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Abstract—The evolution of smartphones together with increas- believed that introducing intelligence and situationaheamess
ing computational power have empowered developers to creat into recognition process of human-centric event patteonsoc
innovative context-aware applications for recognizing uer related give a better understanding of human behaviors, and it also

social and cognitive activities in any situation and at anyadcation. d ai h f tivel isti individuals t
The existence and awareness of the context provides the capa could give a chance Tor proactively assisting individuas

bility of being conscious of physical environments or situsions €nhance the quality of lives [1], [2].

around mobile device users. This allows network services to  Ubiquitous sensing was firstly envisioned by Weiser [3] as
respond proactively and intelligently based on such awaress. in providing the right information to the right person at the
The key idea behind context-aware applications is to encoage right time through an effective kind of technology via pogi

users to collect, analyze and share local sensory knowledge environment. vet making the relevant comouting elemends an
the purpose for a large scale community use by creating a smar Vi Y Ing v puting

network. The desired network is Capab]e of making autonomos inter-communication invisible to the user. Then, the terim o
logical decisions to actuate environmental objects, and sb assist context-awareness firstly used in [4] where the ability of a
individuals. However, many open challenges remain, whichra  mobile user’s applications to discover and react to chaimges

mostly arisen due to the middleware services provided in mate e anvironment they are situated in. Also, the definition of

devices have limited resources in terms of power, memory and context or context-awarene ere simplified and aenedhli
bandwidth. Thus, it becomes critically important to study how the X xt-aw, SS were simpim g Iz

drawbacks can be elaborated and resolved, and at the same tem first by [5], and later by [6] as in any information that can
better understand the opportunities for the research commuity be used to characterize the situation of an entity, where an
to contribute FO the context-awaren(_ass. To this end, this pgzer entity can be a person, place, or physical or computational
surveys the literature over the period of 1991-2014 from the object. In the latter, the complexity of context-awarenesse

emerging concepts to applications of context-awareness mobile . g L
platforms by providing up-to-date research and future reserch linked with individual user activities by [7], and also were

directions. Moreover, it points out the challenges faced inthis Modeled in [8]. In addition, use of context-awareness withi

regard and enlighten them by proposing possible solutions. mobile sensing, and within the concept of smart spaces was
Index Terms—Context-Awareness, Middleware, Mobile Sens- introduced in [9]-[11] respectively. Earlier attempts ofhtext-
ing aware applications were also presented in [12]. Since then,
envisioned interaction between smart devices and users has
. INTRODUCTION become possible today and inevitable for future technekgi

1erefore, the ubiquitous sensing has led to increase the
emand for novel applications and services to provide any
interested context at anytime and from anywhere.

he integration of sensing and advanced computing capa-
@yity in network enabled mobile devices will produce setyso

The continual development of sensor designs and deplo
ment together with ever-increasing computing technobgie
mobile device based embedded systems platforms have
abled to pervasively recognize the individual and sociatext

that device users touch with. Hence, the inference of da i q h i i local : id
occurring human-centric actions, activities and intecas by ata and exchange intormation among local or system-wide

a set of mobile device based sensors has drawn much imeﬁgpurces by feeding the Internet at a social scale [13], [14

in the research area of ubiquitous sensing commnityis IS situation will emerge the_ concept of the. Internet-of-
a g A Things (loT, [15], [16]) to shift into a collection of au-
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knowledge of most recent event patterns. In other words, tkeowledge that is not solely based on a human activity, but
understanding of human activity is based on the discoveaso based on surrounding environment. Hence, partigipato
of an activity pattern and accurate recognition of the dgtiv sensing requires the active participation of each user into
itself. Therefore, researchers have focused on implemgntcollecting of sensory data in order to result in a largeecal
computationally pervasive systems in order to create lkeghl phenomena, which cannot be easily measured by a single
conceptual models to infer activities, and low-level sepsoparticipation. For example, delivering an intelligent ffia
models to extract context from unknown activity patterns. Acongestion report in case where many users provide thesdspe
this point, the creation of a generic model to represent taed location information while being in a transportation is
true nature of human behavior stands as a major challengegreat example of implementation in participatory sensing
In this aspect, the construction of a framework by distin€n the other hand, unlike participatory sensing, oppostimi
middleware technologies have been put forward to providensing accepts sensory data collection in a fully autosmo
the required model for recognition of daily occurring humaway without active user interaction. This type of applioas
activities via observations acquired by various sensoik-burun in background mode without any user intervention in
in smartphones. These activities are inferred as outcofmas @ctual sensing, such as continuous location notification or
wide range of sensory applications utilized in such divérse ambient sound recognition. In summary, the generic idedl of a
plementation areas ranging from environmental survaitan possible sensing applications is to orchestrate the istrga
assisting technologies for medical diagnosis/treatmeot$he capabilities of mobile devices (e.g., computing, commanic
creation of smart spaces for individual behavior modelingion and networking, and sensing) through a running softwar
The key challenges that are faced in this concept is to infen an existing hardware platform at a right time and place in
relevant activities in such a system that takes raw sensal reorder to enable services to infer meaningful information fo
ings initially and processes them until obtaining a sentantihe benefit of individual and community use.
outcome under some constrictions. These constrictionslynos Besides the exciting development of context-aware applica
stem from the difficulty of shaping exact topological sturet  tions, middleware systems/services in smart devices, Wene
and also stem from modeling uncertainties in the observedly have very limited resources in terms of power, memory
data due to saving the energy wasted during physical senanod bandwidth as compared to the capabilities of PCs and
operations and process of sensory data. servers. Especially, energy efficiency is a major restmcti
Today’s mobile devices have been becoming increasingipposed on context-aware application developments simee t
sophisticated, and the latest versions are now equippdd wektraction and inference of user relevant sensory dataresgu
a rich set of powerful small size built-in sensors such as a@entinuous sensor operations. This requirement unfotéiyna
celerometers, ambient light sensors, GRBagnetic compass, shortens the device battery lifetime due to high energy con-
and Wi-FP. These sensors can measure various informatisdmption required by both sensor and processor operations.
belonging to physical world surrounding the mobile devicé)ne solution is to take precautions on sensory operations
thereby, ubiquitously use of mobile devices in the sociewhile putting them into more sleeping mode to reduce power
creates a new exciting research area for sensory data mindegsumption. However, it turns into an accuracy problen tha
context-aware applications. Specifically, smartphonesldco middleware services may produce while providing informati
provide a large number of applications within the define® applications. This situation triggers the research ctayi
research area. Since human beings are involved in a véRding optimal solutions to balance a trade-off existing be
variety of activities within very diverse contexts alonglwihe tween power consumption and sensory data accuracy. Hence,
usage of mobile phones are getting more integrated into hunthe key goal lies under discovering the best charactesistic
lives throughout the day, a specific context, whose relevdhe target complex spatial phenomenon being sensed, rgeetin
data is acquired through built-in sensors can be extracyed the demands of application, and satisfying the constraints
a smartphone application. Eventually, a desired inforomati Sensor usage.
within the context is inferred by successful computing ieapl  Towards this end, this paper surveys the literature over the
mentations. period of 1991-2014 from the emerging concepts to applica-
Context-aware sensing applications can be classified unéi@ps of context-awareness in mobile platforms by prowdin
two different categoriespersonal/human-centriand urban Up-to-date research and future research directions. Tarere
inc|uding participatory/community/group or opportun@t In Some successful surveys in the literature that take the phe-
personal sensing applications, device user is the point ¥mena of context-awareness in different perspectivess&’h
interest. For instance, monitoring and recognition of us¥orks mostly consider the high-level (abstract) conteixtua
related posture and movement patterns for personal fitn&¥@rmation as a basis, and builds up the survey around it
log or for health care reasons is an active research tofi introducing modeling schemes, types of applications, an
in this field. On the other hand, participatory sensing selidheir relations to different research areas. Accordinffly]
on multiple deployment of mobile devices to interactivelpurveys sensor utilization in mobile sensing, and types of

and intentionally share, gather and analyze of each lo&&ntext-aware application based on their sensing scales, s
as within individual or large groups. It also gives inforinat

2Their utilizations as sensors are described in Sectiol l1l- about mobile phone sensing architecture, and use of it as an

30pportunistic sensing slightly differs from participat@ensing due to the S€NSING 'nStrur_nentat'on- Flnally, '_t d|SCUSS_eS challer_fg_e_ed
autonomous sensory data collection. in system architecture while sensing, learning and distiriig
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HIGH-LEVEL CONTEXT

high-level context. [18] presents a detailed explanatiocon-
text, context types along with sensor types. Then, it comtin Context-Aware Application
with context modeling. Also, it covers architectural desig

I
principles and models to implgment context-aware SyStems  cotext peasoning/ ﬁ: b
and conceptual framework design for context processirfyj. [1 Inference g Context Mogeling
looks in depth at the types and modeling of context. It also T v
browses applications and architectural models that adapt t C°"'Cele"];€'¢_’e"'"9/ Context-Aware Middleware

. . . . lassification
changing context. [20] examines a category of application T I
implemented for crowdsensing by explaining their unique ; g!
ot . . Context Aggregation/ £ s b

characteristics and challenges faced in design proce&}. [2 Acquisition g (sory Dita
discusses requirements set by context modeling and rewsoni v
techniques. Also, it shows a variety of context information Physical World

types with a comparison analysis, and high-level context

abstractions in the existence of uncertainty. [22] hightig

context-awareness from an loT perspective, and preseats fiig. 1: The architecture of context-awareness system.

background of I0T paradigm, context-aware essentials and

their relations to sensor networks. The work also pointsioet

principles of context-aware management design by surgeyif¢search efforts, and identifying the open challengesisi a

a broad range of techniques, methods, models, function&aluates future research trends and paves the way for the

ties, and applications related to abstract layer basedekpnt researchers to see emerging concepts in the defined research

awareness and loT. [23], [24] survey context-awareness fjiea. Finally, the content and the flow of the paper always

recommender systems to build such intelligent systems tiiaiend to seek for motivation, identification of drawbacks

can better predict and anticipate the needs of users, and &t road-map to possible solutions of the covered topics,

more efficiently in response to their behaviors. The surveg¥entually summarize and present findings by projecting the

explore contexts, context types and context modeling in tiiéure.

recommender systems, and defines future challenges to b&he remainder of this paper is organized as follows. Sec-

faced in this research area. [25] takes context-awaremesdion Il introduces the definition of context, context presen

a scope of mobile and wireless networking. It surveys tradition and stages to context inference problem along with

tional context-aware computing areas, and makes a coonecgontext modeling. This section also exposes the conteataw

between them with mobile and wireless networking notiongliddleware and framework designs, and their key properties

It defines the functionality of context-awareness in thisnte Section Il summarizes significant context-aware applcat

and puts them in a precise taxonomy scheme. domains, and categorizes them under the interested context
This paper differs from other studies since it Survey@GCtiOI"l VIII puts emphasis on the challenges that are fated i

context-awareness in mobile platforms by pointing out arfi@ntext-awareness and system integration around thiangse

proposing solutions to the challenges in terms of recogmiti topic, and evaluates possible solutions. Finally, conctugs

process of both low and high level context. More specifigallgiven in Section V.

the paper aims at enlightening possible solutions to erdhanc

the existing tradeoffs in mobile sensing, especially betwac- II. CONTEXT-AWARENESSESSENTIALS

curacy and power consumption, while context is being iB®I1T 1,4 context-aware systems aim at using a mobile device

under the intrinsic constraints of mobile devices and adour@e_g_ a hand-held smartphone or attached/wearable device
the emerging concepts in context-aware middleware fram@gegrated with smart sensors in order to monitor and measur
work. In addition, the paper provides an overview of CoMexf jiiqual or environmental phenomenas in the purposeder a
awareness in ubiquitous/mobile sensing, and a comprei®ngissing or evaluating human lives to achieve a desirabléitgua
introduction to the definition, representation and infeeeof living standards. Fig. 1 shows the architecture of contex
context. However, unlike other surveys, this paper does nglare system including extraction of low-level contextnfro
extensively cover basic definitions and essentials in etnte i nown heterogeneous physical world information acatire

awareness. Also, this paperknotdonly mtznds to sun;_mande sensors, and then creation of high-level conceptual fsode
ltemize some important works done under a specific reseajgliaq on such context inferences. In the following, we will

branch of context-awareness, but also it gives a detailedt Vi q,iqe details of key components and modeling processes of
and current trends in this branch by evaluating works affs system.

investigating further evolvement. In this sense, it categs

and gives an inside-out look into context-aware applicegtio )

depending on the interested context under the limitation 6f Contextual Information

mobile sensing, and then identifies opportunities in theeoed  In the real world, being aware of context and communicat-
research areas. Moreover, the paper exposes the key eemiaigtis a key part of human interaction. A context is defined as
that modern context-aware middleware and framework desiga data source which can be sensed and used to characterize
must have, and their connections to mobile computing. Apdlte situation of an entityin other words, the context describes
from clearly pointing out the similarities and differenadsall a physical phenomenon in a real world environment. Hence,

LOW-LEVEL CONTEXT
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Situational
Relationships

semantic meta-sensor/meta-data/meta-context implieved |

(Presumed) of abstraction [27]. Unlike the sensors, the context can be
V Q=S
Context Context Context
« Device contextincluding net connectivity, communica-
fovtevel Context Physical [ Virtual || Logical tion cost and resources, etc
(Sensed) Sensors [l Sensors [l Sensors ! )

o User context including profile, geographic position,
neighbors, and social situation, etc.

