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ARTICLE INFO ABSTRACT
Article history: Miniaturized smart sensors are increasingly being used to collect personal data which
Available online 20 March 2012 embed minute details of our everyday life. When shared, the data streams can easily be
- mined to draw a rich set of inferences regarding private behaviors and lifestyle patterns.
gi{g?i:)d;l privacy Disclosure of some of these unintended inferences gives rise to the notion of behavioral
Trust privacy different from traditional identity privacy typically addressed in the literature.
Information sharing From the provider’s perspective, we summarize these privacy concerns into three basic
Sensory data questions: (i) Whom to share data with? (ii) How much data to share? and (iii) What data
to share?

In this paper, we outline the architecture of SensorSafe as a software-based framework
with support for three basic mechanisms to allow privacy-aware data sharing. First, it
provides a library of routines accessible using a simple GUI for providers to define fine-
grained, context-dependent access control. Second, it uses the trust network between
consumers and providers to derive the optimal rate of information flow which would
maintain both provider privacy and consumer utility. Finally, it introduces a compressive
sensing based feature-sharing procedure to further control the amount of information
release. We provide simulation results to illustrate the efficacy of each of these
mechanisms.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

As personal spaces are being increasingly instrumented through smart and miniaturized sensors, unobtrusive acquisition
of personal data has made the information privacy problem more relevant than ever before. The canonical privacy problem
as stated for population scale databases can be summed up as: given a collection of personal records from individuals, how
would one disclose either the data or “useful” function values such as correlations or aggregate population characteristics
computed over the data, without revealing any individual information. This notion of absolute privacy is analogous to the
principle of semantic security formulated for crypto-systems in [1]. A hypothetical “privacy-first” approach to the above
problem would be to disclose no data or random data bearing no relation to the actual database. However, the explicit
utility requirements from the disclosed information prohibits the use of such a scheme. In addition, the utility requirement
in conjunction with adversarial access to externally available auxiliary information makes it impossible to achieve absolute
privacy [2]. Current research in database privacy has thus evolved into a study of the trade-offs involving degradation in the
quality of information shared, owing to privacy concerns, and the corresponding effect on its utility [3,4].
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While privacy of identity [5-7], or of specific data attributes [2,4] has been extensively studied, the proliferation of
smartphones with embedded and wireless connected wearable sensors presents a different kind of privacy problem which
we term as behavioral privacy. The miniaturized sensors, ported by individuals as they perform their daily activities, collect
large amount of personal data. This data is more often than not shared with a variety of applications such as for crowd-
sourcing [8,9], environment monitoring [10], healthcare and behavioral studies [11-13], carbon exposure tracking [14],
traffic estimation [15,16], and smart grid monitoring [17]. These applications in turn provide services in the form of both
population- and individual-level inferences. However, the sensory data shared is really our digital footprint, embedding
in it minute details of our everyday lives. Mining it in conjunction with externally available auxiliary information allows
an adversary to draw a rich set of unintended private behavioral inferences. For example, physiological data shared for
healthcare studies can also be used to infer addictions like smoking [13], location traces for traffic estimation reveal travel
routes, frequently visited places [ 18], smart meter data can be used to reveal personal habits [ 19], occupancy [20] and so on.

Increased awareness of the stakes involved in sharing personal data, therefore, gives rise to behavioral privacy concerns
that hinder user participation. Users choose to deliberately transform or obfuscate data to preserve privacy but when done
arbitrarily, this obfuscation leads to a reduction in application utility, or worse, database poisoning. From a data provider’s
(user’s) perspective the fundamental privacy questions while sharing sensory data are: (1) What data should be shared and
with whom? (2) How much data should be shared? and (3) Can the data be transformed such that privacy requirements and
data consumer’s (application’s) utility needs are simultaneously satisfied? The privacy requirement of the provider and the
utility objectives of the consumer creates a tension which is at the crux of the behavioral privacy problem.

1.1. Privacy: reality or myth

[s privacy something that people really care about? Recent surveys in [18,21] summarized interesting opinions about
privacy from multiple independent studies. While people in general were oblivious to privacy violations and amenable to
sharing their data, the perception quickly morphed into one of concern when apprised of the various sensitive inferences
that could be drawn and the resulting consequences.

Some of the recent high-visibility fiascos have further established privacy as a important sharing constraint. Examples
include the de-anonymization of the publicly released AOL search logs [22] and the movie-rating records of Netflix
subscribers [23]. The large datasets in question were released to enable data-mining and collaborative filtering research.
However, when combined with auxiliary information the anonymized datasets were shown to reveal identity information
of individual users.

