내용
Callback	4
void updateDataTime(float pt)	4
void ProcessPendingData(PENDING_DATA_QUEUE *data)	4
void insertPendingData(int type, void* data, void *userdata)	4
void ProcessQueue()	4
BOOL __tpg_RSEp_checkRSERange(unsigned int uRSEID, unsigned int uVehicleID)	4
int print_error(char *fmt, ...)	4
void WaitNS2()	5
void SynchronizeNS2()	5
void PKT_handle_commsucc(PN2PDATA pkt)	5
void PKT_handle_commsucV2V()	5
Bool IsIncidentRaised()	5
Bool IsIncidentLink()	5
void mm(LINK* lp)	5
BOOL checkMsgValid(VHC_LIST_ENTRY* pList, TTDATA* pTTData)	6
void PrintVHCRefTable()	6
BOOL checkLinkDistanceValid(int linkID, VEHICLE* v)	6
void transmit(VEHICLE* src, VEHICLE* dest, float sendTime)	6
void SendVehicleExit(VEHICLE* vehicle)	6
float guess_next_time(VEHICLE* v)	7
INT_PTR CALLBACK LinkDlgProc(HWND hWndDialog, UINT uMsg, WPARAM wParam, LPARAM lParam)	7
SIM_xxx	7
void qpx_SIM_start()	7
void qpx_SIM_stop()	7
NET_xxx	7
void qpx_NET_postOpen(void)	7
void qpx_NET_close(void)	8
void qpx_NET_start(void)	8
void qpx_NET_complete()	8
void qpx_NET_timeStep()	8
VEHICLE* qpg_NET_vehicleByUniqueID(int vid)	8
VHC_xxx	9
void qpx_VHC_timeStep()	9
void qpx_VHC_release(VEHICLE* vehicle)	9
void qpx_VHC_arrive(VEHICLE* vehicle, LINK* link, ZONE* zone)	9
void qpx_VHC_trasfer(VEHICLE* vehicle, LINK* link1, LINK* link2)	9
void qps_VHC_insertDataIntoDB(pList, pTTData, sourceMyself)	10
void qps_VHC_insertDataIntoDBbyVID(vid, pTTData, sourceMyself)	10
void qps_VHC_disposeTTData(TTDATA *pTTData)	11
void qpx_VHC_detector(VEHICLE* vehicle, LINK* link, DETECTOR* detector)	11
TGV_xxx	11
void qpx_TGV_transfer(VEHICLE* vehicle, LINK* link1, LINK* link2)	11
void qpx_TGV_move(VEHICLE* vehicle, LINK* link, float distance, float speed)	11
Others	12
void qpx_GUI_editorSelection()	12
void qpx_GUI_tool(char *name)	12
int qpo_RTM_decision(LINK* link, VEHICLE* vehicle)	12
void mergeHeap(HEAP_ENTRY* dest, HEAP_ENTRY* src)	12
void qpx_DRW_modelView()	12

[bookmark: _Toc420336623]Callback
[bookmark: _Toc420336624]void updateDataTime(float pt)
	ProcessPendingData()//pendingData 처리

[bookmark: _Toc420336625]void ProcessPendingData(PENDING_DATA_QUEUE *data)
	//if(data->type == 0) 데이터베이스에 데이터 입력
	//if(data->type == 1) N2PDATA 통신
	qps_VHC_insertDataIntoDB()//TTDATA를 DB에 저장
	PKT_handle_commsucc()//TODO: 분석 필요
	PKT_handle_commsuccV2V()//link 정보 전송

[bookmark: _Toc420336626]void insertPendingData(int type, void* data, void *userdata)
	//PENDING_DATA_QUEUE 를 할당받아서
	//type, data, userdata등을 입력하고
	//data_queue에 insert