« Physical contextincluding temperature, noise level, light

intensity, traffic conditions, etc.

Temporal contextincluding day, week, month, season,

year, etc.

Fig. 2: The hierarchical definition of context represeotati

the context can be described in a different way according to®
how equipped sensors are being used. The context can also be
defined as a characterization of a specific entity situatimh s

as user profile, user surrounding, user s_omal mtera_cmcm;er C. Context Modeling
activity, etc. For instance, we can define the entity by user,
and the context by location information. In this sense, exint Being associated with variant context sources, accurate
becomes a much richer and more powerful concept, partigepresentation of context with a high certainty under défe

larly for mobile users by making sensor network servicesemoeonditions of measuring range and sampling methods is very
personalized, and more useful. Therefore, context-aveassenimportant to assure the quality of contextual informatiom.
refers to the capability of an application being aware of ithis sense, context modeling is required to reason andoirger
physical environment or situation, and responding preakti dynamic context representations at a high level abstradtio
and intelligently based on such awareness [26]. an unobtrusive way. A good context modeling aims at reducing
complexity of applications for robustness and usabilityd a
improving their adaptability and maintainability for futu
development. To be able to do that, it has to consider hetero-

The property of context-awareness can be applied ingeneity (i.e., imperfectionist dynamic nature), compditgh
mobile device based applications and systems in order (Ie., coexistence of similar context from different sas};
reduce human intervention by enabling autonomous praactind mobility (i.e., asynchronous, timeless data captufe) o
assistant services. Many context-aware applicationsigeoviarge variety of context sources at any level of abstraction
this assistance by using logical context alone which isinbth also considers relationships and dependencies among eman
through data mining techniques (e.g., stored information éntities such as accuracy in context provisioning versus re
profiles, databases or social websites). However, with thfaining battery power. In this regard, many context modglin
proliferation of wireless sensor-actuator networks, edE schemes have been proposed [21], [27]-[30]. Important ones
physical factors (e.g., temperature, light, location )etre are compared in Table |, and listed in the followings:
added into context-aware systems.

Fig. 2 shows the hierarchical definition of context repre-
sentation. As can be seen, sensors are accepted as low-level
context that is directly referred to a raw data. A sensor in
context-aware applications is described not only a physica
device, but also a data source that could be useful for
context representation. The collected contextual infaiona
may range in a wide sense in terms of specification and

representation of a phenomenon in real wor!d_ onio an entity domains to store temporary data and in-out data transfer.
in cyber world. Hence, sensors can be classified as follows: However, it is not feasible to make context reasoning

« Physical sensoreefer sensors that can capture any physi- iy presence of multi-markup schemes due to the lack of
cal world belonging data (e.g., GPS: location, accelerom- interoperability among different schemes.
eter: activity etc.). « Graphical models, such as Unified Role Modeling (UML)

« Virtual sensorsmply a source from software applications [32] and Object Role Modeling (ORM) [33], make con-
and/or services, and a semantic data obtained through nections among context attributes and values based on
cognitive inference (e.g., location info by manually en-  relationships. Especially, this model is widely used withi
tered place pinpoint through social network services or  database managements [34] that allow holding a massive
computation power of devices etc.). amount of data, and perform quick data retrieval. Also,

» Logical sensorglefine combination of physical and vir-  complex context relations can be managed easily through
tual sensors with additional information obtained through  database queries.
various sources by user interactions (e.g., databases, |OQ Object_oriented mode's [35] offer object_oriented tech_
files etc.). niques to be used in context modeling. Constructed object

According to levels of abstractions, high-level contexrth classes encapsulate or represent different context types,

is inferred from low-level contexts. Hence, a definition of  thereby reaching the context or processing its attributes

B. Context Representation

o Key-value models use a simplest matching algorithm
that defines a list of attributes and their content/values
describing specific context.

o Mark-up scheme based context models use a hierarchical
data structure, mostly formed in XML [31], that consists
of markup tags along with their attributes and contents.
Therefore, it allows efficient data retrieval. Also, this
type of schema can be used among different application
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5
TABLE I: Important context modeling schemes
Context Modeling | Pros Cons
- simple text string matching technique - not scalable, better in less complexity
Kev Value - easily manageable with small data size - not applicable in hierarchical structure
Y - mostly application bounded - lack of enabling efficient context retrieval and validation
- efficient data retrieval - no design criteria
- applicable in hierarchical structure - complex context reasoning in multi-schemes
Mark-up Scheme | - provides partial validation - lack of interoperability with similar models
- lack of richness and incompleteness
- rich in context collection - once designed, difficult to change later
Graphical - allows relationship modeling - no specific design structure
p - better in complex data management - lack of validation and interoperability with similar model
- allows more complex relationships and composition - no specific design structure, nontrivial to update and agém
- easily designed, and run-time operable - difficult data retrieval
Object Oriented - applicable through programming languages - mostly application bounded
- hidden to other apps due to data encapsulation
- designed for checking and resolving context inconsistency - lack of standardization
- easily designed, and run-time operable - provides context reasoning and validation at a certainl leve
Logic based - co-operable with other models - mostly application bounded
- high degree of formality - lack of richness and incompleteness
- allows knowledge share, integration and reuse - complex and computational expensive data retrieval
Ontoloay based - provides well defined, rich, quality and re-expendable rabstmodel and explicit relationg - lack of handling heterogeneity, ambiguous and qualityteelassues
9y - provides unique identification, redundancy, uncertairapdiing and partial validation

are regulated with designed object-oriented class hier- 0SI Reference Model Context-Aware Middleware
archies and relationships. This model also provides re-
usability, inheritance, and polymorphism features into
context or inter-context relationships. However, the niode
is suitable to be used for a dedicated application that
employs its own context reasoning structure.

« Logic based models include formality based on facts, ex-
pressions and rules in order to set constraints, limitation Transport
policies or preferences while defining context reasoning.
It is powerful to manage richness in context definitions Network
by allowing to add, remove, or update new set of rules.
Therefore, it could cooperate with other context modeling
techniques to enhance context reasoning efficiency.

« Ontology based modeling [36]-[38] uses semantic tech-
nologies to represent context related attributes and rela-
tionships. Itis very widely used and promising instrumerttiq 3. Comparison of ISO/OSI reference model and context-
thanks to its highly formal expressiveness and conceptyzyare middieware.
alization. Therefore, there are many development tools
and engines, such as Resource Description Languange
(RDF) [39] and Web Ontology Language (OWL) [40], _

[41], available to apply ontology reasoning technique®: Context-Aware Middleware

This model aims at providing simple, flexible, extensible, 1g growing deployment of sensor technologies in smart de-
generic and explicitly well defined design objectiveS;ices and innumerable software applications utilizingsses
However, with growing data size, context reasoning COUld sense the surrounding physical environment in orderfes of
be computationally expensive. a wide range of user-specific services have led the creafion o
alayeredsystem architecture (i.e., context-aware middleware).
All context modeling approaches ultimately intends to prdn this way, the desired architecture can response effdygtiv
vide solutions in context reasoning by seeking for capturirfor optimal sensor utilization, large sensory data actjoiss
a variety of context types along with their relationshipgs well as meeting ever-increasing application requiréspen
dependencies, timeliness, and quality of content. They aleveraging the pervasive context-processing softwarariies,
intends to support accurate reasoning, and clear uncgrtaiand considering mobile device resource constraints. Dtleeto
on higher-level context abstractions. Therefore, therghini ubiquity of these computing devices in a dynamic environimen
not be a single context modeling technique to be used inwdere the sensor network topologies actively change, itlyie
standalone fashion. applications to behave opportunistically and adaptiveithw
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Physical - Edge
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Physical
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Fig. 4: A context-aware middleware is capable of wrappintalgzing and delivering the physical world information tret
application services in a transparent way.

no initial assumptions in response to the availability afedse same host without any conflict [43], [44].

resources in physical world, and also to scalability, madty,  Fig. 4 also depicts the core components within the context-
extensibility and interoperability of heterogeneous ptels aware middleware design. Context Manager is responsible
hardwares [42]. for collecting, processing and maintaining low-level @it

As shown in Fig. 3, within the 1ISO/OSI Reference Modefnformation (i.e., physical context) acquired through teom
a conventional middleware takes place of the Session apRHICeS. Basically, it converts low-level information tbigh-
Presentation Layers by providing a higher level of absiwact level event (i.e., sensed context), handles context dissgion
built over the network operating systems (OS), Offeringtfauand inconsistency detection, and notifies the adaption gena
tolerant resource sharing, and masking out the problems9{the high-level event. Adaptation Manager queries, pgees
facilitate heterogeneity, stability and efficiency of distted and regulates all contextual information/objects (i.efeired
systems. On the other hand, the context-aware middlew&RNtext) actively being used by each application, and also a
is defined as an abstract layer between OS and up_runnﬁﬁ@atically receives a context change in case where a éifter
applications. It aims at dealing with the heterogeneity gontextis observed due to the heterogeneity of contextssur
physical world through edge technology, by adding mof® addition, it filters unnecessary information to have an
specialized mechanisms and services than an OS can provitidimal and effective result based on current context tuget
It is capable of wrapping (i.e., controlling physical dessc with inclination or preference of user activity. Applicari
and interacting with them to receive data), analyzing arf@ntroller has the highest-level context (i.e., presuntedext)
delivering the physical world information (e.g., througmsor obtained through inter-working with the adaptation mamage
networks, embedded systems, RFID or NFC tags, etc.) ligProcesses the final context and sends attribute infoomati
the application services in a transparent way, as shown RAck to the context manager. Most importantly, the appbeat
Fig. 4. This degree of transparency separates the apphnaﬁ:ontroller does not have to interact with context sources,
layer from the internal middleware operations and from tr&d even it does not know what context coming from which
detailed implementations of lower layers directly. In egse CONtext sources at any time.
the middleware creates a shielded interface by both enhgnci It is also worth noting that semantic metadata plays an
the level of abstraction support needed by the applicatind, importantrole in context-aware middleware, since it is i
intending to hide lower layer operations between the playsict a high level of abstraction to represent contexts astsireic
layer (i.e., hardware and communications) at the bottom aftid meaning of entities, and also to present context-celate
the application layer at the top. Furthermore, it allows th&daptation strategies, which enable the middleware tovgeha
computational burden required for context management @gnamically with a minimal human intervention. Having se-
shift from the application to the middleware by letting thénantic metadata allows unambiguously specification of con-
developers only deal with implementation logic, and easigxt models and knowledge share among entities without loss
control the created entities (i.e., characterized coptexton- 0f meaning. Thanks to its interoperability and opennesssa
text management. In this regard, robust optimization inyna®gllows to infer some other complex knowledge at the upper
system constraints (e.g., relative computational costcisted layers in presence of variant semantic metadata. However,
with entity relevant operations, limited battery powestffi- the complexity of context resources in heterogeneous palysi
cient information storage etc.) can be achieved. Moredker, world, and also interactions among diverse context ressurc
middleware will take the responsibility of all contextagéd make it difficult to describe the relevant metadata expicit
entity management, and provide a complete global access int Other properties supported by the context-aware middiewar
common resources needed by all applications residing on thelude:
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« It either runsstandalonefor managing entire physical
environments or accept the existence of an infrastructure
which can deliver required services. This differentiation
is caused by heterogeneous sensing environment.

It can have areflectiveproperty that represents the ob-
tained entities through context as semantietadata The .
metadata may belong to application, middleware itself,
a context, or interconnected contexts (i@mposition.

Note that a context can differ (e.g., asynchronously
obtainable over different sensors), and inter-operath wit
other contexts. This reflection property allows the mid-
dleware to monitor its computation and detects a possiblee
change in the semantic world, allowing the middleware
model itself self-represented. For example, manipulation
of its behavior may be changed. Hence, any change
occurred at the meta-level can affect the underlying base
level, or vice versa.

