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Abstract. In mobile Internet, popular Location-Based Services (LBSs)
recommend Point-of-Interest (POI) data according to physical positions
of smartphone users. However, untrusted LBS providers can violate loca-
tion privacy by analyzing user requests semantically. Therefore, this
paper aims at protecting user privacy in location-based applications by
evaluating disclosure risks on sensitive location semantics. First, we intro-
duce a novel method to model location semantics for user privacy using
Bayesian inference and demonstrate details of computing the semantic
privacy metric. Next, we design a cloaking region construction algorithm
against the leakage of sensitive location semantics. Finally, a series of
experiments evaluate this solution’s performance to show its availability.
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1 Introduction

Location Based Services (LBSs), as the representative of context-aware services,
can recommend accurate and timely information according to user locations.
The wide application of LBSs (such as Check-ins, Navigation, Maps and Mobile
Social Networks) is benefit from the widespread availability of wireless networks
and smart devices with built-in positioning modules. However, LBS gets involved
in the problematic concern about location privacy because of its operating mech-
anism. Generally, in popular LBS-based applications and systems, real-time user
locations from the LBS clients (e.g. some specific APPs installed in smartphones)
as the vital contextual information need to be reported to the corresponding LBS
providers in the on-demand manner. As a result, massive user locations are read-
ily collected by potential adversaries via some untrusted servers and connection
channels in mobile Internet.

Following privacy protection of relational databases, existing techniques of
location privacy preservation have aimed at constructing the cloaking region
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under general privacy metrics such as k-anonymity and [-diversity to generalize
exact user locations into custom extended spatial regions. Although effectively
achieving a limited guarantee for location privacy, these techniques are vulner-
able to Location Semantics Attack [1]. Intuitively, for a target user of LBS, the
entire or major part of a k-anonymity cloaking region may be annotated with a
similar sensitive semantic label such as Cancer Treatment Hospitals, and there-
fore adversaries can breach his privacy by learning his poor health status with
a high probability.

Contributions. This solution involves three-fold contributions. First, the pro-
posed approach LSRG models the process which extracts sensitive semantics
form user requests and measures the degree of the semantics leakage. Second,
this paper introduces a spatial cloaking method for preserving sensitive seman-
tics on user locations. Third, its performance is demonstrated experimentally
under different configurations by our adjusting crucial parameters.

Outline. The rest of the article is organized as follow. The 2nd section describes
background. Section 3 and Section 4 shows two major parts of this work, extract-
ing sensitive location semantics and constructing the cloaking region respectively.
And Section 5 evaluates the performance of this solution through experiments.
Section 6 reviews related works and the last section makes a summary.

2 Structure and Motivation

System Description. Following the popular three-tire architecture [2] for loca-
tion privacy protection, our solution runs on this middle server in Figure 1. An
LBS provider holds massive Point-of-Interest (POI) records which are meaning-
ful location points over real maps. This middle server as a Trusted-Third-Party
(TTP) is deployed between mobile clients and LBS servers to protect location
privacy. First, for a user, this middle server extends exact locations into cloak-
ing regions where all POI results are ready for forwarding. Second, this middle
server refines and dispatchs POIs to corresponding users.
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Fig. 2. Location Semantics Attack

Problem Setting and Motivation. Intuitively, the adversary analyzes pub-
lished locations by mining semantic information for a target user. For example,
a user Alice reports her current location coordinate loc to an untrusted LBS
provider Malice in real activities. Next, Malice learns that a cancer hospital is
located in the location point loc after querying public POI databases and map
services such as Baidu Maps, Tencent Maps and Google Maps. Finally, Malice
learns that Alice’s health is poor with a high probability since some LBS requests
are linked with meaningful labels.

The crux of Location Semantics Attack is that the adversary holds the public
background knowledge on POI databases as same as users. In Figure 2, the
cloaking region C'R1 discloses that the active user is probably a cancer patient
since all requests in C'R1 are from cancer hospitals and the poor health status is
one of his sensitive attributes. By contrast, these requests of C' R2 are dispersed
into various semantic regions such as hospitals, malls, restaurants and hotels
and thus it is safer if the distribution of the adversary’s guessing is uniform over
these regions without additional information.