Sharing sensory data also presents unique challenges. For example, households in the US are being equipped with smart
meters to act as providers of temporally fine-grained energy consumption reports. The utility companies act as consumers
of the data, and use the reports to better estimate the domestic power consumption leading to optimized distribution
and control of the power grid. However, as shown in [17] and more recently reported in [19], several unintended and
sensitive inferences such as occupancy and lifestyle patterns of the occupants can be made from the data in addition to
total power consumption. In fact, privacy has been identified as a major challenge in fine-grained monitoring of residential
spaces [20]. Similarly, in medical research the continuous physiological data collected by wearable sensors can be used to
infer potentially sensitive information such as smoking or drinking habits [ 13], food preferences and so on. While “informed
consent” of the provider is the currently used sharing policy, it can be easily overlooked causing privacy violations as
exemplified in [24]. Similarly, participatory sensing applications require users to voluntarily upload their personal data
for purposes of a study. For example, PEIR [14], a popular tool for computing carbon exposure levels during trips, requires
users to upload their travel paths. In the absence of adequate privacy transformation, the uploaded traces could be used to
find out frequently traveled paths, workplace, home and other sensitive locations.

Thus, privacy threat during data disclosure is real and unless adequate mitigation steps are taken it could cause a delay
in the adoption of various ubiquitous sensing based applications.

1.2. Privacy problem characterization

The various privacy threats could be grouped into two broad classes [25]:

Identity violation: This occurs when the identity of a provider is revealed from the shared data. Typically, during
database disclosures, the goal is to provide privacy in numbers by anonymizing released data to make the provider identity
indistinguishable within a sub-population. However, privacy violation occurs when the shared attributes in association with
auxiliary information are used to reveal identity (e.g. include Netflix [23] and AOL [22] fiascos). A detailed analysis of the
challenges and pitfalls of data anonymization can be found in [26].

Inference violation: This occurs when the data from a provider is used to draw unintended inferences in addition to the
intended ones agreed upon by the consumer during data sharing. The list of unintended inferences defines the privacy
requirements of the provider. This class of violations manifests itself when the user shares personal data (e.g. data collected
using body-worn sensors and smartphones) for personalized services such as remote health monitoring, stress-level
monitoring, activity tracking, pollution exposure and so on. For reasons of personalization, the provider is in most of the
above cases willing to reveal his identity and instead protect against a specific set of inferences that could be drawn using
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the shared data. For example, in a medical study ECG data is needed to monitor variability in heart rate. However, the data
should not be used for other sensitive inferences such as smoking or drinking habits of the individual [13]. The attacks using
smart meter data [17], location traces in PEIR [14], or the unauthorized use of DNA samples in [24] indicated in Section 1.1,
fall under this category.

1.3. Our contribution

The behavioral privacy problem while sharing sensory data is an instance of the inference violation class where the
provider wants to protect against specific behavioral inferences. However, as discussed earlier there are multiple aspects to
the problem (who?, how much?, what?). Therefore, any solution framework needs to piece together the individual solution
elements and allow the provider a unified interface for privacy-aware data sharing. In this paper, we describe SensorSafe
as a framework which uses three distinct mechanisms for addressing the provider’s privacy concerns. Specifically, our
contributions are as summarized below:

(i) Whom to share with?: A provider should be able to control both the data being shared as well as the consumers who can
access the data. To this end, we describe the first mechanism that provides fine-grained access control primitives and
abstraction functions for data obfuscation before sharing. A provider could use these primitives to define constraints
on one or multiple filters such as data attributes, context (location, sensor type) and consumer identity.

(ii) How much to share?: The resolution of the data shared depends on multiple factors such as the information quality
requested by the consumer, the trust that the provider has on the consumer, as well as the trust network of the
consumer. While variability in mutual trust is a precursor to privacy concerns, a consumer’s trust network is indicative of
the possible information leakage due to collusion. Our second mechanism uses the trust network between the producer
and consumers to quantify the information leakage for a given data resolution. It then uses a linear program to find the
optimal data resolution which maximizes the consumer utility and minimizes producer’s information leakage.

(iii) What to share?: Once we have decided whom to share with and how much to share, the final step is to choose what
data to share and how to obfuscate it such that no more than the desired amount of information is shared. This
amount is such that the revealed inferences could be computed accurately whereas the concealed ones could not be
computed. To this end, we start by formalizing the notion of behavioral inference privacy. We note that existing privacy
approaches primarily designed to protect against complete data reconstruction and identity privacy no longer work for
the inference violations which can occur over partially reconstructed data and when the provider identity is already
revealed. Finally, we propose a compressive sensing [27] based privacy mechanism for solving the inference problem
and provide preliminary results obtained using our approach.

1.4. Organization of the document

In Section 2, we present a classification of the various approaches that have been proposed for preserving privacy. In
Section 3, we summarize the design and architecture of SensorSafe. In Section 4, we discuss our trust network aware data
sharing scheme. This is followed by Section 5 where we discuss the formalization of the behavioral privacy problem and
propose a compressive sensing based privacy mechanism. We conclude in Section 6.

2. Related work

In this section, we classify the various approaches that have been proposed for preserving privacy. For each class, we
show that the techniques are either inadequate for handling the behavioral privacy problem or in their current form are
infeasible for practical implementation.