Adaptationis an important design merit that empowers
users tecustomizesystems according to individual prefer-
ences. This adaptation is defined by an autonomous pro-
cess triggered by a set of requirements to improve quality
of service (QoS) at the application layer. It intends to
sense the physical world, reason the obtained context, and
react dynamically towards the changing context. It also
supports proactive adaptations that describe the capabili
to envision future application requirements caused by the
context change, and to adjust the functionality accord- e
ingly to prevent/minimize direct application interaction
with neither interfering nor modifying the application
logic.

It may constitute entities from physical/virtual conteat f

all types of applications, or it can provide an application
specific information delivery (i.e., service provider). .
It must run smoothly with the underlying OS. Since
mobile applications run on a resource limited devices
with low memory size, slow CPU frequency, and low
power supply, light-weight middleware systems need to
be designed.

mobile systems. It is also adaptive to dynamic environ-
ment changes. The tasks in context providing services
are prioritized and resolved depending on importance
ruled by applications, policies, and configurations under
different environmental and user conditions.

Gaia [48] is a distributed probabilistic based context-
aware middleware that coordinates ontology based soft-
ware entities and heterogeneous physical networking
devices. It provides context management, detection of
events, workload partitioning event handling, and virtual
context file management.

SOCAM [49] is a service oriented ontology based
context-aware middleware. It supports semantic represen-
tation and reasoning of context. It also divides context
into upper and lower level ontologies such as interpreted
context through physical world, and memory and battery
status respectively. It allows adaptability by listening,
detecting and invocating events for application services.
COSMOS [50] is a context-aware middleware that ac-
cepts contextual information as a context node, and orga-
nized many context nodes in a hierarchical structure. Each
context node runs independently while collecting, pro-
cessing and reasoning context. The middleware follows
this distributed architectural model to create scabiligy b
supporting many heterogeneous contextual sources, and
their relations to each other.

CoBrA [51] is a centralized middleware architecture that
connects various context brokers. Each context broker
runs independently, but the middleware creates a knowl-
edgeable context network share. The middleware also
addresses resource limitation and privacy issues in mobile
computing.

Hydra [52] is an IoT based middleware design to deliver
solutions to wireless devices and sensor used in ambient
awareness. It contains powerful reasoning toward various
context sources including physical device based, semantic
and abstract layer based. Therefore, it uses hybrid mod-
eling scheme to represent low level context by object
oriented modeling with key based approach, and high

A middleware for context-awareness supports the applica-
tion development task by enhancing the level of abstraction
and providing services in dealing with context. By this ngan
there are many middleware studies in the literature. The
notable ones are listed in the followings, and compared in
Table 1.

level context by ontologies.

o« CASS [55] is a centralized middleware for context-
aware mobile applications. Mobile clients connect to the
middleware service through wireless network, and the
middleware listens sensors on mobile clients, and gathers

o Context Toolkit [45] is one of the earliest efforts in
this domain. It delivers a combination of features and
abstractions to capture and manage context source, and
also to aggregate and share them among applications. e
Aura [46] is an architectural ubiquitous sensing frame-
work. It provides context, application and task man-
agements. Tasks are abstract representations of a col-
lection of services. The framework detects environment
changes, and migrates task operations into available sers
vice providers in the new environment. It is capable of
adapting in the presence of dynamic resource variability,
thereby it supports continuity of service for applications

o« CARISMA [47] provides a reflective middleware for

information.

COSAR [53] is a context sharing architecture for mo-

bile network services. It reasons human activity based
context-awareness.

QO0SDREAM [56] is a component based middleware
framework for the construction and management of
context-aware multimedia applications. It also provides
handling of location data derived from a variety of

location-sensing technologies.

Ubiware [54] is a self-managed middleware platform that
utilizes different context agents in decentralized manner
to manage mobility and scalability, enable autonomous
context discovery, and configure complex functionalities
such as composition and interoperability of relations
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TABLE Il: Notable context-aware middleware studies

Reference Middleware Architecture M Context Context | Context Reflection Adaptation Secu_rlty and
anagement Source Level Privacy
[45] Context Toolkit | Centralized Key-value Any type High - Application based v
[46] Aura Distributed Mark-up Any type High v Middleware based -
[47] CARISMA Distributed Mark-up Mobile High v Middleware based -
[48] Gaia Distributed Logic and Ontology Any type High - Application based v
[49] SOCAM Distributed Ontology Any type High - Application based v
[50] COSMOSs Distributed Object Oriented Physical High v Middleware based -
[51] CoBrA Component Ontology Any type High - Application based v
[52] Hydra Distributed Ontology and Object Physical High - Application based v
[53] COSAR Stand-Alone Ontology Mobile Low - Application based v
[54] Ubiware Stand-Alone Ontology Any type High v Middleware based v
[55] CASS Centralized | Logic and Object Oriented Mobile High - Application based v
[56] QoSDREAM Component | Logic and Object Oriented Mobile Low v Middleware based -
[57] TinyRest Centralized Mark-up Any type High - Application based -

among agents. Therefore, the middleware plans to crezm
. Window Extraction
a collaboration among heterogeneous sources throul
semantic communication services. _ _ Fig. 5: The processing stages of context inference.
o SALES [58] and CoMiHoc [59] are mobile environment

based middleware platforms that support context manage-
ment and situation reasoning through interconnection ghncept.
various mobile devices.
« TinyRest [57] and Feel@Home [60] create an 10T based
smart offices/homes by actuating wireless sensor n&- Context Inference

works through Internet connection. They act like a gate- As one of the most important properties of context-aware
way to access different types of sensors and actuatosgiddieware, context inference has drawn much interestén th
and fuse them to be able to support diverse applicatiegsearch area. The middleware provides basic functideslit
domains. such as sensory data acquisition, processing and context
Like noted in Table Il, the middleware design can accepecognition. The applied methodology may show differences
different architectural structures. Centralized arattites, i.e. in context modeling or reasoning. The context initially is
context server, offers a complete middleware design, and edlled “low-level (i.e., atomic) context” since all reqedt
lows applications to be developed on top of it. The architect operations are carried out directly from data obtained by
connects to sensors and devices to provide rich resourpdysical sensors. On the other hand, “high-level contextib-
and computational power. Communications among devicksned later through the combination of low-level and/aghi
are handled by queries on the context server. The drawbaekel contexts, which is called “composition”. Some mobile
for this type of middleware could stem from congestion dflassifier development tools such as “Kobe” [61],“WEKA”
received queries. Stand-alone, or self-contained, actite [62], and former toolkits “The Context Toolkit” [45] can dea
offers a direct access to sensors, but it does not allow gbntwith low-level context acquisition from raw sensory. They
sharing of devices, connection to external services, or amjer high-level semantic outcomes while exhibiting ettt
type of device collaboration. It is ideally designed for #ima utilization of available resources, and achieving an oatim
scale solutions. Distributed architecture creates a tubigal balance among energy, latency and accuracy tradeoffs5Fig.
topology of connected many devices running independengiiows the stages of context inference problem during the low
and also having capable of their own context manageméenel process.
services. It does not require the existence of a contexeserv Accordingly, sensory readings are collected by a sliding
Physical devices are connected through ad-hoc commumicativindow with a specific time interval and an overlap value.
for information sharing, but the architecture lacks of proFhe length of windowing is an important design merit. The
cessing computationally intensive resources. Comporasgd shorter windowing cannot seize the context properly, where
architecture partitions entire middleware solutions orew f the wider windowing would create a latency in detectionsl, an
major components that interact each others. There are ghsds additional workload in computations. Thus, obtainathd
some other design types available for middleware architect segments by optimal windowing would provide more relevant
such as node or client-server based. On the other handg¢privenformation for context classification. In addition, theeohap
issue arises when user related contexts are collected amsedvalue is important as well to detect any change in the context
shared autonomously. Therefore, many middleware designs t Preprocessing (e.g., context filtering or fusion) could be
to secure the context by making queries as in who contrapplied, if raw sensory data is too coarse-grained. It msy al
what information out of context. Basically, they introdube offer necessary modifications to correct deficiencies irtdtte
concept of context ownership to determine which applicatialue to the possible limitations on sensory operations,(e.g.
needs to be granted or to be denied to access on a spegifiwer concern).
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It is generally very challenging to analyze, build a classi-

TABLE IlI: Feature selections

fication model, and infer any context from raw sensory data

Feature Space Features

since it may consist of a large number of variant attributes,
irrelevant information and additive noise distortion. Téfere,
feature extraction is applied to exploit hidden informatio

the sensory data set, and remove direct effect of additive
noise distortion. It also enables separability in the cxinte

mean, standard deviation, variance,
magnitude, derivative, min-max, amplitude,
histogram, interquartile range, mean
absolute deviation, correlation between
axes, peak counting, rms, sign, and
kurtosis, zero-crossing rate

Time Domain

classification algorithm while extracting and analyzing th
spatial characteristics of sensory data in each window and

Fourier Transform (FT), Discrete Cosine|

Transform, entropy, centroid, maximum

frequency, FFT energy, FFT mean and
standard deviation

Frequency domain|

assisting in identification of different context classegeature
vector, as a representation of statistical charactesisticthe

autoregressive coefficients, wavelet

Others transforms

contextual data, is then constructed by using diverse kigna
processing primitives, ranging from time space-basedifeat
such as mean, standard deviation, correlation etc. to émau
spectrum-based features such as entropy, Fast Fouries-Tran "
form (FFT) coefficients, power density etc., and also to wetve
transforms. Table Il summarizes the elements of a feature’
vector in time and frequency domains. Time-domain feature
extraction is the most-popular one in many practical reaét
applications since sensory samplings are already obtamed
a time-series way. Whereas, the frequency-domain features
such as FFT coefficients require much computational power
to discriminate such feature like periodicity of signalsn O
the other hand, sensors such accelerometers generaterrando'
signals in their nature, therefore, using time-domain Ui
could be successful up to some limit since it is assumed that
signals are mostly deterministic in time-domain analysis t
make such a differentiation. As a result, it would be betber t
apply stochastic analysis in these cases in order to describ®
a suitable feature space. The purpose of the elements being
used in the construction of feature vectors is as follows:

o Meanrepresents DC component of a signal.

« Variance shows dynamics of a signal activity. For in-
stance, a low dynamic activity, or a stationary signal, will
have a low value of variance.

« Standard Deviatiorbasically shows the similar informa-
tion like variance does. It also notifies how far signal
samples are spread out from its mean value.

Mean Absolute Deviatiogives the averaged dispersion
of signal data with respect to its mean value.

Spectral Centroidis the balanced point of the spectral
power distribution of signal.

« Bandwidthis the range of frequencies that occupy signal

spectrum.

Normalized Phase Deviatiamotifies the phase deviations
of spectral frequency peaks, that are weighted by their
magnitude.

Derivativeclears DC offset of a signal, and shows inten-
sity of variations in signal data.

Histogramcaptures the density of a signal.

o Kurtosis gives the peakedness (width of peak) of the

density of a signal.

Discrete Cosine Transforis similar to FFT that enables
to have spectrum based analysis, but only using real
numbers.

« Autoregressive Coefficiendse used for filters to estimate

characteristics of a signal.

o Wavelet Transformis essential to time vs. frequency

analysis. It allows only changes in time extension in
correspondence to frequency analysis.

« Cepstral Coefficientgives information about the rate of

change in different spectrum bands.

The diverse characteristics of feature vectors enableve ha

« Energy or Root Mean Square (RM&)ptures the intensity training data classes (i.e., structural features) forsifies-

of a signal. tion

algorithms. Thus, a training data class is employed by

« Correlation among signaldelps distinguish a similar classifiers to build a classification model, which will all@am
activity occurring through a single dimension or multipléinknown feature vector to test for its membership to anysclas

dimensions.

dependency. A confusion matrix can be used to measure the

« Zero-Crossing Rateaptures the cyclic pattern of a signalperformance of a classifier. The process basically is tootest
It could be seen as an approximation of frequenc9f classifiers to map a feature vector into a training comniaixt
Thereby, it requires less computation in time domaifiata class, calledupervised classification
rather than having frequency value in spectrum analysis.In this regard, various classification algorithms can beluse
o Spectral Pealshows the dominant frequency of a signahs a classifier to implement a context recognition system.

activity.