A recent work [1] has aimed at the semantic safety. The adversary may learn
sensitive semantics on various locations. The majority of existing cloaking meth-
ods fail to capture the semantic risk. A cloaking region can still leak some risky
semantics information in spite of satisfying the k-anonymity rule, since the major
or entire part of the cloaking region which holds k users in a snapshot of LBS
requests may be mapped into a risky semantic label such as infectious hospitals.

3 Evaluating Location Privacy

Generally, in client-side of LBS, when visiting LBS, a user submits a location
request (U, L, T) where the users identifer U, the raw location L and the times-
tamp T. e.g. A request is (Alice,(116.42284,39.908063),12:00’). In server-side of
LBS, a POI entry is defined as a tuple (L, S, D). The raw location L is a pair
(Ing, lat) refers to the longitude Ing and the latitude lat. The semantic label S
refers to a meaningful brief name on this raw location L. The detail content D is a
readable text to describe this raw location. e.g. a POT is ((116.42284,39.908063),
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‘bank’; ‘The Bank of China’). Thus, a location request discloses that this user
may execute a personal activity about this semantic information ‘bank’.

We model the causal relationship among raw locations (i.e. location coordi-
nates), semantic labels (i.e. the meaning name of the raw location in real maps)
and privacy risks (i.e. possible privacy disclosure events on special semantic
labels) and naturally measure the belief of privacy risks using the probability of
the privacy disclosure events on any raw locations and regions (the section/set
of raw locations).

3.1 Modeling Location Semantics

As shown in Figure 3, this graphical model Location Semantics Risk Graph (in
short LSRG) describes the privacy risk belief of a location request when the
adversary eavesdrops this request after knowing semantic information of raw
locations.
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Fig. 3. Location Semantics Risk Graph

Definition 1. Location Semantics Risk Graph is a three-tier directed acyclic
graph G = (V, E). The node collection V' falls into three mutually exclusive
subsets, the set of raw locations Vi, the set of semantic labels Vi and the privacy
risk belief A. A directed edge e =< a,b >€ E refers to the dependency belief
between its start point a and its end point b that is a conditional probability
P(bla) > 0.

To simplify this model properly, we adopt an assumption that events of loca-
tions are independent of one another and so those of semantic labels are. i.e.
There are no edges which connect two peer nodes of locations or semantic labels.
Clearly, connections between locations and semantic labels have a many-to-many
relationship, referring to edges from the location node set V; to the semantics
node set V5. This is consistent with real-world experiences. A building on a loca-
tion may be comprehensive with offices and shopping centers. Similarly, hospitals
may be dispersed into different regions in a real city.
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3.2 Inferring Privacy Risks

The binary class variable A that is the root node of LSRG denotes the prob-
ability event that A = A; if the adversary learns privacy information of users
via location semantics inference and otherwise A = Ay. In brief, the event A,
means a risky request and Ay refers to a safe request form the perspective of
user privacy.

The evidence variable Oy, is the observed location information (e.g. a region)
which the middle server submits into an untrusted LBS server for forwarding
the user request. Oy, actually is a cloaking region in the generalization-based
location privacy protection schemes. Oy, is a subset of location nodes V. i.e.
Ojoe € Vi Without cloaking, Oj,. holds only one location that is the user’s
current location. But after cloaking locations, O;,. becomes a continuous spatial
region which includes the current location.

Therefore, the posterior probability P(A¢|O;ec) refers to the conditional prob-
ability for the privacy disclosure event A; of a request on the published location
information Oj,.. Naturally, P(A:|Oj.) can be used to measure the privacy risk
degree. The privacy risk P(A¢|Ojo.) can be calculated by the Bayesian rule as
follow.

