 to R3, and the

remaining parameters are pushed onto stack, and the return

value is put in R0 ; method shorty describes the types of

the parameters and the return value; access flag indicates

the method’s access mode. Note that the first parameter of

non-static method is “this”; handler points to the handler

184184184

responsible for completing the taint initialization, whose

second parameter (i.e., ‘CPUState’) saves the runtime CPU

state. Each native method receiving tainted parameters will

have a SourcePolicy and we use a hash map to store

the pairs of <addr, SourcePolicy>, where addr is

the native method’s address.

1 typedef struct _SourcePolicy{
2 int method_address;
3 int tR0, tR1, tR2, tR3;
4 int stack_args_num;
5 int* stack_args_taints;
6 char* method_shorty;
7 int access_flag;
8 void (*handler) (struct _SourcePolicy*, CPUState*);
9 } SourcePolicy;

Listing 1. ‘SourcePolicy’

1 void dvmCallJNIMethod(const u4* args, JValue* pResult,
const Method* method, Thread* self);

Listing 2. ‘dvmCallJNIMethod’

NDroid initializes the taint for tracking an information

flow entering a native method in two steps. The first step

creates and populates a SourcePolicy by hooking the

method “dvmCallJNIMethod” (i.e., JNI Call Bridge), as

showed in listing 2. More precisely, NDroid locates the

parameters and their taints according to the first parameter of

“dvmCallJNIMethod”, which is the frame pointer. Note that

these taints are set by the modified DVM. Moreover, we i-

dentify the method address, access flag, and method shorty
through the third parameter of “dvmCallJNIMethod”, which

points to the structure Method.

The second step adds taints to the native context. It occurs

right before the native method executes. NDroid looks up

the method’s SourcePolicy from the hash map according

to its address. Once found, based on the information on

SourcePolicy, NDroid initializes the corresponding

registers and memories with proper taint values.

Table II
JNI METHODS FOR INVOKING JAVA METHODS. TYPE ∈ {OBJECT,

BOOLEAN, BYTE, CHAR, SHORT, INT, LONG, FLOAT, DOUBLE, VOID}

dvmCallMethodV
CallTypeMethod

CallNonvirtualTypeMethod

CallStaticTypeMethod

dvmCallMethodV
CallTypeMethodV

CallNonvirtualTypeMethodV

CallStaticTypeMethodV

dvmCallMethodA
CallTypeMethodA

CallNonvirtualTypeMethodA

CallStaticTypeMethodA

JNI Exit: This category includes functions helping native

codes to call Java methods. The second column of Table

II lists the methods used by native methods to call Java

methods. These methods will eventually call the correspond-

ing methods in the first column, which do similar things

include (1) allocating the method frame on the DVM stack;

(2) putting the parameters onto the stack; (3) scanning the

parameters and converting the indirect reference of any ob-

ject reference to the real object address through the method

“dvmDecodeIndirectRef”. We use “dvmCallMethod*” to

denote these methods.
Note that neither the modified DVM nor Android’s Linux

kernel knows how to propagate taints associated with the

parameters from the native context. NDroid accomplishes

it by properly setting the taints in the DVM stack when

native codes invoke Java methods through these functions.
It is challenging to handle these methods because of

two reasons. First, the parameters of “dvmCallMethod*” do

not contain the taint information. Second, when ‘dvmCall-

Method*’ executes, it will clear the slots in the DVM stack,

which are used to save the taints. To tackle the first issue,

NDroid creates shadow registers and memory to save the

taints in the native context and refers to them when the taints

are propagated to the Java context.
To solve the second issue, NDroid hooks the “dvmCall-

Method*” method and the “dvmInterpret” method that is

called by “dvmCallMethod*”. Instrumenting “dvmInterpret”

is to set taints in the DVM stack. Hooking “dvmCall-

Method*” is to get the indirect references of Java objects to

be tainted. More precisely, in the native context, as the direct

pointers of Java objects (i.e., the real address in memory)

may be changed [13], the shadow memory uses the indirect

reference as key to locate the taint information. Since the

“dvmCallMethod*” method converts the indirect references

to direct pointers and passes them to “dvmInterpret”, we

keep the indirect references for looking up the corresponding

taint in the shadow memory.

jump Start2

CallVoidMethodA

jump Start1

native code

jump Start3

dvmCallMethodA
dvmInterpret

1

2

3

4

56

1

A

A+4

Start1

B

B+4

Start2Start3

C
C+4

native code call method
"CallVoidMethodA"

2
record taints of parameters
of "dvmCallMethod"

3

set taints to DVM stack
before"dvmInterpret"
executes

4

return to "dvmCallMethodA"

5

return to "CallVoidMethodA"

6
return to third party
native code

Figure 5. Multilevel Hooking

Since the methods “dvmCallMethod*” and “dvmInter-

pret” may also be invoked by other codes rather than the

native codes under investigation, the overhead will be high

if we hook these two functions whenever they are called.