[bookmark: _Toc420336627]void ProcessQueue()
	//N2P packet을 처리
	//PN2PDATA로부터 패킷을 읽어서
	//pkt->pkt_type==PKT_SIMINIT : simulation 초기화, simulation mode 설정
	//PKT_TIME_ARRIVAL : NS2Time을 pkt_timearrival.time으로 맞춤
	//PKT_COMM_SUCCESS : 받은 패킷 처리(insertPendingData)
	//PKT_COMM_SUCCESS_V2V : 받은 패킷 처리(insertPendingData)
	//else : 에러출력
	ReadPacket()[PacketIO.c]//N2PQueue에서 패킷을 읽음
	updateDataTime()//TODO: 분석 필요
	PKT_handle_commsucc()//TODO: 분석 필요
	insertPendingData()//PendingDataQueue를 data_queue에 추가
	PKT_handle_commsuccV2V()//link 정보 전송
	print_error()//에러 출력

[bookmark: _Toc420336628]BOOL __tpg_RSEp_checkRSERange(unsigned int uRSEID, unsigned int uVehicleID)
	//vehicle과 link의 거리가 V2V_MSG_DIST_LIMIT보다 작은지 판단
	qpg_NET_vehicleByUnique()
	qpg_POS_vehicle()
	qpg_VHC_link()

[bookmark: _Toc420336629]int print_error(char *fmt, ...)
	//에러 출력
	PRINT_DEBUG()
	OutputDebugString()
	MessageBeep()//경고음

[bookmark: _Toc420336630]void WaitNS2()
	//packet을 읽어서 if(pkt->pkt_type == PKT_COMM_SUCCESS) 일때만 PKT_handle_commsucc()호출
	//나머지 경우엔 pkt을 free()
	ReadPacket()
	PKT_handle_commsucc()//TODO: 분석 필요

[bookmark: _Toc420336631]void SynchronizeNS2()
	//simulationTime이 NS2Time보다 클때만
	//N2P 패킷 처리
	qpg_CFG_simulationTime()//simulationTime 얻기
	ProcessQueue()//N2P 패킷 처리

[bookmark: _Toc420336632]void PKT_handle_commsucc(PN2PDATA pkt)
	//TODO: 분석 필요
	tps_RSE_insertData()//TODO: 분석 필요

[bookmark: _Toc420336633]void PKT_handle_commsucV2V()
	//pkt의 출처와 목적지가 없으면 종료
	//있으면 transmit()..TODO: 분석 필요
	qpg_NET_vehicleByUniqueID()//vhc_list에서 vid에 해당하는 것이 있는지 검색
	transmit()//TODO: 분석 필요
	WriteQueue()//큐에 씀
	qpg_VHC_uniqueID()
	qpg_CFG_simulationTime()
	__DebugBreak()

[bookmark: _Toc420336634]Bool IsIncidentRaised()
	//시간이 10분~20분일 경우 true.
	qpg_CFG_simulationTime()

[bookmark: _Toc420336635]Bool IsIncidentLink()
	//link이름이 “222:286” 이거나 “205:220” 일경우 true
	qpg_LNK_name()//link이름을 가져옴

[bookmark: _Toc420336636]void mm(LINK* lp)
	//호출 X...?

[bookmark: _Toc420336637]BOOL checkMsgValid(VHC_LIST_ENTRY* pList, TTDATA* pTTData)
	//호출 X..?
	//몇몇 주석처리된 부분에서 호출..
[bookmark: _GoBack]	//V2V_MSG_TIME_LIMIT보다 오래되었거나
	//V2V_MSG_DIST_LIMIT보다 멀리 있으면 FALSE
	//아니면 TRUE

[bookmark: _Toc420336638]void PrintVHCRefTable()
	//reference table 출력
	print_error()//에러 출력
	CONTANING_RECORD()//분석 필요

[bookmark: _Toc420336639]BOOL checkLinkDistanceValid(int linkID, VEHICLE* v)
	//vehicle이 link내에 있는지 검사
	qpg_NET_linkByIndex()//linkID에 맞는 LINK를 반환
	qpg_POS_link()//link의 위치
	qpg_LNK_length()//link의 길이
	qpg_POS_vehicle()//vehicle의 위치
	qpg_VHC_link()//vehicle이 속한 link

[bookmark: _Toc420336640]void transmit(VEHICLE* src, VEHICLE* dest, float sendTime)
	//TODO: 분석 필요
	checkLinkDistanceValid()//vehicle이 link내에 있는지 검사