P(Oyoc|At) P(A¢)
P(Oroc|At) P(Ar) + P(Oroc|Ay) P(Ay)

PrivacyRisk = P(A¢|O10c) = (1)

3.3 Estimating Parameters

Computing the posterior belief needs to obtain three prior beliefs P(Oj,c|A¢),
P(Ojoc|Ay) and P(A;) which are estimated by given samples and the Max-
imum Likelihood Estimation (MLE). For all cloaked location-based requests,
each published location information O, C V; can be decomposed into a series of
basic locations, relying on specific methods of clustering or partitioning spatial
data for original location coordinates. Basic locations in Figure 3 are the m-
order collection of leaf nodes, V; = {L1,--- , Ly, }. Therefore, for A € {A;, A},
P(O10c|A) = > ico,,. P(IJA) where P(I|A) is the condition probability for a
basic location I € V;. Naturally, repetitive computation steps can be reduced
using precalculated beliefs P(I|A) of all basic locations.

The Prior Belief P(Ojoc|A:). Without loss of generality, the adversary
observes a spatial region O;,. which refers to a set of locations as the evidence.
Specifically, throughout a middleware for location privacy protection, the cloak-
ing region R, is actually the observed region. i.e. Ojoc = R.q. This belief can
be calculated as follow.

P(Oweld) = 3= 32 [P(Uls)P(s|A) (2)

1€O01oc s€pa(l)

For an untrusted LBS, the adversary’s ability involves two-fold factors. The
first factor is the location semantics knowledge. The adversary can access public
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POI databases and thus obtains corresponding semantics information on loca-
tions. Next, the semantics risk knowledge is the other factor. The adversary’s
intention relies on semantics labels for learning sensitive attributes of a target
user and thus different location semantics implies different risk levels for loca-
tion privacy. Based on the intuitive understanding, we can estimate this belief
P(Opoc)At) = Zleozoc P(l]A;) under the LSRG model, after knowing these two
factors which express as two condition probabilities P(s|A;) and P(I|s) respec-
tively where s € pa(l) C Vi and [ € V. For simplicity, pa(l) denotes the set of
parent nodes of the node [ in LSRG.

The location semantics knowledge can be computed using P(l|s) = };(éf))

where the function F'(z) is the metric of the event z. We assume that for a
semantics label s the adversary’s attack is the spatial uniform distribution over
the region of this semantics s and so the metric function F(z) should be the
area of the region meeting the event (I, s) or (s). i.e. P(l|s) = %a(éf)). However,
computation of exact areas of massive irregular regions over a real map will
generally consume intensive resources since popular online map services fail to
provide related data directly. As a practical alternate, we can employ the number
of POI entries in the region meeting specific semantics conditions. i.e. P(l|s) =

count(l:s) - tiven the POI database which the untrusted LBS holds, the function

count(s

count((;) counts up the number of POI entries whose semantics label is s and the
function count(l, s) refers to the number of POI entries whose semantics label
is s and meanwhile whose location coordinates fall in the spatial cell annotated
by . For convenience, we use the pyramid structure [2] based on Quad-Tree to
index POI entries in the 4™ grid and in fact the location semantics knowledge
reflects the inherent feature of POI databases over real maps.

The semantics risk knowledge can be estimated using the frequency of risky
events which are annotated by the semantics label s € V; over all risky events.
ie. P(s|A;) = %E(Sﬁt))' Given a sample dataset of risky events, we can make a
statistic analysis on the frequency of risky events grouped by semantic categories
such as ‘hospitals’, ‘offices’” and so on. count(s, A;) adds up the number of risky
events with the semantics label s and count(A;) is the total number of all risky
events. e.g. 50 risky events on ‘hospitals’ exist in 100 risky events and thus we
can learn the belief P(s = hospitals|A;) = 0.5 on the semantics information
‘hospatials’ based on this sample. Note that, all events of a sample are classified
into defined catalogs (semantics labels). i.e. Each event relates to only one label,
and for all semantics labels ) i P(s|A;) = 1.