185185185

Table III
JNI – CREATE NEW OBJECT

Memory Allocation Function (MAF) New Object Function (NOF)
dvmAllocObject NewObject, NewObjectV, NewObjectA

dvmCreateStringFromUnicode NewString

dvmCreateStringFromCstr NewStringUTF

dvmAllocArrayByClass NewObjectArray

dvmAllocPrimitiveArray NewPrimitiveTypeArray

To address this issue, we propose a multilevel hooking

technique to assure that the instrumentation of “dvmCall-

Method*” and “dvmInterpret” is triggered only by the native

codes under examination. Its basic idea is to define and

check a sequence of preconditions before hooking certain

methods.

We use the method “dvmCallVoidMethodA” as an exam-

ple to explain the multilevel hooking technique, as shown in

Fig. 5. We define six conditions T1, T2 . . . , T6 to determine

whether the corresponding steps in Fig. 5 can be executed.

Let Ifrom represent the address of the current instruction

and Ito denote the target address of the jump instruction:

1) T1 is true if Ifrom is within the native code and Ito
equals the start address of “CallVoidMethodA”.

2) T2 is true if T1 is true and Ito equals the start address

of “dvmCallMethodA”.

3) T3 is true if T2 is true and Ito equals the start address

of “dvmInterpret”.

4) T4 is true if T3 is true and Ito equals C+4, the address

next to the instruction that calls “dvmInterpret”.

5) T5 is true if T2 is true and Ito equals B+4, the address

next to the instruction that calls “dvmCallMethodA”.

6) T6 is true if T1 is true and Ito equals A+4, the address

next to the instruction that calls “dvmCallVoidMetho-

dA” in the native code.

With multilevel hooking, we can determine whether “d-

vmCallMethodA” (or “dvmInterpret”) should be instrument-

ed according to T2 (or T3).

Object Creation: Native codes can create new Java object

through JNI functions listed in the second column of Table

III, which are denoted as NOF. These functions will invoke

the corresponding methods in the first column of Table III,

which are denoted as MAF. MAF allocates memory for an

object or an array. Note that NOF will convert the real object

address returned by MAF to indirect reference. NDroid
maintains the mapping between the indirect reference and

the taint of the new object in the native context. The

real object address is also required because NDroid needs

to locate the newly created object (i.e., StringObject or

ArrayObject) before tainting it. Therefore, to get the new

object’s indirect reference and real address, we apply the

multilevel hooking technique to instrument both NOF and

the corresponding MAF.

Field Access: Since native codes can access a Java

Table IV
JNI METHODS TO GET/SET FIELD. PRIMITIVE ∈ {BYTE, SHORT, INT,

LONG, FLOAT, DOUBLE, BOOLEAN, CHAR}.

Get Field Functions Set Field Functions
GetObjectField SetObjectField

GetPrimitiveField SetPrimitiveField

GetStaticObjectField SetStaticObjectField

GetStaticPrimitiveField SetStaticPrimitiveField

object’s fields through the functions listed in Table IV,

by hooking these methods, NDroid can add taints to the

corresponding field before executing “Set*Field” functions

or get a field’s taint after executing “Get*Field” functions.

Exception: Native codes can communicate with Java

codes through throwing an exception carrying sensitive

information. The JNI function “ThrowNew” first creates a

new exception object and then initializes it by invoking

“initException”, which creates a string object based on the

third parameter of “ThrowNew” and calls the exception

object’s constructor through “dvmCallMethod”. To track this

information flow, we use the multilevel hooking technique

to instrument functions including “ThrowNew”, “initExcep-

tion”, “dvmCallMethod” and “dvmInterpret”, and add the

taint of the third parameter of “ThrowNew” to the string

object in the new exception object.

C. Instruction Tracer

By instrumenting third-party native libraries, the instruc-

tion tracer monitors each ARM/Thumb instruction to deter-

mine how the taint propagates. It takes time to decide each

instruction because there are 148 ARM instructions and 73

Thumb instructions and each instruction does not have fixed

bits to denote the opcode. To speed up the identification of

the instruction type and the search of the handler, NDroid
caches hot instructions and the corresponding handlers.

Currently, NDROID only supports arithmetic and copy op-

erations, while others will be included in our future work.

