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Abstract

Network computing attracts the attention of many computer researchers and scientists
because it can better utilize existing computing resources. The key challenge of network
computing is the search for the best method to distribute computing resources to
submitted tasks. This thesis demonstrates a distributed dynamic scheduling of composite
tasks on a grid computing system. It describes how a computer program was written to

simulate a real world computer network.

Submitted tasks consist of subtasks represented by DAGs. The adopted scheduling and
mapping include two steps: one external and the other internal. External scheduling and
mapping are performed on the task level, and internal scheduling and mapping are done
on the subtask level. A task and its subtask must go through these two steps to be

allocated computing resources.

This research analyzes different factors on the distributed dynamic scheduling algorithm.
The factors include Subtask Waiting Queue size, submitted task number, task submission
interval, and network infrastructure. The percentage of tasks completed before deadline

and average response times are used as indexes of network computing performance.
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1 Introduction

Heterogeneous computing changes a network of heterogeneous computers into a single
computing resource entity. The central theme of heterogeneous computing is to utilize
computing resources of different machine architectures. On one hand, many users find
that the computers they use are not powerful enough to meet their purposes; on the other
hand, many of the computers in a typical network are idle, having no job to process. This
situation happens within a LAN, or even WAN-wide. Ideally, if computing resources can

be shared, it could dramatically increase our work efficiency.

The greatest challenge to network computing is to obtain a near-optimal algorithm to
solve the mapping and scheduling problem. Several characteristics should be considered:
the dynamic nature of computer traffic loading, the intensity of task sub missions, the
infrastructure of the computer network, and the fair competition for utilizing

computational resources.

This research paper presents an analysis of distributed dynamic scheduling of composite
tasks on a grid computing system environment. The examined network infrastructure
consists of a WAN composed of many LANs. Multiple tasks are submitted. Each task has
a Directed Acyclic Graph (DAG) structure representing subtasks and data dependences
between them. A task is scheduled based first on an immediate mode external mapping
scheduling algorithm, and then on a batch mode internal mapping and scheduling

algorithm.



External scheduling determines in which LAN the task is to be executed. It views a LAN
as a signal computing entity, and views each task as independent and undividable (no
subtasks). After a task arrives in a LAN, subtasks are mapped to different computer nodes
for parallel computing. The mapping and scheduling of subtasks are managed by internal

scheduling.

This thesis is organized as follows: In Chapter 2, an overview of the related literature is
presented, and recent technological advances that justify our research are explained. In
Chapter 3, details of scheduling and mapping algorithms adopted in this research are
discussed. In Chapter 4, the design and implementation of the simulation program is
presented. Chapter 5 shows the experimental results of the simulation and discusses them.

The conclusion is stated in Chapter 6.



2  Literature Review

2.1 Heterogeneous Network Environments

Recent advances in software and hardware technology have greatly improved the
performance of a Network of Workstations (NOW). Very often in a NOW environment,
machines are owned by individual users whose typical processing needs rarely require the
full capacity of their workstation. Conversely, some users may have computationally
intensive tasks that are beyond the capacity of the workstation he or she owns.
Consequently, if each user were restricted to running tasks within the boundaries of a
single workstation, precious computational resources would be wasted. This raises the
challenge of developing a load-balancing environment to utilize available computational

resource more efficiently.

The nature of a connected workstation network is heterogeneous. Heterogeneity takes a
number of forms:
1) Heterogeneity of a configuration, whereby hosts may have different
processing power, memory space, disk storage, and so on;
2) Architectural heterogeneity, that makes it impossible to execute the same code
on different hosts;
3) Operating system heterogeneity, where hosts have different operating systems

running and may be incompatible [ZhW92].



However, for this research paper, only the heterogeneity of a configuration was
considered, in which we assume that a task can be executed on any computer node in the

NOW.

Besides heterogeneity, a NOW system has three other unique features in comparison with
a multiprocessor or a multicomputer system:

1) Low bandwidth communication: Even when high-speed networks are used,
the inter-node communication still causes bottleneck problems. Therefore,
only coarse-grained or medium-grained parallel tasks are suitable for running
on a NOW.

2) Random network topology: A NOW system connects workstations in a
random way, and its topology may change from time to time in practice.