Techniques include, but are not limited to, Naive Bayesian

« Spectral Entropyallows to specify whether or not energyapproaches and Decision Trees, pattern recognition tgabsi
is evenly distributed through different frequencies. Fauch ask-Gaussian Mixture Modelk-GMM), k-means,k-
stationary signals, the entropy increases; whereas, ndfearest Neighborsk(NN) search, Support Vector Machines
deterministic signals gives out less entropy by havingVMs), and Multi-layer Neural or Fuzzy Logic Networks. In

peaky look in spectrum.

addition, a statistical tool based classification such ailéfn

« Interquartile Ranges used where different signals have aMarkov Models (HMMs) or AutoRegressive (AR) Models is
similar mean value. It represents the dispersion of sigralso widely applied; and pattern recognition toolkits sash
data except for taking the extreme values into accountWEKA provides powerful solutions to the context clustering
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problem. Table IV classifies studies according to the agplie

classification methods. The followings are listed for wydel
used classification algorithms, and for their roles in crite
awareness:

« Naive Bayesian approach [63] assumes that each feature
is conditionally independent in a given class definition,
and estimates inter-class-conditional probability. Eaer
fore, a Naive Bayes classifier fuses individual classi- e
fication results to improve classification accuracy and
robustness. This method uses the probability information
residing in a training data in order to find the maximum
probability of given hypothesis using the Bayes rule. On
the other hand, Decision Trees [64] partition the feature
space according to a tree structure. These structures fit
the purpose of induction, and they are fast to be built for
context inference on mobile devices.

A multivariate-GaussiankGMM) [65] is a maximum
likelihood classifier based on mean vector and covariance
matrix estimated from each class. Any feature vector
(i.e. tested data set) can be drawn from this model to
check for which data class encapsulates a given specific
feature vector (i.e., training data setjystering problem

This is also called density problem, in which each class

10

according to majority vote in the network classifiers.
k-Means clustering algorithm [70] is associated with a
specific case of Gaussian mixture models that stems from
the limitation of covariance matrices such as them being
equal, diagonal or small for each user state claddeans
algorithm finds the members of each class from a given
data, where the classes are represented by their centers,
which also show updated/re-constructed mean values.

A statistical tool shows dependencies of states at discrete
time that are influenced directly by a state/states at prior
discrete times. Discrete time is used to specify peri-
odic sensor readings. Therefore, Hidden Markov Model
(HMM) [71] is a mostly applied statistical tool that mod-
els time-series with spatial and temporal variability. In
such statistical classifiers, sensor readings (i.e., eetda
user contexts through mobile device based sensors) are
seen as inputs. These readings undergo a series of sig-
nal processing operations, and eventually end up with
a classification algorithm in order to provide desirable
inferences. A required classification algorithm differs
in terms of explanation of extracted context through
a specific sensor. Outcomes of the algorithm are rep-
resented in a matrix whose elements show probability
weights for possible context selections. Classification

represents a cluster that is assigned as a Gaussian model algorithms produce observations (i.@isible statey of

with its mean approximately in the middle of the cluster,
and also with a standard deviation showing a measure of
how far the cluster spreads out.

k-Nearest Neighborsk(NN) search algorithm [66] as-
signs the nearest class set for the input feature vector
by defining a dissimilarity function that measures the
nearness between training data set and new data points in
the feature vector. The dissimilarity function is generall
defined by the squared Euclidean distance. However, the
Euclidean distance does not consider how the data is
spread out, and also may let the largest length scales
between data points dominate the dissimilarity function.
Therefore, the Mahalanobis distance is used where the
covariance matrix rescales all length of scales to make
them essentially equal.

Support Vector Machine (SVM) [67] differentiates two
classes from each other by using linear discrimination.
SVM denotes each class as a binary data by labelinge
them +1/-1. The objective is to create a hyperplane that
sets a rigid margin among data classes to achieve an
optimal linear distance separation. Unfortunately, SVM
cannot deal with multi-class classification directly. The
multi-class classification problem is usually solved by
decomposition of the problem into several two-class
problems.

Multi-layer Neural or Fuzzy Logic Networks [68],
[69] create a multi-dimensional Gaussian memberships.
They can also be decomposed into a number of one-
dimensional Gaussian membership functions to correlate
with the number of input feature data. Each class in
a multi-dimensional feature space represents a member
of the classification network. The output is obtained
by checking for Gaussian memberships of each input

HMM. Among observations, only one observation is
expected to provide the most likely differentiation in the
selection of final context inference. On the other hand,
desirable context inferences are definechaklen states

of HMM since they are not directly observable but only
reachable over visible states. Therefore, each obsernvatio
has cross probabilities to point any context inference.
These cross probabilities build an emission matrix that
basically defines decision probabilities of picking comtex
from available observations.

Auto-Regressive (AR) models [72] are used to show the
correlation among various feature parameters for each
context inference. AR models apply time series analysis
in which a multi-dimensional vector is transformed into
a number of coefficients to make the analysis much
easier. By doing that, AR captures the evolution and inter-
dependencies among time series.

The feature vector constructed by any classification al-
gorithm requires much computation. There is also no
necessity to compute such features that are irrelevant
or redundant to infer the context by providing insignif-
icant improvement in accuracy. Hence, it is desirable
to reduce the complexity and dimension of the feature
set by retaining the core probability distribution spanned
through feature vector spaces. In such cases, the dimen-
sion of feature vector can be reduced by using Principal
Component Analysis (PCA) [73] or Linear/Quadratic
Discriminant Analysis (LDA/QDA) [74], [75]. They help
obtain sufficient statistics to model the context and allow
lower computational complexity. Both methods seek for a
projection vector that transforms the original featurde in

a lower dimensional space by preserving the content of
separability. Unlike the PCA, the LDA performs well in
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TABLE IV: Classification algorithms computational complexity time requir€®(nL£D?), O(L?D),

Classification Algorithm References and O((L + ¢)*D) in a process of GMMk-NN, and LDA
Decision Tree (DT), Bayesian Network (BN), [76]-82] respectively where is the length of feature vectdR) is the
. Naive Bayes (NB) dimension,n is the number of iterations GMM algorithm,
Multilayer Neural Networks (MNN)/ Meta . .
Classifier Fusion (83]-{87] and c is the total number of user state classes. Increasing
__ Fuzzy Logic [84], [87], [88] sizes of collected data, exploited dimensions, and exdact
Gaussian Mixture Model (GMM) 89 features affect the performance of online computation by
k-means? learest Neighbouri NN) 2], [51 dding additional matrix multiplications in pattern reitipn
Hidden Markov Models (HMM) [78], [86), [92], [o3] | &dding additional ma ufiplications in pattern reod®
AutoRegressive Models (AR-M) 94], [95 algorithms.
Support Vector Machine (SVM) [82], [94], [96], [97] In this sense, the desired approach to implement the con-
LF’””C'/pa' %O”EPOB?”‘ Ar?a'yst'sA(PICA? 84], [97 text recognition process should provide the inference auith
Inear/Quadratic Discriminan nalysis . . .. . . e e
Q (LDA/QDA) Y [84], [85], [91] consideringa priori information, fixed thresholds, and initial
HAAR Wavelet Models 98 training data classes. It also needs to show robustness in
Classifier ensembles: Boosting and Bagging 99 terms of any change in orientation of the device, dynamic
Toolkits: WEKA [98], [100]-{102] profile in user context, and employ sufficient signal process

ing by causing non-redundant computational workload. &inc

supervised classifiers need extensive computations taatene

seeking a suitable projection for data discrimination bx] - .
. . S . _models for training contextual data classes, and testimg fo
applying an effective separation in data transform into

. unknown patterns, unsupervised learning is an active reisea
different classes.

. . area due to its nature of focusing on clustering or pattern
The output of classifiers sometimes cannot resolve Consﬂﬁécovery rather than classification. Therefore, the dédimi

tent discrimination in a time sequence of adjacent contexfset. o co-learning based semi- or un-supervised dlassi
|nfergnges. In. this case, a basic .s_rnoothmg technique t,alfgsactualize proactive context inferences without knowang
a majority voting scheme with a sliding window of a specifigy,i, cjass have been actively investigated [103]. Table V

history length of context inferences. Hence, any iNCOBBIS!  jajiers a comparison table among classification algosthm
(i.e., false truthfulness) can be eliminated. used in context-awareness

F. Online Context Processing

The context inference process may cause many drawbacks
and tradeoffs, with respect to context classification afgors. ~ 1he pervasive mobile computing, which captures and eval-
A statistical tool-based classification, mostly using Hidd uates sensory contextual information in order to infer user
Markov Models (HMMs) or using AutoRegressive (AR) modfelevant aCtiOnS/aCtiVitieS/behaViOrS, has been beq@mwe”
els, is one of the foremost methods to infer context obtain&gtablished research domain. Most studies rely on redognit
via wearable or built-in smart device sensors. Howeversaheof user activities (especially posture detection) and defim
studies mostly allow predefined user-manipulated system (9 common user behaviors by proposing and implementing
rameter settings, such as arbitrary formation of contextsr NuUmerous context modeling systems. In addition, reseesche
tion matrix in HMMs, or building filtering coefficients in ARs have been aware of the need for computational power while
which is not suitable for online processing due to incregsiffYing to infer sensory context accurately enough. However
computational workload while enlarging the data size. IfOst works provides some partial answers to the tradeoff
addition, the quantitative nature of statistical tools emfkt Detween context accuracy and battery power consumption.
difficult to discriminate morphological bounded pattermsia It is difficult to say that power saving methods have been
their interrelationships significantly taken at the low-level physical sensory ofierss.

Other methods rely on creating feature vectors that aigpPecially, there is not a generic framework that intends
at exploiting signal characteristics of sensory data arh tht0 apply adaptively changingdynamic sensor management
cluster these vectors according to specific data classeseTHstrategies. In contrast, most works for creating a cordewdre
methods mostly intend to implement a framework whicAPplication emphasize either to set a minimum number of
imposes a wide-range of context-aware workload, by usi$§nsors or to maximize power efficiency by solely applying
diverse signal processing primitives. The defined fram&morl€ss complexity in computations and/or changing transfgrr
genera”y ana'yze Spatia' characteristics of the Sens'grbas, methods of obtained context to the outer network services.
based on either time space or frequency Spectrum_ H|th:r0m the Standeint of the creation of a generiC framework
dimensional feature vectors are constructed by includingym design for context-aware middleware services, it would be
signal processing functions. Then, these large featurmorsec Notable to mention the following studies:
undergo pattern recognition techniques. The major dralwbac « “EEMSS” in [76] uses hierarchical sensor management
of these attempts comes from the fact that when processing strategy by powering a minimum number of sensors
large data clusters in a resource limited hardware. Eslpecia and applying appropriate sensor duty cycles so that the
for an online classification algorithm, one of the most im-  proposed framework could recognize user states through
portant things is to reduce computational burden and stay smartphone sensors while improving device battery life-
away from large amount of data manipulations. For instance, time. Unfortunately, sensors employ fixed duty cycles

Context-Aware Framework Designs
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TABLE V: Comparison among classification algorithms

Algorithm Name | Pros

Cons

- uncertainty handling

Naive Bayesian I .
y - allows combinational reasoning

- probability bounded
- numerical outcomes

- computationally expensive

Q

(e.g, k-means) - more machine learning included

- robust and adaptive

Supervised - many techniques available - requires huge data set to have more accurate assumptions
(e.g, SVMk-NN, - discriminates morphologically interconnected patterns| - training data set required to matching
Ensembles) - provides more accurate inference - challenging to find optimum feature set
- mostly user intervention needed to specify training da
Unsupervised - no training data set needed - computationally expensive

- complex system design
- difficulty in validation

- simple and easily applicable
- provides more understandable reasoning
- uncertainty handling

Fuzzy Logic

- manually defined
- prone to have false truthfulness
- no quality check

- simple and easily applicable
- requires less computations
- expandable

Decision Tree

- manually defined threshold based
- prone to have false truthfulness
- no quality check

- provides accurate inference

- allows combinational reasoning
- quantitative features

- uncertainty handling

Stochastic

- predefined expected probabilities

- training data sets for coefficients

- difficult to discriminate morphological patterns

- probability bounded, ignores feature relationships

whenever they are utilized, and also they are not ad-

justable to respond differently to variant user behaviors.

Energy consumption is reduced by shutting down unnec-

essary sensors at any particular time. On the other hand,
classification of sensory data is based on pre-defined test
classification algorithms.

o The hierarchical sensor management system is also stud-
ied by introducing “SeeMon” system in [77] which
achieves energy efficiency and less computational com-
plexity by only performing continuous detection of con- «
text recognitions when changes occur during context
monitoring. The framework also employs a bidirectional
feedback systems in computations to detect similar con-
text recognitions in order to prevent from redundant
power consumptions.

o Similarly, “Sensay” in [104] is a context-aware mobile
phone but as in form of an external sensor box which
is mounted on the users’ hip area. It receives many
different sensory data, and eventually determines to dy-
namically change cell phone ring tone, alert type and un-
interruptible user states. However, it classifies useestat
offline, and the system does not have energy efficiency.