1 //void *memcpy(void *dest,const void *src,size_t)
2 void memcpy_handler(TrustCallPolicy* policy, CPUState* env

, int isBegin){
3 if(isBegin){
4 int destAddr = env->regs[0];
5 int srcAddr = env->regs[1];
6 int nBytes = env->regs[2];
7 int i = 0;
8 for(; i < nBytes; i++){
9 //propagate the srcAddr’s taint to destAddr

10 addTaint(destAddr + i, getTaint(srcAddr + i));}}}

Listing 3. ‘memcpy’ Taint Operation

Table V lists the taint propagation logic for ARM/Thumb

instruction. We manually analyze all 148 ARM and 73

Thumb instructions and NDROID handles 101 ARM and 55

Thumb instructions that affect taint propagation. “binary-

op” represents the binary operations(e.g., add, etc.); “unary-

op” denotes the unary operation(e.g., NOT, etc.); “Rd”,

186186186

Table V
TAINT PROPAGATION LOGIC FOR ARM/THUMB INSTRUCTIONS

Insn Format Insn Semantics Taint Propagation Description
binary-op Rd, Rn , Rm Rd = Rn op Rm t(Rd) = t(Rn) OR t(Rm) set Rd taint to Rn taint OR Rm taint

binary-op Rd, Rm Rd = Rd op Rm t(Rd) = t(Rd) OR t(Rm) add Rm taint to Rd taint

binary-op Rd, Rm, #imm Rd = Rm op #imm t(Rd) = t(Rm) set Rd taint to Rm taint

unary Rd, Rm Rd = op Rm t(Rd) = t(Rm) set Rd taint to Rm taint

mov Rd, #imm Rd = #imm t(Rd) = TAINT CLEAR clear the Rd taint

mov Rd, Rm Rd = Rm t(Rd) = t(Rm) set Rd taint to Rm taint

LDR∗ Rd, Rn, #imm addr = Cal(Rn, #imm), Rd = M[addr] t(Rd) = t(M[addr]) OR t(Rn) set Rd taint to M[addr] taint OR Rn taint

LDM(POP) regList, Rn, #imm startAddr = Cal(Rn, #imm), endAd-
dr = Cal(Rn, #imm), {Ri, Rj} =
{M[startAddr], M[endAddr]}

t({Ri, Rj}) = t(Rn) OR t({M[startAddr],
M[endAddr]})

set Ri taint to M[startAddr] taint OR Rn

taint, set Ri+1 taint to M[startAddr+4]
taint OR Rn taint, ..., set Rj taint to
M[endAddr] taint OR Rn taint

STR∗ Rd, Rn, #imm addr = Cal(Rn, #imm), M[addr] = Rd t(M[addr]) = t(Rd) set M[addr] taint to Rd taint

STM(PUSH) regList, Rn, #imm startAddr = Cal(Rn, #imm), endAd-
dr = Cal(Rn, #imm), {M[startAddr],
M[endAddr]} = {Ri, Rj}

t({M[startAddr], M[endAddr]}) = t({Ri,
Rj})

set M[startAddr] taint to Ri taint, set
M[startAddr+4] taint to Ri+1 taint, ..., set
M[endAddr] taint to Rj taint

“Rn”, and “Rm” indicate the ARM registers; “#imm” is the

immediate number; “M[addr]” denotes the memory at ad-

dress “addr”; “OR” represents the union operation; “Cal(Rn,

#imm)” calculates the result based on “Rn” and “#imm”;

“t(Rd)” represents the taint of register “Rd”; “t(M[addr])”

denotes the taints of the memories starting from “addr”;

“LDM”/“STM” denotes the load/store multiple values in-

struction and “POP”/“PUSH” represents the special case

of “LDM”/“STM” where “Rn” = “SP”. For “LDR” like

instructions, we set the taint of “Rd” to the union of

“t(M[addr])” and “t(Rn)”, because “addr” is calculated based

on “Rn” and “#imm”. That is, if the tainted input is the

address of an untainted value, the taint will be propagated

to it.

Table VI
MODELED STANDARD METHODS

libc memcpy, free, malloc, memset, strlen, strcmp, realloc,
strcpy, memcmp, strncmp, memmove, sprintf, strncpy,
fprintf, strchr, snprintf, calloc, strstr, atoi, strrchr, memchr,
strcat, sscanf, vsnprintf, strcasecmp, strdup, strncasecmp,
strtoul, sysconf, vsprintf, vfprintf, atol

libm sin, pow, cos, sqrt, floor, log, strtod, strtol, exp, atan2, sinf,
ceil, cosf, sqrtf, tan, acos, log10, atan, asin, ldexp, sinh,
cosh, fmod, powf, atan2f, expf

D. System Lib Hook Engine

Since the system standard functions will be frequently

called by native libraries, instrumenting every instruction in

these standard functions will take a long time and incur

heavy overhead. Instead, we model the taint propagation

operations for popular functions listed in Table VI. They are

selected after we analyzed 5,000 apps with native libraries.

Using the function “memcpy” as an example, Listing 3

shows how to model its taint propagation operation.

Table VII
IMPORTANT STANDARD LIBRARY CALLS

fwrite∗, fclose, fopen, fread, close, write∗, fputc∗, read, fputs∗,
open, fcntl, fstat, munmap, mmap, dlopen, stat, fgets, sock-
et, connect, send∗, recv, dlsym, bind, dlclose, ioctl, listen,
mkdir, accept, select, getc, rename, sendto∗, recvfrom, fdopen,
mprotect, remove, kill, fork, execve, chown, ptrace, sysconf,
Dalvik dalvik system DexFile openDexFile bytearray

NDroid hooks selected system calls (e.g., file read/write,

network, etc.) as listed in Table VII. Particulary, if the data

carrying taint reaches calls with ∗, NDroid regards it as a

possible information leak.