3) Multidirectional scaling: A NOW system can be scaled in three directions: by
increasing the number of workstations, by upgrading the power of the

workstations, and by a combination of the two [Du].

2.2 DAG Model

In this thesis, we define a task as an independent, computationally intensive application
sent by different users. A parallel task can be divided into subtasks with data dependence
between them. By the loop-unraveling technique, computational loops can be subdivided
into a number of subtasks. Usually a large class of data-flow computation problems and

many numerical algorithms (such as matrix multiplication) do not have conditional



branches or indeterminism in the program, thereby making them suitable candidates for
subdivision. In addition, in many numerical tasks, such as Gaussian elimination or fast
Fourier transforms (FFT), the loop bounds are known during compile-time. As such, one
or more iterations of a loop can be deterministically encapsulated in a subtask. [KwA99].

These techniques made parallel processing of a task possible.

Based on the discussion above, a parallel task can be represented by a Directed Acyclic
Graph (DAG), which is illustrated in Figure 1. In a DAG, V'is a set of v nodes and E is a
set of e directed edges. G=(V, E), where the set of vertices V={v,, v,, ... v,} represents the
set of subtasks to be executed, and the set of weighted, directed edges E represents
communication between subtasks. A node in the DAG represents a subtask that is a set of
instructions that must be executed sequentially without preemption in the same processor.
The weight of a node is computation cost. The edges in the DAG correspond to the
communication messages and precedence constraints among the nodes. The weight of an

edge is referred as communication cost. Thus e, = (v;,v,) € E indicates communication

from subtask v; to v;, and |e;| represents the volume of data sent between these subtasks.
The node- and edge-weights are usually obtained by estimation using profiling
information of operations such as numerical operations, memory access operations, and
message-passing primitives. In a DAG, the source node of an edge is called the parent
node while the sink node is called the child node. A node with no parent is called an entry
node and a node with no child is called an exit node. As shown in Figure 1, N2 is the

parent of N4 and N5, N4 and N5 are the child nodes of N2. NI is the entry node, and N§



and N8 are exit nodes, and the line in bold is the crucial path of the task.

[KwA99][IvO98].

Figure 1. A Task DAG Graph

Subtask processing can either be preemptive or non-preemptive. After a node has been
selected for execution, non-preemptive subtask processing dictates that the subtask
cannot be moved even if a more suitable node is available. In contrast, preemptive
processing entails stopping the process, moving the subtask to the new node, and
resuming its execution. Preemptive processing is much more costly than a non-

preemptive transfer in two senses: First, the implementation and maintenance of the



mechanisms necessary to encapsulate, transfer, and resume execution from this complex
state are expensive. Second, since preemptive processing causes an overhead that is much
greater than that of the non-preemptive variety, it is not obvious what performance
improvement might result beyond non-preemptive processing [KrB93]. For this thesis, a
non-preemptive DAG represents a subtask structure that assumes that once a subtask
starts on a machine, it cannot be stopped. If it is stopped for some unexpected reason, like

machine failure, it has to be restarted again.

23 Mapping and Scheduling Algorithm

The problem of mapping and scheduling multiple tasks can be divided into two
categories: task mapping and scheduling, and subtask mapping and scheduling. In task
mapping and scheduling, independent tasks are scheduled among the network of
workstations to optimize overall system performance. In contrast, the subtask scheduling
and mapping problem requires the allocation of multiple interacting subtasks of a single
parallel task in order to minimize the completion time. Task scheduling usually requires
dynamic run-time scheduling because it is not a priori decidable, the subtask mapping
and scheduling problem can be addressed both statically and dynamically [KwA99]. In
this thesis, a multiple task computing simulation in a heterogeneous environment is used,

therefore both task and subtask mapping and scheduling are addressed.



2.3.1 Task Level Mapping and Scheduling

Task level mapping and scheduling considers a scenario where each task is independent,
and there is no communication between them. Those independent tasks compete for
computational resources, and the task level mapping and scheduling heuristics attempt to

match these tasks with available computational entities.