	HEAP_COUNT()
	qpg_POS_vehicle()
	qpg_VHC_link()
	HEAP_GET()
	logMessage()
	HASH_FIND()
	HASH_INSERT()
	HEAP_COPY()
	HEAP_GET()
	WaitForSingleObject()
	ReleaseMutex()
	HEAP_MERGE()
	
[bookmark: _Toc420336641]void SendVehicleExit(VEHICLE* vehicle)
	//”\x03” 메시지를 hP2NQueue에 씀

	qpg_VHC_uniqueID()
	qpg_CFG_simulationTime())
	WriteQueue()
	__DebugBreak()

[bookmark: _Toc420336642]float guess_next_time(VEHICLE* v)
	//not implementation

[bookmark: _Toc420336643]INT_PTR CALLBACK LinkDlgProc(HWND hWndDialog, UINT uMsg, WPARAM wParam, LPARAM lParam)
	//다이얼로그 출력

[bookmark: _Toc420336644]SIM_xxx

[bookmark: _Toc420336645]void qpx_SIM_start()
	//시뮬레이션 시작시 실행
	//시뮬레이션이 시작됨("\x04")을 P2NQueue에 씀
	ProcessQueue()//N2P 패킷 처리
	WriteQueue()//큐에 씀

[bookmark: _Toc420336646]void qpx_SIM_stop()
	//종료됨("\x05")을 hP2NQueue에 씀
	WriteQueue()//큐에 씀

[bookmark: _Toc420336647]NET_xxx

[bookmark: _Toc420336648]void qpx_NET_postOpen(void)
	//각종 환경설정
	//NS2에 시뮬레이션이 시작한다는 메시지를 보냄
	//디텍터테이블(디텍터), 매치테이블 생성(링크)

	print_error()//error 출력
	OpenCircularQueue()[sharedQueue.c]//queue open or create
	UD_EXTRACT()//UserData 얻기
	alloc_new_match_entry()//새로운 match table entry를 할당, 만약 존재하면 해당 item을 리턴
	WriteQueue()//큐에 해당 내용을 씀
	MtPrepareMatrix()[matrix.c]//TODO : 분석 필요
	tps_SVR_init()[Server.c]//RSETable,LinkLength, LinkAvgRSE, 초기화
	tps_V2V_init()[Server.c]//pV2VFirstData,TailData 초기화
	tps_SVR_insertRSE()[Server.c]//RSE테이블에 insert
	tps_SVR_insertLoop()[Server.c]//linkID insert
	shmOpen()
	shmAccess()

[bookmark: _Toc420336649]void qpx_NET_close(void)
	//각종 자원 해제
	CloseCircularQueue()[SharedQueue.c]//큐를 닫음
	tps_V2V_cleanup()[Server.c]//V2VData 해제
	tps_SVR_cleanup()[Server.c]//lpvRSETable,dblLinkDataAverage,dblLinkDataSum,uLinkDataCound 해제
	shmClose()

[bookmark: _Toc420336650]void qpx_NET_start(void)
	//로그파일들의 경로,이름를 설정

[bookmark: _Toc420336651]void qpx_NET_complete()
	//시뮬레이션이 끝에 도달함
	//시뮬레이션이 complete됨("\x06")을 hP2NQueue에 씀
WriteQueue()//큐에 씀
	print_error()//error 출력

	qpg_CFG_simulationTime()//시뮬레이션 완료 시 시간 측정
	

[bookmark: _Toc420336652]void qpx_NET_timeStep()
	//5분마다 특정한 속도를 기록
	qpg_CFG_simulationTime()

	ProcessQueue()//N2P 패킷 처리
	updateDataTime()//TODO:분석필요
	logLTAGroundTruth()//LTAGroundTruth로그를 씀
	WriteQueue()//큐에 씀
	WaitNS2()//NS2를 기다림

[bookmark: _Toc420336653]VEHICLE* qpg_NET_vehicleByUniqueID(int vid)
	//vhc_list에서 vid를 이용해서 검색
	CONTANING_RECORD()//TODO: 분석 필요