2.1. Obfuscation strategies

Obfuscation can be described as an act of deliberate data transformation, performed prior to information release, for
reasons of privacy preservation. Information release can occur either in a non-interactive or an interactive setting. In a
non-interactive setting, the (database) provider performs a sanitization of the data by removal of personally identifiable
information (PII) followed by obfuscation of the quasi-identifiable (QI) attributes to protect linkages to the sensitive
attributes from the released dataset. A popular metric for data obfuscation is k-anonymity [5]. It requires that every record
in the released dataset is indistinguishable from at least k — 1 other records on the released attributes. Operations such
as generalization, suppression, permutation and perturbation are performed on the attributes for achieving k-anonymity
before their release. A detailed survey of these techniques could be found in [28,18]. Not only are some of these operations ad-
hoc in nature, but in the absence of diversity among the selected k users, and in presence of auxiliary information, [26,29,23]
have shown that de-anonymization of data is possible leading to identity violation. Newer metrics such as I-diversity [6] and
t-closeness [7] have also been proposed to thwart de-anonymization attacks. Roughly speaking, I-diversity requires that
any group of obfuscated QI attributes has at least [ distinct values for the sensitive attributes. The additional diversity does
provide better protection compared to k-anonymity but still suffers from vulnerability to probabilistic inference attacks.
t-closeness requires that the distance between the distributions of the sensitive attributes in the released dataset and in the
entire database should be less than a pre-defined parameter t. It does not protect against identity disclosure.
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In an interactive setting, the provider discloses information as responses to consumer queries. In this setting the provider
has greater control over the released data. For example, in [30] providers independently perturb their data using an
application-specific noise model. The noise model is such that it preserves privacy against typical reconstruction attacks,
while allowing the consumer to compute community aggregates from the collected data. In [31], a data transformation
scheme is proposed for the provider which preserves a regression model of original data. Similarly, [32] uses the concept of
data slicing and mixing for preserving privacy, and allows computation of statistical additive and non-additive aggregation
functions at the consumer.

Metrics such as k-anonymity and I-diversity protect against identity privacy. However, for personalization of requested
service identity is typically revealed while sharing sensory data. t-closeness protects against specific data values, but
does not protect against specific inferences. In addition, while [30-32] protect against full reconstruction attacks, private
inferences could be made even on partially reconstructed data.

2.2. Differential privacy

Proposed in [2] with strong provable privacy guarantees, differential privacy aims to replace the mostly ad-hoc
obfuscation strategies with a principled data release mechanism for statistical databases. To achieve differential privacy
it is required that the response to a query including or excluding a particular database entry is indistinguishable in the
probabilistic sense. This in turn guarantees that an adversary gains negligible information on individual records upon
observing the output of a computation regardless of the auxiliary data available to him.

Formally, consider any two databases D1, D, € R" that differ in exactly one entry. Let k7 (D) and x5 (D) be the responses
from D and D,, respectively, where k; is the mechanism used to respond to an arbitrary query f (). Arandomized mechanism
k¢ provides e-differential privacy if

PUg(D) €S) _
P(Kf(Dz) € S) -

where S C Range(ky). The ratio in Eq. (1), represents the “knowledge gain” for an intruder moving from one version of the
database to the other. In order to achieve differential privacy, [2,33] suggest the use of Laplace based noise addition. However,
the calibration of noise magnitude to simultaneously maintain data utility while preserving privacy is an important issue
that needs to be addressed for making it practically relevant [34].

Predicated on aggregate query/response systems, differential privacy protects against a specific inference which is the
membership disclosure of an entry in a population-scale database. However, behavioral privacy is due to a set of private
inferences drawn over individual (not population-scale) data streams shared by providers.

(1)

2.3. System-based approaches

Various system architectures, primarily for online social networks, have been proposed to help providers retain
ownership and exercise greater control while sharing data. We summarize some of them here and outline how SensorSafe is
built on top of these existing design principles. However, it is worth emphasizing that the access control problem addressed
by these existing systems is orthogonal to the inference violation problem which arises when access control has already
been applied and the consumer is in possession of the shared data.

In [35], provider-owned Virtual Individual Servers are proposed as proxies for uploading user generated content instead
of third-party services. A decentralized social networking infrastructure with personal data storages called Personal Cloud
Butler has been advocated in [36]. Several implementations of access control lists (ACLs) have also emerged. For example,
Lockr [37] implements ACL based on social attestation and Persona [38] uses attribute-based encryption with an out-of-
band key exchange. While the above systems are for social networks, Locaccino [39] supports fine-grained ACLs, needed
by sensory data. However, they lack access control based on a user’s context or behavior which is important to protect
privacy of behavioral information in sensor data—a feature we incorporate in SensorSafe. Finally, Personal Data Vault
(PDV) [40] is a recent work which allows individual data storage, fine-grained ACLs for sensory data, implements a privacy
rule recommender, along with trace audit functions tracking how the data is used by the consumer. While SensorSafe closely
follows the PDV model, it enhances its fine-grained access control by having context-aware rule processing and notification
for conflicting rules. PDV also provides a single personal data storage whereas SensorSafe facilitates multiple individual data
stores with the broker service. In addition, it takes into account the trust network between the providers and consumers for
guiding the privacy policies.