« “Darwin” studied in [89] proposes a system that combines
classifier evolution, model pooling, and collaborative in-
ference for mobile sensing applications. It is implemented
for a speaker recognition application by using efficient

for mobile phone applications, balances the performance
needs of an application and resource demands. The en-
gine employs each sensor under a processing pipeline.
It performs all the sensing and classification processing
exclusively on the mobile phone. It also uses sensor-
specific pipelines that have been designed to cope with
individual challenges experienced by each sensor. Duty
cycling techniques are attached to adaptive pipeline pro-
cess if applicable to conserve battery life.

The study in [106] creates a general framework problem
under an energy efficient location based sensing appli-
cation. It is noted that there are four critical factors
that affect energy efficiency in location-sensing through
GPS. These factors are static use of location sensing
mechanisms, absence of use of power-efficient sensors
to optimize location-sensing, lack of sensing cooperation
among multiple the similar applications, and unawareness
of battery level. The framework solution is given by
introducingsubstitutionto find an alternative less power
consuming location-sensing mechanissappressiono

use less power consuming sensor instead of GPS when
user location is statiqpiggybackingto synchronize with
other location-based applications to infer a collabogativ
location info, andadaptationto adjust system parameters
such as time and distance longer when battery level is
low.

but sophisticated machine learning techniques; howevehere are also some other studies proposed in [86], [95],

there is no power saving method applied.

[107]in order to provide comprehensive solutions into tirep

» “Jigsaw” presented in [105] , a continuous sensing engiRephase framework for context-aware applications. Table VI
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analyzes some important frameworks by breaking down each

Smartphone based

study and comparing them in terms of learning paradigm,

applied algorithm, power efficiency, processing method, in ”;’;‘;’éﬁiﬁg’;‘y —{-| Weareble sensors

terested context, input sensor, platform where implentiema

is carried out, and accuracy of framework outcome. - De"e'°g:‘szgt e

u%o Personal or :
[1l. CONTEXT-AWARE APPLICATIONS % Human-centric e

Mobile phones are equipped with sophisticated sensol g Pacr: :::::Zyor serracine | e

Most sensors currently available on smart devices are dedig | £ ——

to perform some specific applications, such as acceleron| £ Oppurtunistic

ters for detecting screen orientation, a microphone foceoi S HealthCare or

conversations, a camera for capturing images and a GI“Z Well-being

for displaying location. However, by introducing inteligce, Environmental

situational awareness and context recognition into these d fofitoling

vices, and given the right architecture within the context, ) )
of ubiquitous sensing by enhancing and systematizing thid- 6: The categories of context-aware sensing.
existing methodologies, built-in sensors could be re-psegl
and act as sensor nodes to proactively assist users in their
daily activities by increasing the quantity, quality anedir whales; whereas, the adaptation of this technology to human
bility of community-gathered data. Hence, these smartadsvi health has been paid attention recently.
could be used as instruments to collect data and providewith the advancements and increasing deployment of mi-
meaningful observations belonging to user behaviors angbsensors and low-power wireless communication technolo
surrounded environments. Some applied examples aretgctijies within the Personal/Body Area Network (PAN/BAN), the
measurement by accelerometer, ambient sound environmgtotlies conducted under ubiquitous computing have grown
by microphone, and estimation of time and location a usgiterest in healthcare domain. Besides high demands for ap-
spends indoors and outdoors by GPS. In addition, exterp#ing and understanding Human Activity Recognition (HAR)
sensors, such as biomedical sensors (e.g., ECG, BVP, GERsed systems, the integration of monitoring and analyzing
and EMG'), can also be deployed with a wearable strap arital sign data (e.g., heart rate, blood sugar level andspres
human bodies. Hence, more than one sensor (multiple senseel, respiration rate, skin temperature, etc.) througsers
system) would be available in ubiquitous sensing for healthlso more likely enable to change assessment, treatment and
Information obtained from different sensors can also besro diagnostic methodologies in healthcare domain since -tradi
linked and presented as a new valuable input. For instangenal methodologies have been based on self-reportsg clin
GPS and accelerometer actualizes Geographic Informatigsits and regular doctor inspections [119].
Systems (GIS) with potentially providing insight as to how \wjth the integration of emerging technologies in health-
the proximity of recreational facilities affects physieattivity care domain, sensor-enabled autonomous mobile devices can
levels, or how the relative accessibility of grocery stoa@sl help caretakers continuously monitor patients, recordr the
fast-food restaurants influence a diet program. Wi-Fi can Bgs|lbeing process, and report any acute situation in case
leveraged to determine relative proximity of individuats there abnormal behavior is detected. Thereby, it would be
each other or fixed locations, it could be used for a stugyore easier and efficient to monitor and manage the lifestyle
to examine the spread of an infectious disease. Bluetosth,zp( well-beings of patients with chronic diseases, therkide
well as ZigBee, can also be used for ambulatory data caﬂnctipeome, the rehab taking patients, the patients dealing wit
of more traditional signals, such as blood pressure, hatet r gpesity, the patients with cognitive disorders, childrand
respiration, and blood glucose level. even more significantly to monitor and rescue the emergent
In this section, context-aware applications are categdrizyitals and status notifying soldiers in combat zone.
in terms of t_he _application field_s th_at they are design_ed for. The home-based health care monitoring by mobile based
The categorization, as shown in Fig. 6, introduces differéfqyices is defined under smart home applications. The studie
a.ppllcatlon fields that researchers have been studyingrextg, [120]-[122] are carried out in order to create a smart
sively. home environment for treatment procedures of patients, (e.g
having cardiac problem [123], or diabetics) based on ctifigc
A. Healthcare and Well-being data through different wearable physiological sensorg.,(e.
)k&ody temperature, heart rate, blood pressure, blood oxygen

Previously, the use of mobile devices within the conte L .
S . i . values, respiration level, and ECGs) and also reportind-fee
of the ubiquitous sensing has been successfully integiiate .
acks remotely to the healthcare givers. The wearable sen-

zoology_and vete_rinary medicine to study_ the feeding hablﬁs rs (including accelerometers, heart rate monitors angyma
and social behaviors of some types of animals from Zebraoﬁwers) have been also studied in [124]-{127] to recognize

4Electrocardiography (ECG), Blood volume pulse (BVP), Gale skin activity patterns for measuring fitness_ level, an_d dism@ﬁ"_
response (GSR) and Electromyography (EMG). frequentness of body movement against obesity and weight
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TABLE VI: Analysis of some notable framework designs

Reference Learning Paradigm Algorithms Power Efficiency Processing Interested Context Input Device Platform Results Accuracy
[102] Supervised k-NN, DT and NB N/A Offline Activities ACC Wearable Sensors 50-80%
[108] Supervised NB and HMM N/A Offline Activities ACC Development Board 90%
[109] Unsupervised k-means N/A Offline Activities ACC Wearable 7%
[105] Supervised DT, GMM, SVM and NB MDP based DSS Online Activities and Ambient Sound ACC, MIC and GPS Smartphone 94% for act.

84% for sound
[110] Semi-Supervised Multiple SVMs N/A Offline Activities ACC Wearable 70-80%
[111] Supervised DT, SVM, NB, AdaBoost N/A Offline Activities ACC Wearable 7%
[76] Supervised DT and FE DSS and DC Online Activities and Ambient Sound| GPS, MIC, Wi-Fi and ACC Smartphone 73-100% for act.
70-94% for sound
[112] Unsupervised SVM, k-means and DT N/A Online Activities and Environment ACC, Wi-Fi and MIC Smartphone 87%
[83] Supervised FE, HMM, NB and NN DSS Offline Activities ACCs Wearable Sensors 80-90%
[78] Supervised FE, HMM and NB N/A Offline Activities ACC and Proximity Wearable Sensors 88-94%
[79] Supervised FE and NB AS Online Activities ACC, BT and MIC Smartphone 70-90%
[94] Supervised FE, AR and SVM N/A Offline Activities ACC Development Board 92.25%
[96] Supervised FE and SVM N/A Offline Activities ACC Smartphone 91-95%
[90] Semi-Supervised FE, k-means, PCA and AdaBoosft N/A Offline Location MIC Smartphone 88.7%

[84], [85] Supervised FE, LDA and FBF N/A Offline Activities ACC PC 93%

[100], [101] Supervised FE and WEKA Toolkit N/A Offline Activities ACC and HR PC 80-94%
[80] Supervised FE N/A Online Activities ACC Wearable 82-97%
[81] Supervised FE, NB, k-NN N/A Offline Activities ACC and HR Development Board 75-95%
[113] Semi-Supervised DT and FE N/A Online Ambient Sound MIC Smartphone 78-93%
[98] Supervised FE, HAAR and WEKA N/A Offline Activities ACC Development Board 90-94%
[114] Unsupervised DT N/A Online Activities GPS, Wi-Fi and GSM Smartphone 90%

[86] Supervised FE, HMM and NN N/A Offline Activities ACC Smartphone 87-90%
[115] Unsupervised FE and DT N/A Online Activities and Location ACC, GPS and WiFi Smartphone 90%
[93] Supervised FE and HMM N/A Offline Activities ACC and MIC Development Board 77-85%
[91] Supervised FE, QDA andk-NN N/A Offline Activities ACC Smartphone 90%
[87] Supervised FE and FN N/A Offline Activities ACC Smartphone 97%
[89] Semi-Supervised FE and GMM N/A Online Location MIC Smartphone 80-90%
[82] Supervised FE, DT and SVM DC Online Activities and Social Context ACC ,MIC and GPS Smartphone 90%
[116] Unsupervised FE, DT and HMM DC and AS Online Activities ACC Smartphone 75-96%
[117] Unsupervised FE, DT and HMM POMDP based DC and A§  Online Activities ACC Smartphone 95%
[118] Semi-Supervised FE, AR and Estimation RO Online Location WiFi and GSM Smartphone 90%

- DT: Decision Tree; FE: Feature Extraction; HMM: Hidden Mav Model; NB: Naive Bayesian; BN: Bayesian Network; SVM:pport Vector Machine; AR: AutoRegressive Model; PCA:
Principal Component Analysis; LDA: Linear Discriminant &lgsis; FN: Fuzzy Networksk-NN: & Nearest Neighbour; GMM: Gaussian Markov Model; SVM: Suppdactor Machine; NN:
Neural Networks

- DSS: Dynamic Sensor Selection; DC: Duty Cycling; AS: AdantSampling; MDP: Markov Decision Process; RO: Radio Oation

- ACC: Accelerometer; BT: Bluetooth; MIC: Microphone; HRehbirt Rate Monitor

- POMDP: Partially Observable Markov Decision Process

[N
'S
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loss programs [128], diagnosing insidious diseases [128] ( cost or personal companion devices with no easy use. In
hypotension), and understanding emotional states [138L][ addition, aggregation of monitored data was very com-
(e.g., stress level). Besides, smartphones can be used as aplicated and impractical. However, since mobile devices
reminding systems [120] for aging related cognitive disosd are carried by people throughout the day, it makes them
such as Alzheimer treatment. Also, like a study called UbiFi  appear to be an ideal platform to be used in purpose of
in [132], smartphone can capture user relevant physiceityct human-centric sensing. Especially, the accelerometer sen

level and corresponds the obtained information to personal sor, which can return a real-time measurement of acceler-

fitness goals by presenting feedback reports back to the user ation through all coordinate spaces, is commonly used for
There are many commercial products available at the market HAR. It is employed either as a pedometer to measure

to give ubiquitous computing solutions in the healthcare do  steps counts and calorie consumption or as a monitor
main. These products are mostly concentrated on assigimgp  to recognize user physical activities such as postures
ple on controlling dietary programs/weight managemers; di and movements. Most measured events/actions/attributes
covering fitness level, measuring burnt calorie or energglle are related to human posture or movement (e.g., using
counting step numbers, and recognizing activities. Philip  accelerometers or GPS/Wi-Fi/Cell Tower), environmental