[bookmark: _Toc420336654]VHC_xxx

[bookmark: _Toc420336655]void qpx_VHC_timeStep()
	//1초마다 수행하는 부분에서는 차량의 속도가 느리면 교통체증이 있는것으로 판단하고 데이터를 저장
	//1시간이 되면 SPECIAL_PASTCROSSWAY TAG가 있는 차량의 로그를 출력
	
	VEHICLE_SAFETY_CODE()
		qpg_VHC_uniqueID()//vehicle을 가리키는 포인터가 여러개일 때
		qpg_VHC_original()//원래의 포인터를 가져옴

	tps_V2V_insertData()[Server.c]//V2V_DATA_CHAIN의 맨 뒤에 데이터를 추가
	updataDataTime()//TODO:분석필요
	insertPendingData()//PendingDataQueue를 data_queue에 추가
	void ProcessPendingData()//pendingData 처리
							 //data->type==1 : 데이터 통신
	qps_VHC_insertDataIntoDB()//TTDATA를 DB에 저장
	logTravelTime()//TravelTime로그를 씀

[bookmark: _Toc420336656]void qpx_VHC_release(VEHICLE* vehicle)
	//VEHICEL이 zone에서 나올때(생성될 떄)
	//qpx_VHC_trasfer()를 통해서 수행
	qpg_VHC_link()
	qpg_UTL_randomInteger()//랜덤으로
	qps_VHC_special()//special TAG를 설정
	qpg_LNK_zone()//qpx_LNK_transfer()에서 사용할 zoneIndex를 구함
	
	VEHICLE_SAFETY_CODE()
	qpx_VHC_transfer()

[bookmark: _Toc420336657]void qpx_VHC_arrive(VEHICLE* vehicle, LINK* link, ZONE* zone)
	//zone(destination)에 도착했을때(사라짐)
	//qpx_VHC_transfer()를 통해서 수행
	qpg_ZNE_index()

	qpx_VHC_transfer()

[bookmark: _Toc420336658]void qpx_VHC_trasfer(VEHICLE* vehicle, LINK* link1, LINK* link2)
	//qpx_VHC_release를 위한 if(!link2)
	//qpx_VHC_arrive를 위한 if(!link1)
	//else link2에서 link1로 이동
	//TODO:분석 필요
	
	VEHICLE_SAFETY_CODE()//get original vehicle pointer
	logMessage()//message log쓰기
	tps_V2V_insertData()[Server.c]// V2V_DATA_CHAIN의 맨 뒤에 데이터를 추가
	updateDataTime()//TODO:분석필요
	qps_VHC_insertDataIntoDB()//TTDATA를 DB에 저장
	insertPendingData()//PendingDataQueue를 data_queue에 추가
	qps_VHC_disposeTTData()//TTDATA의 refCount를 감소. 만약 0이되면 TTDATA를 삭제
	tpg_V2V_getAverage()[Server.c]//DB LinkData의 평균을 반환
	tpg_RSE_getAverage()[Server.c]//simulation시간이 5분이 넘지 않았으면 50을 반환
				 //매 5분마다 …TODO: 분석 필요
				 //평균속도를 반환하는 것 같음…
	search_match_entry()//match table 검색

	logTravelTime()//TravelTime Log 기록
	logLTAEstimated()//LTAEstimate Log 기록
	logRealSpeed()//speed Log 기록

	HASH_INIT()[hash.h]
	HEAP_DELETE()[heap.h]
	HASH_CLEANUP()[hash.h]
	HASH_FINE()[hash.h]
	HEAP_COUNT()[heap.h]
	HEAP_GET()[heap.h]

	SendVehicleExit()//Vehicle이 사라짐을 뜻하는 메시지를 P2NQueue에 씀
	qpx_VHC_trasfer()

[bookmark: _Toc420336659]void qps_VHC_insertDataIntoDB(pList, pTTData, sourceMyself)
	//TTDATA를 db에 저장
	HASH_FIND()
	HASH_INSERT()
	HASH_INIT()
	HEAP_COUNT()
	HEAP_GET()
	qps_VHC_disposeTTData()//refCount를 감소
	WaitForSingleObject()
	HEAP_INSERT()
	ReleaseMutex()