2.4. Cryptographic techniques

In cryptography, a pre-defined secret in the form of a decryption key is used to differentiate a valid consumer from
an adversary. However, in the privacy setting, consumer and adversary are one and the same and there does not exist
a secret key to set them apart. This prevents existing cryptographic solutions from being applicable to the privacy
setting [2]. However, some of the recent techniques summarized below provide interesting possibilities toward adoption of
a cryptographic solution for the privacy problem.
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Fig. 1. SensorSafe framework.

Functional encryption: A recent technique proposed in [41] supports restricted secret keys that enable a key holder to
learn a specific function of the encrypted data and nothing more about the data. Functional Encryption takes a different
approach toward public key encryption. Traditionally, encryption is targeted toward a specific consumer bearing a secret
key and the access to the encrypted data is all or nothing—either one can decrypt and read the entire plain text or nothing at
all. Instead in functional encryption, the provider does not encrypt for a specific consumer, but only specifies how to share
the data. Also a decryption key allows a consumer to learn only a function of the encrypted data. However, this technique is
still in its infancy and currently supports a small number of functions (inner products only).

Homomorphic encryption: Often referred to as the holy grail of encryption, the homomorphic scheme allows one to
perform computations on the cipher text itself without the need to decrypt it. Therefore the consumer never has access
to the plain text effectively restricting the subset of functions (or unintended inferences) which could be computed using
the shared data. A fully homomorphic scheme proposed in [42] supports the computation of any function over the encrypted
data. However, the computation and storage overhead of implementing fully homomorphic encryption are limitations that
need to be overcome before it could be used.

2.5. Inference sharing

Is it possible to share the inferences, or the data mining results instead of the raw data samples? In most of the cases, the
models used for computing the results are proprietary to the consumer prohibiting their sharing. At other times, the provider
might not be willing to incur the storage and the computational resources required for computation of the inference. In
addition, the consumer might not want to reveal the inferences he would like to draw using the collected data. Finally,
inference drawn using aggregate data, is more accurate when raw data is used rather than soft fusion of individual decisions.

3. Whom to share with: the sensorsafe framework

The personal sensory information collected is typically shared with various types of consumers such as doctors, medical
researchers, third-party applications, cloud-based services and so on. Each of these parties require different levels of access
as well as have different requirements on data. We describe the design and architecture of SensorSafe [43] and detail the
fine-grained context-aware access control policies that it currently supports. In addition, the framework also serves as an
implementation base for the two other privacy mechanisms proposed in this paper—controlling data rate by exploiting the
trust graph between consumers and providers in Section 4 and feature sharing based privacy control mechanism in Section 5.

The SensorSafe framework as shown in Fig. 1 is a network of users (providers and consumers), a broker, and data stores.
The data stores are maintained on private computers, for e.g. at providers’ homes, or trustworthy organization’s servers
creating a virtual machine pool administered locally by their owners. This approach allows providers to store data on their
private servers and reduces the risk of data compromise. Providers upload sensory information to their data stores and define
privacy rules for the uploaded data. Consumers in turn send their requests for data to the broker, which after appropriate
authentication, forwards the request to the providers. After processing of the privacy rules applicable to the requesting
consumers, data transfer takes place directly between the data stores and the consumers. This provides for distributed
processing and prevents the broker from being a performance bottleneck.

In SensorSafe, the flow of information is controlled by a rule-based sharing mechanism. Each provider maintains a distinct
notion of privacy, and rule-based sharing can provide personalized control over shared data. Our framework allows providers
to define rules that allow or deny sharing based on a variety of conditions such as current contexts, locations, timestamps,
consumers, and so on. Providers can also choose to transform data (data obfuscation) before sharing. Our rule-processing
module, Privacy Engine, currently supports generalization of locations and timestamps and abstraction of raw sensor data to
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Table 1
Various options for privacy rules.

(a) Conditions and actions

Options Attributes

Consumer UserName, GroupName

Location Label, Region
Conditions Time Range, Repeat

Sensor Sensor Name

Context Moving, Not Moving, Still, Walk, Run, Bike, Drive, Stress, Smoke, Conversation
Actions Allow, Deny, Modify

(b) Example obfuscation options

Context Options

Location Coordinates, Street Address, Zipcode, City, State, Country

Time Hour, Day, Month, Year

Activity Accelerometer Data, Still/Walk/Run/Bike/Drive, Move/No Move
Stress ECG/Respiration Data, Stressed/Not Stressed,

Smoking Respiration Data, Smoking/No Smoking

Conversation Microphone/Respiration Data, Conversation/No Conversation,
Hiding home Cloaking, Noise, Rounding

context labels. An important concern in rule-based sharing is that the defined rules could sometimes be at conflict leading
to unintentional information leakage. The Privacy Engine also takes into account rule inconsistencies before enforcing them.
Additional details of each of these subsystems are discussed in the following sections.

3.1. Privacy rules

Table 1 summarizes the conditions, actions, and data obfuscation options supported for defining privacy rules.

Basic conditions: Using the consumer condition, providers can specify whether a consumer or a group of consumers will
be affected by a rule. Providers specify locations by defining a region on a map based user interface. Temporal conditions are
defined as continuous time ranges (e.g., from Feb. 2011 to Mar. 2011) or repeated times (e.g., 3-6 pm on every Wednesday).
In addition, using the sensor condition, providers can select specific sensor channels in their privacy rules.