Directlife, FitBit Zip and BodyMedia GoWear are some device  variables (e.g., using temperature and humidity sensors,

examples produced for tracking activity patterns, countin ~ microphone and cameras), or physiological signals (e.g.,

steps, measuring calorie burnt, and calculating distarae t attachment of external devices such as heart rate or

eled. In addition, Impact Sports ePulse proposes hearepuls electrocardiogram, finger pulse, etc.). In this aspectethe
monitoring system. Many other products can also be found are many studies [96] proposed to use smartphones to
for measuring heat flux, galvanic skin response and skin monitor users’ daily physical activities according to thei
temperature. lifestyles.

o Wearable sensors basedlearable sensors, i.e., multiple-
sensor multiple-position solutions, have been put forward
to recognize complex activities and gestures within the
ReCOgniZing human-centl’ic aCtiVitieS and behaViOI’S haVe HAR Concept_ It basica”y introduces mu|tip|e_sensor

been an important topic in pervasive mobile computing. Hu-  placement on multiple location of human body to well

man Activity Recognition (HAR) intends to observe human  capture some specific target activities (e.g., brushing
related actions in order to obtain an understanding of what teeth, arm and wrist movements while folding laundry,
type of activities/routines that individuals perform witha etc.) which a smartphone cannot detect by itself. With
time interval. By providing accurate information about HAR  the use of wearable sensors, sensory context is extracted
relevant data history could assist individuals on having be  from miniature sensors integrated into garments, acces-
ter well-being, fitness level and situational-awareneSS sories, or straps. Especially, traditional accelerometer

[135]. For example, patients with diabetes, obesity, orthea  pased HAR solutions cannot provide recognitions at finer

disease are suggested to follow a predefined fithess program granularities for differentiation of some postures such as

as a part of their treatment [136], [137]. In this case, infor  sijtting and lying down since there are some drawbacks
mation corresponding to human postures (e.g., lyingnsitti observed such as mis-adjustment of device orientation
standing, etc.) and movements (e.g., walking, running) etc  and position or insufficient number of sensors to have

can be inferred by a HAR system in order to provide useful  enough spatial information. Hence, wearable sensors with
feedbacks to the caregiver about a patient's behavior aisaly ytilization of heterogeneous sensor deployment has been

In addition, by the attachment of external sensor devices, gzn active research area to respond a growing demand

e.g., Heart Rate (HR) monitor, patients with abnormal heart for HAR systems in the health care domain, especially

beats can be tracked easily and notified to caregivers in case e|der care support, assisting the cognitive disorders, and

of emergency in order to prevent undesirable consequences fitness/well-being management [78], [100]-[102].
[138]. In practical, HAR has only interest on single person

activity detection; however, it can be extended to be mialtip
person recognition, which is called Activity of Daily Livin
(ADL). ADL is a way to describe functional status of a person,
and his/her interaction with others. Hence, ADL becomes an
essential part of community sensing especially for comiyuni
health-care concerns (e.g., finding stress level in a grdup o
people [139]).

Studies for HAR, as shown in Table VII, can be divided
into sub-categories based on the platform that a conteateaw computationally since it requires intensive supervised

system is built on: o - . classification algorithms. These algorithms are mostly
o A smartphone based%cltlwty recognition baS|caIIy.con- _ carried out in offline analysis, which also makes the
cerns about human beings and/or their surrounding envi- - sojution impractical. The constraints may also stem from

ronment. The constant monitoring of activity recognition  sensor degradation, interconnection failures, and jitter
was used to carry out by deployment of cameras with high

B. Human Activity Recognition

Heterogeneous sensors are connected to each other
with wired/wireless communication (mostly Bluetooth).
Smartphone can be used as a center position for ex-
ternal sensor attachments. Proximity sensors decide the
distance between sensor nodes (i.e., topology of sensor
placement) by measuring the received signal strength
indication (RSSI) of radio frequency in dBm. On the
other hand, the deployment of heterogeneous sensors
entail high cost and brings about some constraints in
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TABLE VII: HAR in mobile devices

Platform Reference Sensors
[87], [91], [96], [98], [140] ACC
90 MIC
95 ACC, GPS
Smartphone 79 ACC, MIC, BT
[118], [141] WiFi, GPS
[105] ACC,MIC, GPS
76], 182], [89] ACC, MIC, WiFi, GPS
[83], [86], [94], [102] ACC
’ 78] ACC, Proximity
Wearable Devices [00] ACCFR
[80], [81] ACC, BT
[84], [94], [101], [142] ACC
. 98] ACC,BT
Mobile Development Boards [777, [85], [104] ACC, Temperature, Light
80], [93] ACC, MIC, Compass, Temperature, Light

- ACC: Accelerometer; BT: Bluetooth; MIC: Microphone; HRehbirt Rate Monitor

the sensor placement. Hence, the reduction of sensetting a resolution value (e.g., generally 10 m) per cedés-
dimension is highly important for node interconnectiortance within two successive data points (i.e., unit diffiers.
and make the system stay still unobtrusive. Hence, consecutive GPS readings are grouped based on their
o An embedded platform basebt a HAR based system, spatial relationships in order to create distinctive seggate
higher classification accuracy is always desired. Espéoens among GPS traces. Then, GPS traces are associated with
cially, this implies a large number of sensor placemenévailable street maps, which are represented as direcapthgr
over the body in wearable sensors based applicatiomhere an edge represents a street and a vertex represents the
Variations in sensors and center device placements mugersection of streets.

let the system act robust to diverse feature extractions,;pg cannot penetrate through walls, and thereby the re-
and jef:ft speqﬁ_c cI§35|f|cat|ondmodelé to makde a Cﬁ@éived data gets degraded. Thus, the usage of GPS for locatio
text_ fiferentiation In any con ition. ~omparea ot $ased sensing is valid for outdoors. Once GPS times out be-
multiple-sensor multlple—pogltlon SOIU“.OnS’ crealine® . se of the lost satellite signals, Wi-Fi scan can be pedor
velopment pIatfprm consisting of multiple SENsors CO.“'l%r indoors by checking for surrounding wireless accesatsoi

be a more practical way for HAR based applications singg p; could be used for outdoors either since it covers
the attachment of sensors on specific body locations coy range of 20-30 m as radius. Indeed, smartphones apply
return in similar reflection of feature signal charactérsst hybrid localization scheme b&/ using ’GPS with network-
on different activities, and it could lack of distinguishin based triangulation by leveraging wireless access pownts f

diverse contexts. Therefore, like using smartphones, "% ieving coarse positioning [43]. The network-basedhtria

seagc:zrsd hr?vz been sltufd|ed mquhntmg oge];bozr% ba.‘éﬁ tion collects information from RF signal beacons arbun
embedded hardware platforms with a predefined devige, onapje wireless cell towers, from Wi-Fi access points or

. . . : T ’ 8nd then it uses received RF signal strength to measure
multiple sensor mfo_rmatlon ,W'tm prlon.e_xpenment relative distance through the physics of signal propagatio
setups and unchanging conditions of training contextug?lnong network nodes (e.g., utilization of local and mobile
data. base stations). Hence, by measuring sequential RSSI data,

transportation modes for users can be identified. In additio

C. Transportation and Location during the Wi-Fi scan, MAC address (i.e., BSSID) of wireless

Location-based sensing [143] aims at tracking people oﬁ:?‘?ess pointsh_n;:ght Ihave aIregdy been taggfld ?15 a point
a period of time by recognizing their activities in terms of _mterefst, \IN Ich yie ds to retrieve fi?_utomhatlca y thaeus
specifying transportation modes (e.g., walking, runniregi- 'S In @ familiar environment (e.g., office, home, gym etc.).
cle etc. when user is outside). Especially, since GPS rereiv/\though GPS could detect some postures such as sitting or

have been an integral hardware component in smartphornql@nd'ng'the accelerometer sensor is rather used for tafah s

data collected by GPS becomes handy to be used for netWBF}iVities due to GPS may not provide a concise solution for

connected applications. Thereby, GPS is employed as an (#T_ferent_iation _Of user state classgs at similar speedidBes
strument for location-based sensing in order to inspecttfer 1€ €fficiency in power consumptions would be more healed
habits and general behaviors of individuals and commumitill ¢@S€ where the accelerometer sensor is used.
[144]-[146]. Investigation of mobility patterns to extract places and ac
The localization is inferred with the help by GPS deliveretivities from GPS traces have been generally implemented in
speed and location information as well as a large amount la&rarchical structure [145]-[147]. According to the sture,
available data (e.g., street maps). GPS provides 2D datathg lower level begins with association of GPS traces with
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street maps, and the structure rises up by inferring agtdgt concerns, some websites/applications such as [160] can be
guences; and eventually, the structure ends up with distmye used for reducing risks of community sensing.

significant places from activity pattern with the help of spe

time within each activity. By taking a log of recent hlstoryE_ Environmental

of transportation modes belonging to individuals througho ) o ] .
the daily life as well as mapping their location history, a Environmental monitoring, on one hand, aims at sensing

general physical activity report can be documented, anal a@nd collecting information about surrounding environmisyt
the goals of future activity plan can be reconfigured for th@asically providing personalized environmental scordgat
purpose of health and fitness monitoring. For instance; frofffe human level; on the other hand, it creates an impact towar
physiological perspective, driving behaviors are imgzsttd in gnwronmental exposure by contributing er_1V|r0nm_entaIJsoI.
[148] by taking consideration of trip destinations, trimés tONS at the community level. The_ surrounding environment i
and driving efficiency. either a small _scale area (e.g., indoor) or a large one (_e.g.,
By actuating community sensing, it could be possible fgutdoor). For indoor environments, applications to manito
monitor highways for real-time traffic conditions, and foast HVAC systems and building maintenance can be considered
probabilistic traffic congestions, thereby the traffic floautd [161]. [162]. For instance, one can use a smartphone to
be re-routed in such cases [147], [149]-[151]. This scenaff'easure room temperature, .and then smartphpne can adJust
can also be applied into biking [152], [153], thereby bikeas heater or ventllator_automatlcally to char_1ge air balance in
share their routes and let noisiness of the bike trails bevkpo @ Smart home environment. Moreover, it would be more
and also they can take ride statistics for fitness docunientat 'éasonable to apply environmental monitoring in the cantex
Besides, most significantly, crowdedness level of metitgol Of community sensing. The studies in [163]-[169] provides
areas can be investigated in terms of daily visitor dendid], applications for environmental monitoring to track a_ndliyot _
[155]. Meanwhile, existence of multiple users in a specifea hazard exposures such as carbon emission level, air polluti

could also give a help to track and notify air pollution leveyvaste accumulation, water intoxication level, etc. In &ddi
for environmental monitoring. noise pollution and ambience fingerprinting (fusion of stun

light and color) are other topics that have been studiedig th
D. Social Networking content [112], [170].

The ubiquity of Internet usage have enable people to ex-
change innumerable different form of information at a globa IV. CHALLENGES AND FUTURE TRENDS

scale. This situation have resulted in explosive growthhe t  \obile, smart devices supporting emerging pervasive ap-
creation of social network platforms (e.g., Facebook, Wit plications will constitute a significant part of future mtebi
etc.) where people can describe and share their persogahnologies by providing highly proactive services reiqgi
interests, preferences and information. With the ememengntinuous monitoring of user related contexts. However, a
of sophisticated sensors equipped smartphones, the aateghajor challenge standing up to these sensor-rich smartegvi
tion of smartphones and social networks have leveraged datane |imited computational, storage and energy resources
collection capability, and led the born of exciting contextraple VIII summarizes awaiting challenges in design preces
aware applications as well as the evolution of the Interngf context-awareness in mobile sensing.

of Things. However, the question of how the inference of a | the following, we identify some interesting research

platforms in an autonomous way is still the most exciting

research topic. In this sense, researchers have been tryingE
to create context-aware systems where diverse and large 4t
streams (e.g., image, video, user location, user trarepmmt ~ Because mobile devices operate on a finite supply of energy
mode) are automatically sensed and logically fused togethlmntained in their batteries, energy awareness is one dee
for social interaction of individuals or groups of peopletesource management issues in mobile sensing. Specifically
which is sometimes calledrowdsensingor crowdsourcing continuously capturing user context through sensors iepos
“CenceMe” [156] is the foremost study which enables to infdreavy workload in physical and computational capacity as-
user relevant activities, dispositions, habits and surdings, pects of the device working process, and it drains the batter
and then to inject these information into social networksower rapidly.
platforms. The fusing of sensor and social data for context-To understand this issue better, an application examplg [17
aware computing is also studied in [157]. A detailed study f@an be examined. Accordingly, the accelerometer senstir bui
the current state and future challenges of the crowdsensingdTC Touch Pro is employed at a fixed sampling frequency.
is given in [20], [158]. In addition, some exciting futuitst When the phone samples the accelerometer, overall power con
project ideas can be obtained througtvw.funf.org sumption on device increases by 370 mW; whereas, according
On the other hand, privacy, security and resource consider-the data sheet of the accelerometer, it should consurae les
ations unfortunately limit the expansion of communityss than 1 mW when active. Even if the accelerometer itself veaste
sensing applications since cyber-stalking [159] by trgdime very little power to operate its functionality, the phoneiwiis
revealed user information could harm mobile users by ecoxain processor and other hardware components causes much
nomically, physically, and legally. In the absence of ralev more power consumption during the operation to accomplish a

nergy Awareness
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TABLE VIII: Awaiting challenges in design of context-awaress in mobile sensing