E. Taint Engine

NDroid maintains shadow registers to store the related

registers’ taints and a taint map to store the memories’ taints.

The taint granularity of NDroid is byte. The general prop-

agation logic behind NDroid follows the “or” operation.

That is, if NDroid propagates A’s taint TA to B, then B’s

taint TB will be updated with “TB ∪ TA”. However, if the

tainted operand is used as the memory address, NDroid
will taint the memory at this address. Currently, the taint

engine only handles arithmetic and move/load operations,

while others will be included in future work.

F. OS-Level View Reconstructor

Motivated by Droidscope, NDroid employs virtual

machine introspection to collect the information of processes

and memory maps in Android’s Linux kernel by only

analyzing ARM/Thumb instructions [10].

G. Hooking functions through QEMU

NDroid realizes hooking functions by inserting TCG

(Tiny Code Generator) instructions during QEMU’s code

translation phase. More precisely, we insert TCG codes to

187187187

the beginning (and the end) of this function so that our

analysis functions will be invoked before (and after) the

execution of this function.

To hook the selected JNI functions and standard library

calls, we manually disassemble “libdvm.so”, “libc.so”, “lib-

m.so”, etc. and determine the offsets of these functions.

When examining an App, NDroid obtains the start address-

es of the system libraries from the memory map through

the OS-level view reconstructor. For both the selected JNI

functions and standard library functions, NDroid maintains

a list of their addresses and the corresponding analysis

functions. When processing a branch instruction, if the target

method is in the list, NDroid will call its analysis functions

before/after the method is executed. The instruction tracer

parses each ARM/Thumb instruction and calls the related

handler to complete the taint propagation before the instruc-

tion is executed.

VI. EXPERIMENTS

NDroid is implemented in QEMU with 20,261 lines of

C/C++ code measured by CLOC 1.6 and 200 lines of Python

scripts. Executing Taintdroid in the modified QEMU,

NDroid employs it to run apps and track information flow

in the Java context. NDroid handles the information flows

through JNI.

It is worth noting that identifying all apps using JNI to

leak information requires an input generation system that

can exhaustively exercise those apps’ functionality. Unfortu-

nately, designing such a system is still an open problem and

out-of-the-scope of this paper. In our experiment, we first

used one simple tool(i.e., Monkeyrunner) to generate random

input to drive those 37,506 apps using JNI. Since this tool

may miss many functions involving JNI, we just found

that QQPhoneBook3.5, a popular App that has 500,000-

1,000,000 downloads in the Google Play market, may leak

sensitive information through JNI. Then, we manually gen-

erated input and executed 8 randomly selected apps, which

use JNI and are related to phone/SMS/contacts. NDroid
found that 3 apps delivered the contact and SMS information

to native code. One app (i.e., ephone3.3) further sends out

the contact information through native code. Moreover, we

use two proof-of-concept (PoC) apps (one for case 2 and the

other one for case 3) to further evaluate NDroid’s capability

of tracking information leaks through JNI. Finally, follow-

ing [10], we use the CF-Bench by Chainfire to evaluate

NDroid’s overhead.

Experiments were performed in a Virtual Box virtual

machine with 1GB memory running Linux Mint (LDME

MATE Edition) and the host is MacBook Pro (MD101xx/A)

with a Core i5 @ 2.5GHz and 4GB of RAM. We run

TaintDroid for Android 4.1 with 2.6.29 Linux kernel

and XATTR support for the YAFFS2 filesystem in NDroid.

We modified TaintDroid to enable it to load third-party

native libraries.

name: makeLoginRequestPackageMd5
shorty: IILLLLLLLLII
class: Lcom/tencent/tccsync/LoginUtil;
args[3]@0x4127deb8 L Ljava/lang/String;
taint: 0x202

name: getPostUrl
shorty: LI
class: Lcom/tencent/tccsync/LoginUtil;

 NewStringUTF Begin
 dvmCreateStringFromCstr Begin
 http://sync.3g.qq.com/xpimlogin?
sid=PFI3NSY3Y1YJGSQD8BDO7CJAYYXZGDJK16970618043
591660120
 dvmCreateStringFromCstr return 0x412a3320
 dvmCreateStringFromCstr End
 realStringAddr:0x412a3320
 add taint 514 to new string object@0x412a3320
 t(412a3320) := 0x202
 NewStringUTF End

Java Code

……

0x4127deb8 0x202

Taint Map

2.1

Java Code

Add taint to ``Taint Map"

21

Get taint from ``Taint Map"

Figure 6. Log of QQPhoneBook

A. QQPhoneBook

NDroid found that QQPhoneBook3.5 may send sensitive

information related to contacts and SMS to a server named

“info.3g.qq.com”. Fig. 6 shows the major functions in the

information flow identified by NDroid, which is an example

of Case 1’. In the first step, by invoking the native method

“makeLoginRequestPackageMd5”, the Java code transmits

sensitive information through the fourth parameter (i.e.,

“args[3]”) to the native context. This parameter is of the type

String and its taint is “0x202”. NDroid creates an entry in

the taint Map to associate the memory address 0x4127deb8

with the taint “0x202”.