[bookmark: _Toc420336660]void qps_VHC_insertDataIntoDBbyVID(vid, pTTData, sourceMyself)
	//vid오 vehicle을 불러와서 해당 하는 것이 있으면 insertDataIntoDB()
	qpg_NET_vehicleByUniqueID()//vhc_list에서 vid에 해당하는 것이 있는지 검색
	qps_VHC_insertDataIntoDB()//TTDATA를 DB에 저장

[bookmark: _Toc420336661]void qps_VHC_disposeTTData(TTDATA *pTTData)
	//refCount를 감소시키고 만약 0이면 free()

[bookmark: _Toc420336662]void qpx_VHC_detector(VEHICLE* vehicle, LINK* link, DETECTOR* detector)
//vehicle이 loop detector를 지날 때 호출
//
qpg_DTC_index()//detector index
	UD_EXTRACT()//user data 얻기
	tps_DTC_insertData()[server.c]//TODO: 분석 필요

[bookmark: _Toc420336663]TGV_xxx

[bookmark: _Toc420336664]void qpx_TGV_transfer(VEHICLE* vehicle, LINK* link1, LINK* link2)
	//tag된 vehicle이 다른 링크로 넘어갈 때 호출
	//P2NDATA를 만들어서 hP2NQueue에 씀

	VEHICLE_SAFETY_CODE()
	guess_next_time()
	WriteQueue()//큐에 씀
	print_error()//에러 출력
	WaitNS2()//NS2를 기다림
	SynchronizeNS2()//NS2 동기화

[bookmark: _Toc420336665]void qpx_TGV_move(VEHICLE* vehicle, LINK* link, float distance, float speed)
	//태그된 차량이 움직일 때 호출(10m 마다)
	//if(!V2V_COMM) RSE의 범위내에 있는지 판단 후
	//else RSE의 범위내에 있는지 판단하는 과정 없이
	//P2NDATA를 만들어서 hP2NQueue에 씀

	qps_VHC_usertagDec()//RSE와 거리가 멀어지면 tag를 감소시켜 통신을 하지 않기 위해서 사용
	qpg_CFG_simulationTime()
	qpg_POS_vehicle()
	qpg_LNK_angle()

	VEHICLE_SAFETY_CODE()
	ProcessQueue()//N2P 패킷 처리
	sendVehicleExit()//Vehicle이 사라짐을 뜻하는 메시지를 P2NQueue에 씀
	guess_next_time()
	WriteQueue()//큐에 씀
	print_error()//에러 출력
	WaitNS2()//NS2를 기다림
	SynchronizeNS2()//NS2 동기화

[bookmark: _Toc420336666]Others

[bookmark: _Toc420336667]void qpx_GUI_editorSelection()
	qpg_EDT_selectedLink()
	qps_GUI_printf()

[bookmark: _Toc420336668]void qpx_GUI_tool(char *name)
	//GUI setting

[bookmark: _Toc420336669]int qpo_RTM_decision(LINK* link, VEHICLE* vehicle)
	//경로를 결정
	//TODO: 분석 필요
	qpg_VHC_uniqueID()
	qpg_VHC_original()
	qpg_LNK_exitLinks()//exit로 이용가능한 수를 return
	qpg_VHC_special()
	tpg_UTL_weightedShortestPath()[server.c]//TODO: 분석필요

[bookmark: _Toc420336670]void mergeHeap(HEAP_ENTRY* dest, HEAP_ENTRY* src)
	//호출 X ..
	insertHeap()
	qps_VHC_disposeTTData()
	deleteHeap()

[bookmark: _Toc420336671]void qpx_DRW_modelView()
	qps_DRW_solid()
	qps_DRW_colour()
	qps_DRW_linewidth()
	qps_DRW_hollowCircleXY()
	qpg_NET_linkByIndex()
	qpg_NET_link()
	qpg_LNK_length()
	qpg_POS_link()

페이지 13 / 13