Research Area

Challenges

Energy Awareness

- creation of energy profiles
- radio optimization

- energy-efficient routing

- battery characterization

- energy estimation
- data reduction
- sensing scheduling

Sensing Managemen|

it

- dynamic sensor selection
- opportunistic workload division

- adaptive sampling
- optimal sensing

Battery Behavior

- non-linearity
- effects of usage patterns

- estimation of energy delivery
- battery discharge profiles

Data Acquisition

- data calibration
- distortion, noise

- orientation change in device
- device placement

Context Inference

- learning paradigm
- online processing

- computational complexity
- redundancy check

Framework Design

- generalization

- adaptability

- estimation/prediction
- robust processing

- inhomogeneous physical world
- tradeoff handling

- time-variant sensing

- optimization in sensor sensing

Middleware Design

- collection of async. heterogeneous context
- interoperability

- creation of an abstract layer

- generic infrastructure, standardization

- fault tolerance

- full transparency

- scalability

- decentralization

- dynamic adaption, auto/self configuration
- smartness

- transparently partitioning data, offloading
- adaptability, self-awareness

- reconfigurability
- resource scarcity

- complex device architectures

Mobile Cloud - scalability - mobility
- frequent network disconnections - fault tolerance
- augmentation process - resource optimization, inter-context relations
- limited power, bandwidth and storage - richness in context sources
General

- security, privacy and trust issues
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contextual sensory data extraction. Another example pgeal/i behavioral characterization of mobile device infrastuuef

in [172] reports that today’s smart devices are not durable ¢context-aware applications can benefit more efficient m®ce
employ all sensors at the same time by giving an example @fivironment. Also, user intervene is important for seayrin
Samsung Galaxy SlII smartphone with a fully-charged bwttelenergy awareness. In order to make power efficient decisions
It is experimentally examined that the smartphone consumesers need to understand when power drain mostly occurs on
805 mW in idle mode, whereas the same device puts extra Gfgir mobile devices.

mW power consumption while employing GPS connectivity.
The experiment shows that constant sensor usage almost |
to reduce baitery life by _half. Gi_ven ex_amples conclude th e will force the need for enhancing energy efficiency.
any sensor employr_nent in mobile (_jewces WOUId. draw MOy instance, constant connectivity in social networkitef-p
curr_ent from the device battery than I h_appens durmg alm’guforms require continuous sensing that affects on the device
device run. Therefore, the mobile device battery will n(m'abattery life. Cellular and Wi-Fi are the most widely used

a long time to support device operations. wireless transmission technologies. Due to the increase in

Energy awareness can be integrated by creating energgbile data traffic and ever-demanding popularity of mobile
profiles and energy estimation to present maps of power usagplications, energy consumption on wireless mobile data
allowing the analysis of power draining caused by physicahnsmission/communications grows rapidly. Especiadly;
sensor hardware, computations in coding, and transmissiengy cost of wireless networking operations in addition to
of data. Using this analysis and having more statistics dlme expectations of future context-aware applicationsirety

n the other hand, increasing usage of mobile device
lication features along with network connectivity diet
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more use of multimedia, image and video rendering, data com- A ®
pressions/decompressions, complex web service connsctio S S

will be extremely high. Therefore, there are some actions «;-Q 077

needed to be taken to decrease energy consumption and to vQ. S Adjustable
prolong battery lifetime as in the followings: °¥' Sampling Period

« Radio optimizationcould reduce energy dissipation due
to wireless communications by enhancing some radio

parameters such coding, modulation schemes, power Adjustment

transmission and antenna direction. é(? in Sensor Operation
o Data reductionwould be a solution to reduce the amount S

of data to be processed or transfered. Methods such as A("

adaptive sampling, network coding and data compression /\;‘" Operation Division

coukld help removing unnecessary information in sensing S in Sensor Set

task.

« Energy-efficient routingims at ensuring connectivity and
coverage, and exploiting redundancy in topology control
protocols by dynamically adapting network settings with
respect to application needs.

« Sensing scheduling, battery characterization and energy

modelingare examined in detail in upcoming subsection&ig. 7: A power efficient sensor management system for future
context-aware applications.

Sensor Set Selection

B. Adaptive and Opportunistic Sensory Sampling

To address power efficiency in context-awareness, efficie%t Energy Estimation and Modeling

sensor management systems infusing low level sensory operfhe use of smart devices is constrained by limited battery.
ations need to be considered. An example method could Piee slow growth in energy densities of battery technologies
illustrated in Fig. 7. The first stage starts with dynamigallcompared with the increasing computing power requirement
selecting a sufficient number of sensors [76], [77], callbg-* and hardware capabilities is now driving the need for accu-
namic Sensor Selection”, while a context-aware applicaiso rately modeling power consumption profiles. With an high
running. Thereby, sensors can be put in an order accordixgturate energy model on device performance, energy efficie
to their power consumption levels and application releganapplications or running operating systems can be designed.
depending on an interested context. In addition, the begbwever, the diversity in architectural designs within rit@b
energy saving algorithm would be the one that manipulatdevices and their components along with the differences in
the frequentness of sensory sampling intervals. In thiang usage patterns present a challenge to profile energy coasump
different duty cycling approaches would be the next stage wén. To do this, we need to explicitly consider the impact
the ladder by tuning the wave form to power a sensor fof different usage patterns, and their relationships wita t
a desired power efficiency. Besides that, adaptively clmngiprojected effect on power consumptions.
sensor sampling periods can also be the final stage to achievgg find the relationship between user activity and energy
a certain level of power efficiency [79]. By adjusting samgli cost, special applications are developed to gather data on
periods in sensory operations as needed, the total numbey&ér behavior by tracing usage pattern on device. Tradition
sampling occurrences either increases or decreases. A8lg remethods [174] use external equipments such as power meters
relevant power consumption will adjust accordingly. to model energy estimation based on measurements of device

Above of all, an adaptive sensor management mech@peration in different activity modes. On the contrary,emtc
nism/system to assign a mixture pair of duty cycles argludies remove the necessity of using extra equipments by
sampling periods simultaneously would be a cure of comintime monitoring to track key operating system paranseter
suming less power while running context-aware applicatioand hardware components. They first determine a measur-
accurately enough [173]. However, intervening sensoryapeable power cost of using a specific device component, and
tions to achieve power efficiency may jeopardize the acgquracharacterizes its effect on battery drain over a unit of time
of context-aware services, and thereby it creates a tradeDiien, they collect power consumption related data throwsgh u
between power consumption caused and accuracy providedofyapplications, and broke this data down onto premeasured
these services. component base statistics collected in applications irotral

In this sense, optimization of physical sensor hardwaceeate a proper energy model. The final step aggregatedall da
operations during data acquisition needs to be created irca@lected by use of different applications and componeartd,
collective way by employing sufficient number of sensor setenerates power cost coefficients to anticipate online powe
to characterize contextual information, creating workisian  consumption or battery drain for future smartphone openati
among chosen sensors, scheduling time-variant duty cycldsere exist many tools to measure energy consumption of
and setting adaptively changing sampling periods. mobile software entities. PowerBooter [175] constructs an
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automated power model technique that uses built-in measusensor management systems. Correspondingly, battetiyiée
ment sensors and knowledge of battery discharge statusntostly depends on energy consumption rate, dischargegrofil
monitor power consumption on individual device componentise., usage pattern, and battery non-linearities. At thgh hi
The study also provides an online smartphone applicatienergy consumption rate, the effective residual batteppcity
called PowerTutor by associating with proposed technigue degrades and results in having a shorter battery lifetime.
estimate system-level power consumption, and then infodowever, any precautionary change in the usage pattern coul
software developers and end-users power-efficiency-wise axtend the battery lifetime. More importantly, the physica
plication use. Another study in [176] uses an applicatianl tonon-linearities in the batteries could recover the lostaciy
called Carat that explores the energy drainage behavior while energy consumption decreases. Accurately estigpatin
mobile applications. The study classifies applicationsithee the remaining battery capacity [180] and reporting of the
having an energy bug, or being an energy hog. Informallyattery state-of-charge becomes a difficult task due to the
an application is an energy hog when the application drainsnlinear battery behavior, and also the time-varying meatu
the battery much faster than its average use. Whereas, ciimobile device operation that would cause different anhioun
application has an energy bug when some running instancégpower need at any time.
of the application drain the battery much faster than otherThe future research trend should investigate mobile device
instances of the same application. Trepn Profiler by Quddased battery behavior with respect to variant sensoryaeper
comm is a diagnostic tool that measures mobile phone systéons in smart devices. Thereby, the linkage between lyatter
performance and power consumption. It is capable of systelischarge and power consumption caused by the sensors can
and application level of energy profiling that might helpfol be analyzed, and most importantly, a fine power efficiency can
developers to be aware of power optimization in applicatidre objected to achieve while satisfying continuity of mebil
developments. device based context-aware services.

However, these studies lack of some drawbacks that affect
on accuracy of energy estimations. CPU time is mostly used pata Calibration and Robustness
as a proxy for energy, whereas mobile devices may interac

with multiple hardware components at the same time fortBecause of mobility, the outputs of inertia or ambient
P P sensors are prone to having false truthfulness such as the

a specific application, and it causes a very variant Vona%%ality of sound and picture samples. More significantly)-co

discharge on the device battery. Also, background runnlsg?nt sensor displacement in motion-based activity reitiogn

applications or services could consume a significant amoun . : . .
. . systems is a serious disadvantage that causes decrease in
of energy that could distort the energy attributed to they 9

L " " lication racy. Any change in orientation of th i
application and create false truthfulness in energy esitoma dpplication accuracy. Any change in orientation of the rfeb

rocess; therefore, estimation techniques require diyéfe- device, such as rotation, is an important design drawback
P ' ’ d q for the most of classification algorithms, especially foogh

tpned software (_anwronme_nts. Mor_eover, power mOdeI.mgStOQNhich solely rely on exploiting feature vectors through a
like Trepn Profiler uses information obtained from mternasl

. ecific axis information. In case where the sensor is not
device components to perform the battery level measuremenf d fixed | ; di based
However, many mobile devices may not include componerﬂ aced lixed, suppose an acce erom(_eter 'S usedin a HAR base
inside 1o ,su ort this feature. and power modelin Iackmfmaﬁpl|cat|on, it would produce some distortion over acelen

o PP ’ P gk axes. Upward or downward position change of the device
sufficient measurements on power management. Finally, run-

hing energy modeling application tools itself requiressiwed  ©2S€S X-axis flipped to y-axis or vice versa. Therefore, an
g gy Ing appiicat d . adaptive context inference scheme needs to be employed to
process and algorithms to retrieve accurate measureméhts

a very low error margin \ﬁetect the sensor position/_orientation or d_evice positeg.,

' in a purse, or a packet) in order to satisfy the robustness
toward various practical usage conditions. This scheme als
D. Battery Discharge Modeling should select the most relevant context inference stradggy

. . . namically. In addition, orientation-independent featusbould
Energy modeling methods that involve bypassing the device ; : : .
Bne considered during the context inference process. jnall

battery characteristics would not be reliable. Even thouq : - o
i . 0, reduce data redundancy, noise, and jitter in instantaeo
some technological advances has be made to improve densit

) . : L : Esor readings, a calibration and normalization procesds
in battery capacity and charging cycles, it is not suitalole . ) . .
0 be applied on sensory sampling operations to find proper

be used in the end products [177]. Thereby, the modeli . : ;
of battery’s non-linearities [178], [179], and understigd Eﬁig?r?s sampling offsets and scaling factors on sensatad
: :

the correlation between usage patterns and battery daple
will lead to successful discovery of optimal energy reducti o ]
strategies that will eventually help maximize the wasteergn - Efficient Context Inference Algorithms

consumption to improve the QoS of context-aware applica-Besides power consumption and battery density consider-
tions. In this regard, the topics such as extension of hatteations, analysis and inference process of contextual sgnso
lifetimes, estimation of energy delivery or battery disgjea data has many drawbacks. Many studies can be found in
and optimal energy management have drawn much reseandtich a framework is proposed to capture and evaluate sgnsor
interest in mobile computing. The examination of non-linealata. Most studies rely on recognition of user activitiesl an
battery behaviors becomes crucial in terms of creatingrgdti definition of common user behaviors. The applied methods
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Light-Weight Further process for Adaptation to time-variant . .
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Initial process different contents content sequences
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A
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Fig. 8: The futuristic context-aware framework designkdee finding a fine balance between power efficiency and appitia
accuracy, managing adaptability to time-variant userquezfces and behaviors, and applies lesser computationatgzing
workload.