Then the Java code calls another native method “getPos-

tUrl” (i.e., step 2) with parameters that do not have taints.

“getPostUrl” will invoke “NewStringUTF” (i.e., step 2.1)

to create a new String object based on the tainted memory

(i.e., 0x4127deb8) and return this new String object to the

Java code that will eventually send out the sensitive data.

NDroid not only adds a taint to the new String object and

the return value but also tracks the information flow until

it reaches the sink “send”, thus capturing this information

leakage. Note that TaintDroid alone cannot detect such

information leakage because it does not taint the new String

object and the return value of “getPostUrl”.

Java Code

name: callregister
shorty: ILLLLLLLII
class:Lcom/vnet/asip/general/general;
args[2]@4174a7a0 L Ljava/lang/String;
taint:0x2

Native Code

GetStringU
TFChars

memcpy, memmove, fwrite,
memcmp …

sendto(36, REGISTER
sip:softphone.comwave.net
Via: SIP/2.0/UDP
From: "4804001849"
……

softphone.comwave.
net

1

2 3 4

Figure 7. Log of ePhone

B. ePhone

NDroid found that ePhone3.3 may send contacts related

information to a name named “soft phone.comwave.net”.

188188188

 name: recordContact
 class: Lcom/ndroid/demos/Demos;
 shorty: ZLLL
 insnAddr: 4a2c7d88
 args[1]@0x410b7770 L Ljava/lang/String;
 taint: 2
 args[2]@0x410b7818 L Ljava/lang/String;
 taint: 2
 args[3]@0x410bb350 L Ljava/lang/String;
 taint: 2

 TrustCallHandler[GetStringUTFChars] begin
 jstring taint:2
 TrustCallHandler[GetStringUTFChars] end
 1st Call: t(2a141b90) := 2
 1st Call: RETURN '1'
 2nd Call: t(2a139060) := 2
 2nd Call: RETURN 'Vincent'
 3rd Call: t(2a1220d8) := 2
 3rd Call: RETURN 'cx@gg.com'

 TrustCallHandler[fopen] begin
 Open '/sdcard/CONTACTS'
 TrustCallHandler[fopen] end
 Return FILE@0x4006fd44

 SinkHandler[fprintf] begin
 fprintf(FILE@0x4006fd44, %s %s %s , ...)
 t[2a141b90] = 2
 write: 1
 t[2a139060] = 2
 write: Vincent
 t[2a1220d8] = 2
 write: cx@gg.com
 SinkHandler[fprintf] end

 TrustCallHandler[fclose] begin
 Close FILE@0x4006fd44
 TrustCallHandler[fclose] end

dvmCallJNIMethod

 Find a source function @0x4a2c7d88
 SourceHandler
 t(5f80001d) := 2
 t(98000021) := 2
 t(a9000025) := 2

recordContact

1 2 3

4

5

6

0

Figure 8. PoC of case 2

Fig. 7 shows the major functions in the information flow

tracked by NDroid. ePhone’s Java code first calls a native

method “callregister” that passes tainted information related

to contacts to its native code. After that, the native code

converts the tainted Java string to C string through the

method “GetStringUTFChars” and further invokes many

system calls, such as, “memcpy”, “memmove”, “fwrite”,

etc. to process the tainted information. Finally, it invokes

“sendto” to send the tainted information to the server.

C. PoC of case 2 in information leakage

This PoC first fetches sensitive data by querying the

contact information and then passes it to the native code

that will write the data to a file. Fig. 8 depicts the major

functions in this information flow.

By hooking “dvmCallJNIMethod”, NDroid obtains the

information of the invoked native method before its ex-

ecution, such as the method’s name (i.e., “recordContac-

t”), class (i.e., “Lcom/ndroid/demos/Demos”), and the start

address (i.e., 0x4a2c7d88). This method takes in three

String parameters, all of which are tainted with the value

“0x2”, and returns a boolean value. NDroid constructs a

SourcePolicy to record such information and save it into

the hash map with the key value “0x4a2c7d88”. When the

native method’s first instruction at “0x4a2c7d88” is execut-

ed, NDroid looks up the corresponding SourcePolicy
and initializes the taints in the native context according

to the information in SourcePolicy. More precisely, it

sets the taint value “0x2” to memories at “0x5f80001d”,

“0x98000021” and “0xa9000025”.