Context condition: Providers can also define rules for context information drawn from sensor data. For example,
accelerometer data can be used to infer the driving context and respiration sensors can be used to detect conversation
episodes [44]. Using contexts as conditions, providers can define rules such as “do not share any data while driving”. or “do
not share data while in conversation”.

Actions: In addition to the allow and the deny rules, providers can transform data to share coarse and abstract information.
For example, instead of raw acceleration data, providers can choose to share transportation modes (e.g., still, walk, run, bike,
drive) or just abstract it further to binary levels of stationary versus non-stationary.

3.2. Rule language

Providers can define privacy rules using our web-based user interface. These rules are then encoded using our rule
language, and processed by the Privacy Engine before being translated into database query language. In SensorSafe, we
choose to store user rules in the rule language format for its flexibility of translation to any target query language.

We use MongoDB [45] as our database and extend its query language, which currently supports a complete set of
conditional and Boolean operators, to include repeated temporal constraints and corresponding actions. As shown in the
following example, the repeat time option is motivated by the cron [46] time specification utility under Linux operating
system. The digits in order represent seconds, minutes, hours, days of week, days of month, months, and years. The action
option includes allow, deny, and modify with detailed specifications of what operation should be performed on the data. For
example, a rule:

[

{ consumer: ’Cathy’,

action: { modify: ’HideHome’} 1},

{ consumer: ’Cathy’,
location_label: ’Campus’,
repeat_time: ’* x 9-18 1-5 * * %7,
context: ’Conversation’,
action: { deny: ’Stress’ } 1,

]

means that “Share all data with Cathy but hide home location, and do not share any stress related data while in conversation
on campus during weekdays from 9 am to 6 pm”.
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Fig. 3. Location preferences specified using a map interface.

To simplify privacy rule creation of a user, we provide a web-based user interface as shown in Figs. 2 and 3. It consists
of a map, calendars, dialog boxes, and common HTML Ul components. Although usability study remains is a planned future
work, we believe users will find it easy to use these interfaces owing to familiarity with the Ul elements used.

3.3. Conflicting rules

Data from a single sensor can be used to infer multiple contextual information (e.g., a respiration data can be used for
stress, conversation, and smoking). Therefore, it is essential to determine the consistency of the user defined privacy rules.
For example, if we have a rule denying smoking contexts, respiration data should not be shared even though we have a
rule that allows the data (conflicting rules). This is because once the respiration data are provided, smoking can be inferred
from the data. The Privacy Engine maintains the relationships between sensors and the various contexts to guarantee that

the data release is consistent with the privacy rules. In case of conflicts, providers are notified. Currently, the relationships
between contexts and sensors are obtained from domain experts.

3.4. Trust model and feature sharing mechanism

The producers and consumers need to register with the broker to obtain authentication keys. In addition, we envisage
that in the future, the broker would also provide providers/consumers with an interface to provide ratings about

337
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trust .
Consumer Provider

rating upload

Fig. 4. Computing trust scores from consumer ratings.

consumers/providers after a data transaction. This rating will be used to derive trust scores and support the mechanism
described in Section 4. In addition, every data store will locally implement the feature sharing mechanism in Section 5 and
transform data before sharing.

4. How much to share: balancing utility and privacy

We consider a problem setting where a single provider wants to determine the resolution (defined later) at which it can
share data with multiple consumers while satisfying its privacy and utility requirements. Using resolution as the primitive,
the provider specifies different privacy requirements for each consumer. This is the maximum resolution at which it is
willing to share data. Each consumer also advertises the minimum resolution that it needs for providing the desired utility.
If the provider strives to exactly satisfy every consumer request it could end up violating its own privacy. Similarly, not
receiving the appropriate data resolution will result in degraded service utility at the consumer. We want to determine the
optimal resolution at which the provider should share data with each consumer to “closely” satisfy both privacy and utility
constraints.

An observation is that there exists prior trust relationships (defined later) between consumers. This trust network is
an important indicator of information flow within a network. Consequently, the decision of how much data to share with
a particular consumer depends not only on the trust between the provider and consumer, but also on the existing trust
network between a consumer and other neighboring consumers [25].

In this section, we start by defining the notion of data resolution, followed by a brief description of trust. We then
formulate the trade-off between utility and privacy as a linear program and provide simulation results at the end.

4.1. Resolution

Information quality of data is a function of multiple dimensions such as accuracy, currency and completeness [47].
Depending on the privacy desired, a combination of these dimensions can be appropriately obfuscated. We summarize
the effect of these parameters into a single dimensionless number, which we refer to as resolution r, and normalize it to
values in [0, 1]. The interpretation of r is application and data specific. For location data, r could be accuracy with which
the GPS coordinates are provided to location based services [18,43]. An intuitive interpretation for the discrete case could
be specifying the exact GPS coordinates versus specifying coarser levels such as building number, street name, city, or state.
For images, r could be the fraction of the total number of pixels shared which again relates to the accuracy of the image.
For accelerometer data used for activity detection [48], or physiological data such as ECG [13], it could mean the fraction of
the total number of samples shared (completeness). For real-time monitoring applications, r could be the tolerable delay
(currency). Also, not every data type would retain their utility after obfuscation. Hence, we restrict ourselves to the class of
sensory data such as location, accelerometer, images, speech etc. which offers utility even after changes to resolution.