The Prior Belief P(Ojoc|Af). The probability of safe requests on the
observed region Oy, denotes this prior belief P(Ojoc|Af). By collecting requests
via a safe LBS, this MLE is obtained by Equation 3. Since Oj,. is a set of
basic locations on this partitioned maps, the probability of each basic loca-
tion P(l|Ay) = % can be calculated from the safe request sample.
count(l, Ay) is the number of safe requests on this basic location [ and count(Ay)
is the total number of all requests on the safe sample dataset.
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count(Oyoc, Ay) Z count(l, Ay)

P(Ouoc|Ay) = count(Ay) count(Ay)

3)

1€0;6c

The Prior Belief P(A;). Intuitively, the prior belief P(A;) implies the trust
status of the entire LBS system including related network connections. Given an
event sample of accessing an LBS, the MLE of P(A;) can express as the frequency
of past request events in Equation 4 where the class variable A; refers to events of
risky requests. By the sample, count(A;) is the number of violated request events
where user sensitive information is disclosed and count(A) denotes the number of
all events on both risky and safe requests simply. Note that, P(A;)+P(Af) = 1.

count(Ay)

P(ay) = count(A)

(4)

4 Cloaking Published Locations

This section describes a cloaking region construction method to protect loca-
tion semantics. Based on the aforementioned privacy risk evaluation method,
we design Algorithm 1 which can recursively construct a (k, [, ¢)-Secure Cloak-
ing Region (for short, (k,1,¢)-SCR) to meet three privacy requirements. First,
k-anonymity[2,3] means that the cloaking region holds k different users at least.
Second, I-diversity[2,4] means that the cloaking region covers [ different loca-
tions (or spatial cells) at least. Third, ¢t-safety ensures that the semantics safety
of the cloaking region is larger than a threshold ¢. This can be defined as follow.

Definition 2. A cloaking region O, meets t-safety if and only if its semantics
safety P(Af|Ojoc) =1 — P(A¢Opc) > t.

Definition 3. (k,l,t)-Secure Cloaking Region is a cloaking region which satisfies
k-anonymity, l-diversity and t-safety.

In the pyramid structure[2], a location point falls into a rectangular region
linked with a node of the Quad-Tree. Each non-root node has only one parent
node. Importantly, each non-leaf node has four child nodes like a cross and thus
the non-root node has the only vertical or horizontal neighbor node in the four
quadrants of the cross. For convenience, two notations V Node and H Node refer
to the vertical neighbor and the horizontal one of Node respectively.

The bottom-up Algorithm 1 can recursively create a continuous region from
leaf to root along the Quad-Tree by gradually merging neighbors and check
whether these candidate regions satisfy the pre-defined privacy profile. First,
for k-anonymity, the region’s request amount defines the anonymity degree.
Here, Node.N is the request amount in the region referred by Node. Second,
for I-diversity, the region’s area denoted by Area(Node) measures the diversity
degree. We employ the number of cells in the region Node to count Area(Node)
since all cells occupy the same area as the basic unit of the Quad-Tree partitioned
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Algorithm 1. SCR(k, [, t, Node)

1 if Area(Node) > MaxArea then /* Restrict oversize. */
2 L return CR «— &; /* Cloaking fails. */
3 Risk < P(A¢|Oioc = {Node}); Safety(Node) = 1 — Risk;
4 if Node.N >k A Area(Node) > I A Safty(Node) > t then
5 ‘ return CR — {Node};
6 else
7 (VNode, HNode) «— GetNeighbors(Node);
8 VN «— VNode.N + Node.N; HN < HNode.N + Node.N;
9 if (VN>kVHN >k)A((2*%Area(Node)) > 1) then
10 if (VN>kAHN>kANHN <VN)VVN < k then
11 | CR «— {HNode, Node};
12 else
13 L CR «— {V Node, Node};
14 Risk «— P(A¢|O1oc = CR); Safety(CR) = 1 — Risk;
15 if Safety(CR) >t then /* Check safety. */
16 ‘ return CR; /* Return one CR */
17 else /* Search its parent recursively. */
18 L CR «— SCR(k,l,t, Node.ParentN ode);
19 else /* Search its parent recursively. */
20 | CR — SCR(k,l,t, Node.ParentNode);

maps. Finally, for t-safety about location semantics, the function Sa fety(Node)
refers to 1 — Pr(A¢|Ojoc = Node).