The native code converts Java strings to C strings through

“GetStringUTFChars” (i.e., step 1, 2, 3) and obtains the

contact id (i.e., “1”), contact name (i.e., “Vincent”) and

contact email (i.e., “cx@gg.com”). The taints are also prop-

agated to memories at “0x2a141b90”, “0x2a139060” and

“0x2a1220d8”. Then, the native code calls “fopen” (i.e., step

4) to open the file “/sdcard/CONTACTS”, and the returned

file pointer (i.e., FILE*) is stored at “0x4006fd44”. After

that, “fprintf” is invoked to write the three stings to that

file (i.e., step 5). Since “fprintf” is a sink, NDroid checks

the parameters and notices that the three parameters are

associated with the taint value “0x2”. In step 6, the file is

closed through “fclose”.

dvmCallMethodV Begin

dvmCallMethodV End

dvmCreateStringFromCstr Begin
"...Line1Number = 15555215554
NetworkOperator = 310260..."
dvmCreateStringFromCstr return 0x410ca268
dvmCreateStringFromCstr End

NewStringUTF Begin

realStringAddr:410ca268
add taint 0x1602 to new string
object@0x410ca268
t(a8900025) := 0x1602
NewStringUTF return
0xa8900025
NewStringUTF End

CallVoidMethod Begin

CallVoidMethod End

dvmInterpret Begin
Method Name: nativeCallback
Method Shorty: VL
Method insSize: 2
Method registerSize: 5
curFrame@0x44bf8bf0
Method AccessFlag: 0x1
this's class: Lcom/ndroid/demos/Demos;
args[1]@Ljava/lang/String;
taint: 0x1602
add taint to new method frame
t[44bf8c14] = 0x1602
dvmInterpret End

evadeTaintDroid

nativeCallback
Handle control to

Java method

1

2

1.1

2.1

2.2

2.3

Figure 9. PoC of case 3

D. PoC of case 3 in information leakage

In this PoC, the Java code first obtains the device’s

information, including device ID, network Operator, etc. and

then transfers it to the native context by calling the native

method “evadeTaintDroid”. After receiving the information,

the native code creates a new Java String object to wrap

the sensitive information by calling “NewStringUTF” (i.e.,

step 1) and then invokes the Java method “nativeCallback”

(i.e., step2) to send out the information. Fig. 9 illustrates the

major functions in this information flow.

By hooking “dvmCallJNIMethod”, NDroid obtains the

information of the native method “evadeTaintDroid” before

its execution and sets the taints in the native context.

The native method calls “NewStringUTF” (i.e., step 1) to

create a new Java String object and gains the indirect

reference “0xa8900025”. “NewStringUTF” invokes “dvm-

CreateStringFromCstr” to create the Java String object and

receives the real object address “0x410ca268” (i.e., step

1.1). By instrumenting “NewStringUTF”, NDroid adds this

method’s parameter’s taint value “0x1602” to the Java String

object.

After that, the native code calls “CallVoidMethod” (i.e.,

step 2) which invokes “dvmCallMethodV” (i.e., step 2.1).

Eventually, “dvmInterpret” is called (i.e., step 2.3) before the

Java method “nativeCallback” executes. By instrumenting

“dvmInterpret”, NDroid obtains the Java method’s infor-

mation including method name (“nativeCallback”), method

shorty (“VL”), method local variable size (“2”), method

189189189

register size (“5”), method’s frame address (“0x44bf8bf0”),

and method access flag (“0x1”). Then, by checking each

parameter’s taint and type, NDroid gets the first argument’s

(i.e., “args[1]”) taint value (i.e., “0x1602”) and adds it to the

Java method’s method frame slot at address “0x44bf8c14”.

In step 2.3, the Java method “nativeCallback” is invoked to

send out the tainted information. Since the network related

methods are sinks, this information leakage is caught.

E. Performance

To measure NDroid’s performance, we ran CF-Bench

30 times on both NDroid and a vanilla QEMU with the

Android platform. In average, NDroid incurs 5.45±0.414

times slowdown (showed in Fig. 10), which is much smaller

than the result of Droidscope (i.e., at least 11 times

slowdown). Note that our experiments were conducted in

a virtual machine while the experiments in Droidscope
were performed in a real machine with a similar config-

uration as our host of the virtual machine. The reason

may be two-fold: (1) NDroid uses modified DVM and

application framework to track information flows in the Java

context whereas Droidscope does it through analyzing

each ARM/Thumb instruction, which costs much time. (2)

NDroid adopts several new approaches to increase its

efficiency, such as, employing multilevel hooking to avoid

unnecessary instrumentation, targeting on selected JNI func-

tions, modelling the propagation logic of popular standard

methods, and using caches to speed up the search, etc.