4.2. Modeling trust

An important aspect of any system with multiple data providers and recipients is the modeling and update of trust
relationships between its constituents [49,50]. The process of defining and interpreting trust is highly subjective [51],
and as a result trust has found diversified uses depending on the application domain. For example, in e-commerce
applications [52,53] trust is used as a soft security mechanism. In p2p and social networks it establishes well-knit credible
social structures [54] and in sensor networks it is used to assess the quality of information received [55]. In this paper, we
follow the definition in [56] and interpret trust as a subjective probability with which an agent assesses that another agent
or group of agents will perform a particular action both before he can monitor such action or independent of his monitoring
capability.

Similar to interpretation, there are different ways to quantify reputation-based trust [57]. We follow a transaction-based
model [55], the underlying idea of which is illustrated in Fig. 4. The provider uploads data, which is rated by the consumers.
Trust is then derived as a function of the given ratings. The Beta distribution based trust model [58], due to its flexibility
and simplicity is a popular way of quantifying trust and has been used in several trust-based frameworks [59,55]. The beta
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rou'

Fig.5. Atrustsubgraph. i, jand k are the consumers. t;; and t; represent trust thati hasonjand k. ry ;, I j and ry i are resolutions that the provider shares
with i, j, and k respectively.

probability density functions are used to combine the positive and negative ratings from consumers for successful and
a failed transactions respectively, and derive average trust scores. SensorSafe, in future, would implement an interface for
consumers to provide ratings based on the transaction experience with the providers. This would form the basis for deriving
the trust scores between the providers and the consumers.

From a privacy perspective, trust has different implications for the data provider and consumer. At the provider, the
heterogeneity in trust scores manifests itself as different privacy requirements. If a consumer is not trustworthy, then strict
privacy is desired. At the other end, the consumer’s trust on a provider is an indicator of the expected quality of information.
A trustworthy provider is expected to provide high quality information.

Thus, the notion of trust, which in many ways is the precursor to privacy concerns, is also a unifying entity—describing
both the desired obfuscation at the provider and the expected utility at the consumer.

4.2.1. Trust graph

LetT = (V, E) be aweighted complete graph with vertex set V representing the producers and consumers in the network
and the edge weights representing the trust scores between them. We will refer to the graph T as the trust graph. In case
of past transactions between nodes, we compute direct trust based on the ratings of those transactions [50]. In the absence
of any transaction, we compute indirect trust assuming a transitive propagation of trust relationship in the network [54,60].
In case of multiple paths, we conservatively consider the minimum value as the trust score. Thus, every node computes
and maintains trust for every other node in the network. Fig. 5 shows a subgraph of T that exists between provider s and
consumers i, j and k. The edge weights represent trust scores. Thus, 0 < t; < 1is how much i trusts j and a higher value
indicates greater trust. We interpret t;; as the probability with which i will share data with j. We assume that T is known to
the provider.

4.3. Notation

Let R be the set of consumers. The vector R = {ry, 1, ..., g} is the set of maximum data resolution requested by
consumers. Parameter 0 < « < 1, is provider specified and represents the tolerance scale to privacy violation. A lower
value of « implies higher privacy, and a higher value means allocating each consumer closer to the requested resolution
resulting in greater utility. Vector R, = {ry ;, 75 5, .-+, r;‘ RI} is the set of optimal resolutions at which the provider should
share data for a particular value of .

4.4. Risk of leakage

Intuitively, risk is an educated guess of the possible loss or damage that could arise out of a particular decision. There are
multiple subjective interpretations of risk. In our work, we quantify risk of disclosure = probability of disclosure x value of
information where probability of disclosure is a prediction that a consumer will share the data with other consumers based
on prior experience and value of information is the damage sustained by the provider of information due to unauthorized
disclosure [61].

For predicting node behavior, we use the edge weights in the trust graph T. For estimating the value of information
leaked, we assume a monotonic relation between data utility and data resolution. Thus, if F(r) is the utility at resolution r
thenr; > r, = F(r{) > F(ry). This is generally true for applications, as better quality data typically yields better results.
Thus, the value of information leaked is proportional to the increase in utility at the consumer which was otherwise allocated
a lower resolution by the provider.