In addition, the computation of P(A¢|Ojec) can be divided into two phases
for reducing its time cost since a region Oy,. are divided into a set of distinct
spatial cells and for A € {A;, Ap}, P(OpoclA) = > icp,,. P(I|A). First, the off-
line phase can calculate these prior beliefs P(I|A) for each basic cell | € V.
Second, Algorithm 1 can obtain P(A¢|Oj.) with linear complexity O(m) where
m is the number of cells in the region Oy, using the prepared prior beliefs from
the off-line phase. This way can help to achieve the high processing performance
on spatial cloaking and POI forwarding in the real-time LBS environment.

5 Experiments

We implement the proposed solution using JAVA and run it in the experiment
platform which is a laptop with a quad-core 2.4Ghz Intel i7 CPU and 16G
RAM. The experimental dataset from MNTG[5] holds trajectory data of about
1000 users who move along the real road networks of Beijing on 20 continuous
timestamps (from 0 to 19) . All raw locations lie in a rectangle region about
67km? and are indexed by the n-height full Quad-Tree structure [2] where
4" leafs divide the region into 4™ cells which refer to atomic regions and the
default height is 4.
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To build the adversary’s background knowledge, we extract the real POI
dataset from a popular electronic map web site ‘map.baidu.com’, including
about 8700 POI entries in this experimental region. Next, we explore 12 chosen
semantics labels which are s;=hospitals, ss=nurseries, ss=restaurant, s4=hotels,
ss=bank, ss=malls, s;=offices, ss=houses, sg=school, s;g=museums, s1;=parks
and sja=others. The default privacy profile (k, [, t) is (10, 2,0.9) and additionally
the default value of the total risk belief Pr(A;) is set to 0.05.

5.1 Evaluating Privacy Risks on Location Semantics
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Fig. 4. Risk Evaluation for Location Privacy

Experiments in Figure 4 explore the degree of the location privacy risks that
mobile users leak their current locations to untrusted LBS servers on partitioned
maps annotated by semantic information. Each location point refers to a POI
record labeled by a meaningful string according to public real maps and POI
databases, and therefore the leakage of location coordinates via a request leads
to the leakage of the corresponding meaningful labels.

Figure 4(a) displays a distribution of the belief Pr(A;|Oje = =) on 4* = 256
cells in the 4-height full Quad-Tree structure. Intuitively, each location-based
request involves a piece of risky semantic information. Generally, the majority
of these cells have low risks for the perspective of user privacy. e.g. Mobile users
visit in locations of public places like offices and malls. And there are some high-
sensitive cells which refers to restricted regions such as hospitals and military
areas. This distribution relies on two factors: First, the inherent semantic feature
of a POI database or a real map expresses as the belief Pr(Oj,c|s € V;); Second,
the adversary’s intention refers to Pr(s € V| A,).

Figure 4(b) shows the curves of average risk by adjusting the prior belief
P(A;). Under the distinct values of P(A;) € [0, 1], we count up the mathemati-
cal expectation (Average Risk) of Pr(A¢|Ojoc = x) for all cells. Three curves are
under different Quad-Tree partitioning [2] configurations whose heights are 4, 5
and 6 respectively. More accurate location information (i.e. more finer gran-
ularity and higher Quad-Tree) leads to more privacy leakages and a higher
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privacy risk level. There is a positive correlation between the risk at a cell
Pr(A¢|Ojpe = x) and the prior belief P(A;) which refers to the estimated total
risk. Specially, when P(A;) approximates 1, the privacy disclose event on any
location is inevitable with the probability that is close to 1.

Figure 4(c) demonstrates the distribution of these 12 semantics labels over
the POI dataset. The majority of POI entries have low risks for user privacy and
by contrast POI entries with two high risk semantics labels, s;=hospitals and
so=Xkids, take over 0.32% and 0.18% respectively. Clearly, high risky POI entries
are sparse in a real-world maps. As a result, (k,[,¢)-SCR can be constructed
with an accepted success ratio to satisfy its custom privacy conditions.