Native MIPS
Java MIPS

Native MSFLOPS
Java MSFLOPS

Native MDFLOPS
Java MDFLOPS

Native MALLOCS
Native Memory Read

Java Memory Read
Native Memory Write

Java Memory Write
Native Disk Read
Native Disk Write

Native Score
Java Score

Overall Score
0 22.5 45.0 67.5 90.0

5.45
1.10

12.08
1.17
1.05
2.22

49.83
1.24

49.86
1.03
1.03

10.37
1.33

16.62
1.48

85.17

Times of Overhead

Figure 10. CF-Bench results

VII. DISCUSSION

Similar to all dynamic analysis systems, NDroid exe-

cutes one path at a time and cannot cover all execution

paths. It is difficult to test apps because their behaviors

are usually triggered by user interactions (e.g., clicking a

button, turning off the screen) and they can extend their

functionality through dynamical class loading. Experiment

results in Section VI have showed that simple tools like

monkeyrunner cannot enumerate all possible paths in an

app and thus NDroid may miss information leakage. In

future work, we will equip NDroid with advanced input

generation system [36] to check apps.

We will realize a protection mechanism for taints before

applying NDroid to analyze advanced malicious apps be-

cause they may modify or remove the taints. For example,

an app without root privileges can manipulate the taints

in DVM. With root privileges, an app can further manip-

ulate stacks, modify trusted functions, and even establish

the communication between Java and native code without

following JNI specification. NDroid can be easily extended

to protect taints and prevent evasions through stack manip-

ulation or trusted function modification, because it monitors

the memory, hooks major file and memory functions, and

inspects every native instruction. Although we exclude apps

with root privileges in this paper, NDroid can incorporate

the functions in RootGuard [37], which monitors system

calls for protecting rooted Android smartphones, to detect

the abnormal behaviors of malware with root privileges.

Common to most virtualization-based systems is the dif-

ficulty of emulating the whole real hardware environment.

The Android emulator misses some important information

sources (e.g., GPS). Hence, NDroid cannot track infor-

mation flows from these sources. On possible solution is

to provide fake information that cannot be emulated as

suggested by [38]. Moreover, advanced malware may exploit

the difference between an emulator and a real smartphone

to perform emulator detection. Using the virtualization tech-

nology supported by CPUs (e.g., Trustzone in ARM [39])

may be a promising approach to evade such detection.

Similar to TaintDroid and Droidscope, NDroid
does not track control flows. Therefore, it could be evaded

by apps that use the same control flow based techniques

for circumventing those systems [40]. Since fully supporting

control flow tracking may cause high overhead and false pos-

itives, we will investigate it and support more ARM/Thumb

operations in future work.

VIII. CONCLUSION

We conduct a systematic study on tracking information

flows through JNI in apps. Our large-scale examination on

apps using JNI results in interesting observations on how

apps use native libraries. We identify a set of scenarios

where the information flows uncaught by existing systems

can result in information leaks or characterize polymorphic

malicious apps. Based on these insights, we propose and

implement NDroid, an efficient dynamic taint analysis sys-

tem for checking information flows through JNI, by tackling

many challenge issues. The evaluation through real apps

illustrates that NDroid can effectively identify information

leaks through JNI and discover polymorphic malicious apps

realized by JNI with low performance overheads. We will

release NDroid later.

190190190

IX. ACKNOWLEDGMENT

We thank the reviewers for their comments and sugges-

tions and Angelos Stavrou, in particular, for shepherding

our paper. This work is supported in part by the Hong

Kong ITF (No. ITS/073/12), the Hong Kong GRF (No.

PolyU 5389/13E), the National Natural Science Foundation

of China (No. 61202396), the Open Fund of Key Lab of Dig-

ital Signal and Image Processing of Guangdong Province,

and Shenzhen City Special Fund for Strategic Emerging

Industries (No. JCYJ20120830153030584)

REFERENCES

[1] C. Smith, “25 amazing android statistics,”
http://expandedramblings.com/index.php/android-statistics/,
Apr. 2014.

[2] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get
off of my market: Detecting malicious apps in official and
alternative android markets,” in Proc. NDSS, 2012.

[3] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang,
“Riskranker: Scalable and accurate zero-day android malware
detection,” in Proc. MobiSys, 2012.

[4] M. Spreitzenbarth, F. Echtler, and J. Hoffmann, “Mobile-
sandbox: Having a deeper look into android applications,”
in Proc. SAC, 2013.

[5] Y. Zhou and X. Jiang, “Dissecting android malware: Charac-
terization and evolution,” in Proc. IEEE Symp. Security and
Provacy, 2012.

[6] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “Profile-
droid: Multi-layer profiling of android applications,” in Proc.
MobiCom, 2012.

[7] E. Schwartz, T. Avgerinos, and D. Brumley, “All you ever
wanted to know about dynamic taint analysis and forward
symbolic execution (but might have been afraid to ask),” in
Proc. IEEE Secur. Pri. Symp., 2010.

[8] B. Livshits, “Dynamic taint tracking in managed runtimes,”
Microsoft Research, Tech. Rep. MSR-TR-2012-114, 2012.

[9] W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung, P. McDaniel,
and A. Sheth, “Taintdroid: An information-flow tracking
system for realtime privacy monitoring on smartphones,” in
Proc. USENIX OSDI, 2010.