Let the trust subgraph and the resolution at which the provider shares data with consumers i, j and k be as shown in
Fig. 5. To compute the risk that a provider s incurs when it wants to share data with consumer i at resolution r, ; we consider
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Fig. 6. Shape of the cost function for different number of consumers. Total number of nodes in the network is 200.

the following two cases:

(i) ra,i < roj: Tisk = 0. This is because we assume that information leakage occurs when a consumer obtains information
at a resolution higher than that determined by the provider.
(il) To,i > Ty ji TiSK = tj X (To,i — T'aj)-

We compute the risk between pairs i and k in a similar way. Combining the two cases above we define the risk function f (-)
for node i as:

FT Ry = Dty x [rai = Fayl" (2)

ieR i}
where [x]" = max(x, 0). Eq. (2) is for one level of direct leakage from a given consumer (i.e., froms — i — j for consumer
i). It does not account for the higher level cascaded leakages (i.e., froms — i — j — k(two levels) or other higher levels for
consumer i). While there exist possibilities of these leakages, as we go down the chain for higher levels, the probability of
leakage (which is the product of the trust scores) decreases. Therefore, for reasons of simplicity, we take into account only

the direct leakages which, under consistent trust score, are also the most dominant terms of the cascaded series for each
consumer.

4.5. Formulation

Using the risk function in Eq. (2) we can define the following numerical optimization problem.

minZ(a(ri—ra,f>+<1—a) > ry[ra,i—ra,jr) (3)

icR (eR j##i)
Strei <1 VieR (4)
Te.i > min{ri|r; € R}. (5)

The objective function in Eq. (3) has two parts. The first part weighed by parameter « tries to maximize the utility by
allocating a resolution r, ; as close to resolution r; sought by the consumer. We refer to the difference between the sum of
the allocated resolution and the requested resolution as the fidelity cost. Thus, higher fidelity cost yields lower utility. The
second part weighed by 1 — « is the risk function derived in Eq. (2). Constraint (4) ensures that the allocated resolution
does not exceed the maximum resolution required by the consumer. Constraint (5) ensures that the allocated resolution is
at least as high as the minimum of the application specific resolutions requested by the consumers. This problem can be
easily cast as a Linear Programming problem [62] and the optimal solution R}, found using standard LP solvers. R}, contains
the sharing constraint for each consumer.

4.6. Simulation results

We summarize our simulation results in this section. We used a connected graph of 200 nodes as our network. We
randomly choose a provider node. The trust values for the graph T are chosen uniformly from the interval [0, 1]. The number
of consumers in the set R are chosen from {10, 20, 50, 75, 100}. The sets are incrementally generated implying that the set
of 20 consumers, includes the set of previously chosen 10 consumers and so on. The R vector, for the selected consumers,
is generated by choosing values uniformly from the interval [0, 1]. The solution is scalable to a larger network of nodes and
number of consumers.

Variation in cost function.

The variation in the optimal objective function value for different number of consumers is shown in Fig. 6. Each plot
is generated by varying « in steps of 0.1 in the interval [0, 1]. The cost function has a unimodal distribution and scales
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200.

with increase in the number of consumers. This is because of the additive increase to the individual terms of the objective
function.

Variation between «, Application Fidelity and Total Risk: Fig. 7 shows how average risk and fidelity cost changes with « for
different number of consumers. For smaller values of « the risk of leakage is minimized whereas for larger values utility is
preferred over leakage.

Contribution to the total cost: The contribution of fidelity cost and risk of leakage toward the total cost (Eq. (3)) is shown in
Fig. 8 for different number of consumers. As shown in the figure by the black lines, the domain of « values can be partitioned
into three distinct regions, and the provider could choose to operate in any of the regions. In the first region, the provider
chooses to minimize risk over application fidelity. In the third region, the provider prefers application fidelity over risk.
However, in the middle region, both fidelity cost and risk contribute to the total cost. The provider could choose « in this
range to balance non-zero risk and non-zero application fidelity. This middle region is important because trade-off between
risk and application fidelity is only possible in this region. Depending on the number of consumers, the boundary values of
« for these three regions could vary.
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5. What to share: protecting behavioral privacy

The final step of the solution framework provided by SensorSafe is to determine what data to share with the consumer
such that inference violations could be prevented. In this section, we start by formalizing the notion of inference violation.
We then propose a compressive sensing based obfuscation scheme for selectively perturbing features extracted from data
while satisfying the utility and privacy objectives. Finally, we present a case study using a simple example scenario to show
the proof-of-concept of the proposed approach.

5.1. Formalization

Let U be the universe of computable inference functions. A function g(-) € U, takes as input data x € R" and computes
y € R", ie. g(x) = y. Let O be any obfuscation function applied on the input X to produce X, i.e. X = O(x). The error in
the computation of inference function g(-) using actual and obfuscated data is given by err(g) = |g(x) — g(X)|. We define
numbers s, | € R such that [ >> s. We define a “black” list B and a “white” list W such that W, B C U,and W N B = (. Thus,
given the subsets W and B, we want to design an obfuscation function O, such that:

YweW err(w) <s (6)
Vb eB err(b) > I (7)

Eq. (6) corresponds to the white-listed inference functions which should be computed with low error or high accuracy.
The number s can be interpreted as the maximum tolerance to utility loss. Similarly in Eq. (7), using the same obfuscated
data (0O(x)) the black-listed functions should not be accurately computable. | is the minimum privacy constraint that should
always be satisfied for functions in subset B. Set G = U \ {B U W} are functions which are not classified into either of the
two lists. A “privacy first” approach would try to protect against this “gray” list of excluded functions as well. The privacy
scheme O should satisfy the constraints in Egs. (6) and (7) simultaneously.