in relevant studies are based on using statistical modedpaces ynsupervised learninjgin order to differentiate user
predefined feature extraction and classification algostithe activities. As a result, the similar type of implementation
similar issue is valid with studies done for mobile evergfus mentality needs to be applied into context-aware apptioati
tracking and localization problems. The studies use dligfe in order to meet requirements set by resource-constrained
algorithms to derive the most significant user based looatimobile platforms.
traces, and specify consecutive location points aggrdgate
within a cluster radius through a certain of time period aflin
they use map matching and reverse geo-coding to create g%o—
graphical dictionaries for users, thereby this informatould A generic framework that fulfills requirements set by all
be used for predicting user mobility or trajectory. Howevetypes of context-aware applications has not yet clearlptide
none of these studies engage themselves to model a comriesh. The problem often comes from the difficulty in building
framework in order to construct a base structure for futuee reliable data set to represent a specific context interest,
context-aware applications. They would rather have caedli since the obtained sensory data can vary significantly under
solutions to solve their own unique applications instead ofdifferent circumstances (e.g., human speech with a variant
generalized approach. Therefore, these studies mostlysfobackground noise or placement of the mobile device). As a
on a specific sensor to discover possible target application result, classifiers would not be practical toward varyingsseg
order to exploit the contextual data. conditions, and eventually it would perform poorly. Henites
Another important system attribute to consider is to préveadaptation problem becomes an important system attriloute t
the use of supervised learning strategy. Most systems take gonsider. This issue even turns into a severe problem in case
defined models or classifiers where a training data is okdainef resulting in different inference assumptions by muéipb-
through several repetition of a similar experiment setupwH located mobile devices on a similar sensing event where a
ever, it yields to have a large amount of data in return fearticipatory sensing application takes place. One swiuis
process, and makes the subsequent analysis to be carriedt@iiake advantage of cloud computing technologies, engblin
offline. Especially, obtaining training data classes talfsta- to share information and ensemble situational resourcesngm
tistical models, classification or machine learning afthonis in  co-located mobile devices.
a supervised learning strategy is an expensive real-tirreaep  In this research content, the studies in [116], [117] eriégh
tion for smart devices, and it is impractical when considgri future research directions by presenting a generic system
the computational manner. That is, acquiring and analyzifigmework within the area of mobile device based context-
of data, resource management by storing training samplesare applications. The research focuses on the inhomidtgene
scalability problem by labeling data, and bandwidth prableand the user profile adaptability while examining the traffe-
by exchanging large amount of information. Therefore, tHgetween accuracy in contextual inference through sensaigy d
utilization of sensors must be lightweight and unobtrusivand required power consumption during data processing. The
and also the applied classification/clustering and maehiriehomogeneity is characterized by time-variant systenamar
learning algorithms must be applied without computatitynaleters, and the user profile adaptability challenge is madele
expensive, human-intervening offline methods. For examplesing the convergence of entropy rate in conjunction with th
the study in [181] provides a light-weight, unsupervised arinhomogeneity. Accordingly, an implemented smartphone ap
online classification method to detect HAR based user contg@lication demonstrates how entropy rate converges in respo
by collecting data from smartphone accelerometer senséer. To distinctive time-variant user profiles under differeanhsory
solution applies a sufficient number of signal processingl asampling operations. In addition, user related contexitisee
statistical techniquedight-weightinesswithout receiving any recognized in the presence of sensory data or estimateé whil
a priori information related to user state classes, and settingrious energy saving strategies are being applied. Duhieg
any predefined/fixed thresholds over any specific accederatrecognition process, a sufficient number of signal proogssi

Generic Context-Aware Framework Designs
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techniques is applied to find out the best context-explgitin «
methods on the sensory signal instead of applying computa-

tionally harsh pattern recognition methods. Moreover, @ow
efficiency is taken at the low-level sensory operationseiath
than just applying less complexity in computations or chiagg
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creation of anabstraction layer not a centralized co-

ordination, because context-aware middleware handles
operations through various level of heterogeneous input
and output hardware devices, software interfaces and pro-
tocols, data streams and transfer. A central entity cannot

transferring methods of data packets in the application. guarantee of managing all various system level activities,
Futuristic context-aware framework design, as illustlate  especially while having spontaneous inter-operation and

in Fig. 8, must address to provide a generic solution that de-coupled coordination among connecting devices.
aims at achieving a fine balance between power efficiencys generic infrastructuravhere any context resources can be
and application accuracy. Accordingly, the frameworkiatliy manageable, and sudden interactions of context providers
acquires sensory observations and make them undergone into are handled, such as plug and play of physical sensors.
a preprocessing structure. This structure basically $iltaut In addition, since meta-contexts like social contexts doul
required information from raw sensory data, and appliegcbas  be incorporated with physical contexts, a notable effort
signal processing so that it may help decrease redundant is needed toward this type of generic integration into a
computational operations by not letting go further prooess wide-scale opportunistic future ubiquitous computing.
in case where there is not much change in desired contexs standardizatiorfor different types of domains and appli-
in the sensory data. Processing structure is reserved for cations to address common requirements. This might be
context inference. A required context inference algorithm impossible to have but at least standardization needs to
could differ according to the interested context through a be specified for a certain domain.
specific sensor. Machine learning is applied later to obtaine dynamic adaptatiorand auto-configurationsupport to
a better realization in context-awareness in order to ereat context changes or context lost due to the underlying
adaptability to time-variant user preferences and behsyio network is transient and fragile to have disconnections, as
estimate missing context inferences in presence of idle sen well as due to physical hardware that frequently join and
sory operations, and also preserve the functionality &again  leave context inference process. Also, auto-configuration
aperiodically received sensory observations. Most ingrtly, means integration of different protocols, algorithms, and
machine learning structure regulates sensor management by solutions on the fly depending on application require-
estimating user preference trends, and opportunistiiatijng ments, mobile device settings, and available network
out stable moments. Thereby, sensor management structure infrastructures.

could use this information to figure optimal sensing policie « asynchronousommunication capability, especially in a

and change sensor sampling settings so as to power efficiency mobile cloud use, to delegate and monitor data intensive

could be achieved while satisfying the accuracy of context- and time consuming tasks.

aware application services. In addition, sensor managemene fault tolerancethat determines the reliability and safety

structure needs to be aware of co-existence of similar gbnte  of ongoing processes. It is triggered by incomplete,

providing sensors, and create a coordination among them wit interrupted or delayed tasks, e.g., a sensor operation to
respect to choices by processing structure. infer a context.

o smartnesghat help acting as an autonomous and intel-
ligent delegate by being robust to mobility and context
prediction while reasoning context. Especially, a fair and
A standard context-aware middleware needs to cover all gpjective dissemination, classification and eliminatisn i

types of application settings, provides an adaptation tdwa  peeded to concurrent or similar context representation and

changing context, and acquire a collection of asynchronous management.

heterogeneous context to create different abstract estiti , resource managementb effectively support multiple

It also needs to succeed to have a full transparency, that app"cations at a time while a”ocating device Compo_
eliminates direct involvement of an application into coaite nents/resources and making them work coordinated at

mode”ng process. In this direction, gathel’ing diverse and accommodating concurrent app"cation requests_
asynchronous information, and presenting it to the apiitica

would be the future work in mobile computing middleware
research. I. Mobile Cloud Computing
Futuristic context-aware middleware also must deal with  cjoud computing, i.e., on demand computing, refers to the

« interoperability challenge that expects to collaboratepplications delivered as services through the Internad, a
among heterogeneous context providing devices as wafjgregation of computing as a utility together with reqgdire
as awareness of resource state at different layers dratdware and software provides those services [182]. Eabl
abstraction levels to optimize network-layer protocols. cloud computing within resource constraint mobile devices

« increasing amount in number of context providers, e.clong with context-aware sensing have led to the creation of
todays built-in sensors or future products, that bring new paradigm called mobile cloud computing. Thereby, it
aboutscalability problem. This results in many devicess intended that computationally expensive and more regour
to interact on a small-scale place. Therefore, efficiedemanding jobs are transparently partitioned and offloaded
information management and exchange is required. the cloud in order to remove the obstacle that mobile devices

H. Standard Context-Aware Middleware Solutions
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encounters in terms of limited battery and processing pow&s be controlled and be open to security threats such as
limited connectivity, and low memory storage. In additionapplication, web, network or physical based attacks. Fisr th
another significant merit in the creation of a mobile clougurpose, innovative encryption, cryptography and enfoee
is that mobile devices themselves are not only contextuah data stream access control technologies need to be used fo
resource providers to the cloud but also could connect almolsecuring offloading data management and exchange, and de-
peer-to-peer network by collecting resources of the variotecting/removing malware. However, this will impose tdiné
providers in a local vicinity. The idea of building a sharexbp computational expensive and energy harvesting algorithms
of configurable computing resources benefits from provmionOn the other hand, for privacy protection, perception of the
services with a minimal management effort and redeeming theneral public is still immature. Since mobile environnsent
disadvantages of having limited connectivity to remoteses are dynamic and unpredictable, it is important for mobile
and limited power to burst long range communications.  users to have transparency and choices in order to conteol ov
Despite increasing trend to mobile cloud computing, thetbeir personal information, and also to have knowledge td da
are certain requirements such as adaptability, resoueseigg collection being operated by authorized services by aizédr
scalability, mobility, frequent network disconnectiorsnd service providers. Moreover, privacy-preserving cortaxare
self-awareness need to be met. Therefore, a mobile congputiechnologies are still an open subject for resource-ptstti
cloud has to be aware of resource scarcity, availability amgvices on what measures that privacy is secured. In thigsen
quality of its service to enable diverse mobile computing etthe issue with contextual data ownership in a collaborative
tities located in an efficient scale by considering some @specloud networks along with data anonymity suffers from pri-
of mobility, low connectivity and finite power source, and/acy of user, and needs to establish trust and authenticatio
finally dynamically engage with these entities depending dnust is only established if security policies are modeled t
their requirements and workloads. In addition, faulttatee regulate accesses to resources and credentials.
becomes very important due to mobility, and its effects an ne
work signal losses. Most importantly, adaptability while-e V. CONCLUSION
ploying mobile cloud based computing resource is not an easyT his survey provides an overview of the context-awareness
task. Especially, augmentation process [183] and optimuf ubiquitous/mobile sensing. It provides a comprehensive
selection of resource types stand as a big challenge to eahaftroduction to the definition, representation and infeeen
and optimize computing capabilities of mobile devices th&@f context. It also points out the importance of context-
perform context-aware applications on a resource constra@ware middleware design, and the challenges that are faced
platform. This challenge would be more difficult where plugluring design process and system integration. Moreover, th
and play smart objects are deployed in an environment tieat 88per categorizes and gives an inside-out look into context
willing to communicate other smart objects around through &ware applications depending on the interested context and
inter-operable backbone. Moreover, mobile cloud computiidentifies opportunities in this research area. Looking int
will have a highly heterogeneous networks in terms of waglethe future, we tend to believe that with the evolution of
connectivity. Different mobile nodes using variant radicess Smartphones, software developers have empowered to create
technologies will brings about some important issues su€fntext-aware applications for recognizing human-cendri
as low bandwidth, service congestion, network failures ag@mmunity based innovative social and cognitive actigifie
latency in data transfer. To overcome these shortcominggy situation and at any location. This leads to the exciting
widely used fourth generation networks have emerged ¥sion of forming a society of “Internet-of-Things”. With
promising technologies by increasing bandwidth capacity fthe highlights of this survey, we intend to enlighten cutren
mobile subscribers. Also, Femtocells [184] could create tgends and future directions to enhance the existing tfésleo
connection to the cloud for short-range areas by enablipgd drawbacks in mobile sensing while context is being
mobile subscribers to gain access to the network that sesufiferred under the intrinsic constraints of mobile devieesl
in a highly economical network structure to use only sufficie around the emerging concepts in context-aware framework
resources in meeting user demands at any given access pigfinologies.
without impacting the large-scale network immediately.
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