[10] L. Yan and H. Yin, “Droidscope: Seamlessly reconstructing
OS and Dalvik semantic views for dynamic Android malware
analysis,” in Proc. USENIX Sec, 2012.

[11] S. Liang, The Java Native Interface: Programmer’s Guide
and Specification. Addison-Wesley, 1999.

[12] “Android NDK,” http://developer.android.com/tools/sdk/ndk/
index.html, 2013.

[13] E. Hughes, “JNI local reference changes in ICS,”
http://android-developers.blogspot.hk/2011/11/jni-local-
reference-changes-in-ics.html, 2011.

[14] T. Blasing, L. Batyuk, A. Schmidt, S. Camtepe, and S. Al-
bayrak, “An android application sandbox system for suspi-
cious software detection,” in Proc. MALWARE, 2010.

[15] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos,
“Paranoid android: Versatile protection for smartphones,” in
Proc. ACSAC, 2010.

[16] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid:
behavior-based malware detection system for android,” in
Proc. SPSM, 2011.

[17] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on
automated dynamic malware-analysis techniques and tools,”
ACM Computing Surveys, vol. 44, no. 2, 2012.

[18] A. Reina, A. Fattori, and L. Cavallaro, “A system call-
centric analysis and stimulation technique to automatically
reconstruct android malware behaviors,” in Proc. EuroSec,
2013.

[19] R. Fedler, M. Kulicke, and J. Schutte, “Native code execution
control for attack mitigation on Android,” in Proc. SPSM,
2013.

[20] A. Schmidt, R. Bye, H. Schmidt, J. Clausen, O. Kiraz,
K. Yuksel, S. Camtepe, and S. Albayrak, “Static analysis of
executables for collaborative malware detection on android,”
in Proc. ICC, 2009.

[21] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis
for malware detection,” in Proc. ACSAC, 2007.

[22] P. Hornyaick, S. Han, J. Jung, S. Schechter, and D. Wether-
all, “These arent the droids youre looking for: Retrofitting
android to protect data from imperious applications,” in Proc.
CCS, 2011.

[23] L. Yan and H. Yin, “Presentation of DroidScope,”
https://www.usenix.org/conference/usenixsecurity12/

droidscope-seamlessly-reconstructing-os-and-dalvik-semantic-views,

Aug. 2012.
[24] H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju,

C. Nita-Rotaru, and I. Molloy, “Using probabilistic generative
models for ranking risks of android apps,” in Proc. CCS,
2012.

[25] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: statically
vetting android apps for component hijacking vulnerabili-
ties,” in Proc. CCS, 2012.

[26] G. Tan and J. Croft, “An empirical security study of the native
code in the jdk,” in Proc. USENIX Sec, 2008.

[27] M. Sun and G. Tan, “Jvm-portable sandboxing of java’s
native libraries,” in Proc. ESORICS, 2012.

[28] B. Lee, B. Wiedermann, M. Hirzel, R. Grimm, and K. S.
McKinley, “Jinn: Synthesizing dynamic bug detectors for
foreign language interfaces,” in Proc. PLDI, 2010.

[29] J. Newsome and D. Song, “Dynamic taint analysis for
automatic detection, analysis, and signature generation of
exploits on commodity software,” in Proc. NDSS, 2005.

[30] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda,
“Panorama: Capturing system-wide information flow for mal-
ware detection and analysis,” in Proc. CCS, 2007.

[31] G. Wondracek, P. Comparetti, C. Kruegel, and E. Kirda,
“Automatic network protocol analysis,” in Proc. NDSS, 2008.

[32] D. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall, “Tain-
teraser: Protecting sensitive data leaks using application-level
taint tracking,” SIGOPS Oper. Syst. Rev., vol. 45, no. 1, 2011.

[33] V. Kemerlis, G. Portokalidis, K. Jee, and A. Keromytis,
“libdft: Practical dynamic data flow tracking for commodity
systems,” in Proc. VEE, 2012.

[34] V. Haldar, D. Chandra, and M. Franz, “Dynamic taint prop-
agation for Java,” in Proc. ACSAC, 2005.

[35] “Qemu,” http://wiki.qemu.org/Main Page, 2013.
[36] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input

generation system for Android Apps,” in Proc. FSE, 2013.
[37] Y. Shao, X. Luo, and C. Qian, “Rootguard: Protecting rooted

android phones,” IEEE Computer, June 2014.
[38] “Appuse - Android pentest platform unified standalone envi-

ronment,” https://appsec-labs.com/AppUse, 2013.
[39] ARM Ltd., “Trustzone,” http://www.arm.com/products/

processors/technologies/trustzone/index.php, visited 2014.
[40] G. Sarwar, O. Mehani, R. Boreli, and M. Kaafar, “On the

effectiveness of dynamic taint analysis for protecting against
private information leaks on Android-based devices,” in Proc.
SECRYPT, 2013.

191191191