5.2. Sharing features

For a multi-dimensional data stream x € R", an inference can be modeled as a function computed over a subset of the
data dimensions. Let us consider two inference functions w() and b(), that are part of the white and black list respectively.
That is, the user is willing to share the inference derived by computing y,, = w(x), but would like to conceal the inference
derived by computing y, = b(X). Notice that a core assumption here is that the function w() is non-invertible, because if
w() was invertible, a malicious user with access to y,, could compute the black list inference through a trivial intermediate
step: y, = b(w™'(y,)). In practice, the assumption is both reasonable and desirable. When true, the assumption implies
that the inference function is dimensionality reducing. This is a significant implication for our work and is a cornerstone of
our approach. Computing an inference is typically achieved by first projecting the data onto a feature space that “sparsifies”
it in that domain. The domain chosen for sparsification depends not only on signal characteristics but also on the inference
being evaluated. The projection step is followed by an identification and elimination step that retains only the dominant
features in the sparse domain, hence reducing the signal’s dimensionality. One may view, therefore, each inference function
in the white and black lists as defining a distinct basis in which the signal is sparse.

We have considered compressive sensing [27,63] for determining the level of data obfuscation. Compressive sensing
has been widely used for near accurate reconstruction of sparse signals using sampling rates much lower than traditional
Nyquist sampling. Compressive Sensing [27] also provides tools to provide guarantees for recovering a sparse signal given
a projection matrix that delivers a set of transformed data measurements. By applying the fact that each inference can be
viewed effectively as a sparsifying basis, we can utilize existing theoretical results to design appropriate transformations
that meet our requirements. An example of this is shown in Figs. 9 and 10.

5.3. Case study

Consider an arbitrary signal, shown in Fig. 9 in the time domain and its representations in the discrete cosine transform
(DCT) [64] and discrete wavelet transform (DWT) with Haar wavelets [65]. The DCT domain is known to pick smooth
undulations in the signal while the Haar transform is known to identify edges. While this is a simple example, it could easily
be extended to more sophisticated linear classification algorithms such as support vector machines, where the feature basis
and the SVM parameters are used collectively to define the inference function. Fig. 10 is an obfuscated version of the raw
signal arrived at by applying a “confusion” function that explicitly preserves the information in the dominant component
(feature) in the DCT domain while deteriorating the quality of the corresponding feature in the DWT domain. To achieve this
obfuscation, we keep the dominant component in the DCT domain and discard the rest of the signal. We then, transform
this signal to the DWT domain and after setting the dominant feature close to zero, take an inverse DWT of the normalized
signal. The signal in the time domain is shared. Fig. 10 illustrates that the obfuscation, while degrading the sparsity of the
DCT domain signal, does not obscure the most significant inference feature. On the other hand, the coefficients in the DWT
and time domain are distorted to a large extent.

From compressive sensing results, it is known that the degradation in reconstruction accuracy varies monotonically
with the number of samples as well as the per-sample error within a known probabilistic bound [63]. This implies that,
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when using compressive sensing, the highest magnitude coefficients are recovered first, even when the number of sample
measurements is insufficient for exact recovery. We exploit this property to restrict the number of measurements such that
only the dominant features in the white listed inference bases can be recovered but not the inference features in the black
list DWT domain with high probability. To achieve this, we precisely calibrate the distribution and amount of noise added
for obfuscating the values corresponding to the dimensions in the function b(). In addition, compressive sensing requires
us to work in domains where the signal has a sparse representation. This allows us to reduce the magnitude of the overall
noise that we need to add to the system allowing us to preserve utility while maintaining privacy.

Obviously, the compressive sensing approach fails for some classes of white and black list inferences. For example, if a
black list inference can be derived from a white listed one, or if the black list inference is just the identity. The key problem
to be addressed within this framework is that of defining an appropriate distance metric between inference bases to provide
the probabilistic guarantees in Egs. (6) and (7) to the data provider based on their choice of white and black listed behavioral
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inferences and parameters s and [ respectively. We look to extend this approach, over multiple different inference functions
the with varying privacy and utility concerns and under different interactions between the data dimensions.

6. Conclusion

In this paper, we recognize and present a new privacy issue that stems from sharing personal data streams—behavioral
privacy. Behavioral privacy arises when unintended inferences about lifestyle patterns are mined from shared data and we
showed how existing solutions to prevent identity privacy and privacy due to incomplete reconstruction become inadequate
as some inferences can be drawn from partial data too.

As a first step toward addressing these challenges, we described the design and architecture of SensorSafe. SensorSafe
takes into account multiple facets of the privacy problem and implements mechanisms to handle each of them. It starts with
providing a flexible user interface for fine grained and context dependent access control. Then, it takes into account the trust
structure between providers and consumers to determine the rate of information flow, and finally proposes a mechanism
which uses inferences as primitives together with compressive sensing to simultaneously achieve the utility guarantee for
the intended or white-listed inferences while simultaneously preventing the unintended or black-listed inferences.
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