5.2 Cloaking Published Locations
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Fig. 5. Performance of Location Anonymization

By comparing existing location cloaking methods, experiments in Figure 5
demonstrates that the proposed location cloaking method is feasible and prac-
tical. First, the label ‘Plain’ means the straightway method that the location
cloaking server is only a simple proxy to forward requests from mobile clients to
LBS servers by replacing an exact location with a spatial cell. Next, the label
‘k-LA’ is the popular location k-anonymity method (NewCasper[2]) which gen-
eralizes an extended rectangular region under the k-anonymity metric. Finally,
the label ‘SCR’ represents our solution that can guard against the Location
Semantics Attack.

Figure 5(a) compares complexity on time and communication. The straight-
way method ‘Plain’ has the lowest cost on both execution time and downloaded
data amount. And SCR possesses slightly more costs for controlling privacy
risks under location semantics than location k-anonymity. Thus additional costs
of SCR are still affordable.

As shown in Figure 5(b), the proposed method can control privacy risks on
location semantics by checking Pr(A:|Oj,.) of all cloaking regions. The straight-
way method labeled by ‘Plain’ has high risks on location semantics disclosure.
Next, location k-anonymity and SCR hold similar performance of privacy preser-
vation but SCR builds safer cloaking regions than other two methods. On two
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SCR curves of t=0.9 and t=0.95, for a higher safety threshold ¢, this method
reduces privacy risks by generalizing exact locations into larger regions.

Figure 5(c) shows effects of privacy profiles by comparing success ratios of
building SCRs. For specific values of the total risk belief P(A;) denoted by
R=0.05,R=0.1,R=0.2, and R=0.5, the ratios drop significantly after horizontal
lines which refer to 100% cloaking success, when the required safety thresholds
t increasing gradually. As a result, visiting high-risk LBSs especially, we have to
trade off the required safety and the cloaking success ratio.

6 Related Works

When publishing a dataset where each object holds generally one identifier and
multiple attributes, the adversary can re-identify objects because of the pos-
sible uniqueness of attribute values in spite of removing identifiers. For this,
k-anonymity([3][6] ensures that at least k objects are indistinguishable in an
anonymity set. [-Diversity[4] requires that the number of different attributes
which each object in an anonymity set associates with is more than at [.
t-Closeness [7] guarantees that an anonymity set is statistically similar under
the probability metric such as Earth-Mover-Distance.

Previous techniques of location privacy protection employed two basic ideas,
cryptography and anonymization. Wernke et al.[8] survey research works on
attacking and protecting location privacy. Cryptography-based methods[9][10]
can give strong privacy assurance but need extremely intensive resources. By
comparison, location anonymization (e.g. spatial cloaking) can achieve enough
privacy assurance under appropriate resources.

Location k-anonymity[11] from Gruteser et al. generalizes an exact location
into a region which holds at least k requests, extended from k-anonymity. Plenty
of solutions such as CliqueCloak[12], HilbertCloak[13] and NewCasper[2] have
adopted location k-anonymity in the last decade. Following ¢-closeness[7], Lee
et al. introduce a location anonymization method which constructs 6-Secure
Cloaking Areal[l] after extracting semantics information from staying duration.
Shokri et al. introduced a Markov Chain based approach[14] to measure location
privacy.

Additionally, location semantics mining is a hot topic in mobile Internet.
Parent et al.[15] review various methods which model and mine semantics infor-
mation on trajectory data.

7 Conclusion

This paper investigated privacy protection against Location Semantics Attacks.
To solve this problematic issue, we introduce the Location Semantics Risk Graph
model to evaluate privacy risks about the dependence of location coordinates and
sensitive semantics information, using Bayesian inference. And next we proposed
a spatial cloaking algorithm under this model. Finally, experiments demonstrate
that this solution can achieve a better privacy guarantee than existing schemes.
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