The task mapping heuristics can be grouped into two categories: dynamic heuristics and
static heuristics. Dynamic heuristics can be further grouped into two categories:
immediate mode and batch mode heuristics. In the immediate mode, a task is mapped as
soon as it arrives. In the batch mode, tasks are not mapped as they arrive; instead they are
collected into a set that is examined for mapping at prescheduled times called mapping
events. The independent set of tasks that are considered for mapping at the mapping
events is called a meta-task. A meta-task can include newly arrived tasks (i.e., the ones
arriving after the last mapping event) and the ones that were mapped in earlier mapping
events but did not begin execution. While immediate mode heuristics consider a task for
mapping only once, batch mode heuristics consider a task for mapping at each mapping
event until the task begins execution. For immediate mode there is no mapping delay
between mapping events, the tasks are mapped right after they arrive. However, as a
tradeoff, since immediate mode can only map tasks once, its performance is not as good

as batch mode when the arrival of tasks is very intensive [MaA99] [SiS00].



There are five different types of immediate mode heuristics. These are 1) minimum
completion time (MCT); 2) minimum execution time (MET); 3) switching algorithm
(SA); 4) k-percent best (KPB); and 5) opportunistic load balancing (OLB). The MCT
heuristic assigns each task to the machine that results in that task’s earliest completion
time in order to balance the load. The MET heuristic assigns each task to the machine
that performs that task’s computation in the least amount of execution time. The MET
heuristic can potentially create load imbalance across machines by assigning many more
tasks to some machines than to others. The SA heuristic is a combination of MCT and
MET. The idea behind it is that when the tasks are arriving in a random mix, it is possible
to use the MET, at the expense of load balancing until a given threshold, and then use the
MCT to smooth the load across the machines. SA uses the MCT and MET heuristics in a
cyclical fashion depending on the load distribution across the machines. The purpose is to
have a heuristic with the desirable properties of both the MCT and the MET. The KPB
heuristic is another form of a combination of MET and MCT. The heuristic considers
only a subset of machines while mapping a task. The subset is formed by picking the m
x(k/100) best machines based on the execution times for the task, where /00/m<k< 100.
The task is assigned to a machine that provides the earliest completion time in the subset.
If k=100, then the KPB heuristic is reduced to the MCT heuristic. If k=100/m, then the
KPB heuristic is reduced to the MET heuristic. The OLB heuristic is very simple; it
assigns a task to the machine that becomes ready next, without considering the execution
time of the task onto that machine. If multiple machines become ready at the same time,

then one machine is arbitrarily chosen. [MaA99] [SiS00].



Three batch mode heuristics are presented here: (i) the Min-min heuristic, (i1) the Max-
min heuristic, and (iii) the Sufferage heuristic. The Min-min heuristic is archived by
executing following step:

1) For each task find the earliest completion time and the machine that obtains it.

2) Within these earliest completion times, find the minimum, map the task to the

machine.

3) Update computational entity free time.

4) Repeat step 1, 2, and 3 until all tasks are mapped.
The Max-min heuristic is similar to the Min-min heuristic. It differs from the Min-min
heuristic in step 2, which instead of finding the minimum the Max-min heuristic is to find
the maximum. The Max-min is likely to do better than the Min-min heuristic in cases
where there are many more shorter tasks than longer tasks. The Sufferage heuristic is
based on the idea that better mappings can be generated by assigning a machine to a task
that would “suffer” most in terms of expected completion time if that particular machine

is not assigned to it [MaA99][SiS00].

In contrast to dynamic task mapping heuristics, static heuristics perform task mapping in
a statically (i.e., off-line, or a predictive manner). Static heuristics assume all tasks are
known before they are mapped. The static OLB (opportunistic load balancing) heuristic
is similar to its dynamic counterpart except that it assigns tasks in an arbitrary order,
instead of order of arrival. The UDA (user directed assignment) heuristic works in the
same way as the MET heuristic except that it maps tasks in an arbitrary order instead of

order of arrival. The fast greedy heuristic is the same as the MCT, except that it maps
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tasks in an arbitrary order instead of their order of arrival. The static Min-min heuristic
works in the same way as the dynamic Min-min, except a meta-task contains all the tasks
in the system. The static Max-min heuristic works in the same way as the dynamic Max-
min, except a meta-task has all the tasks in the system. The greedy heuristic performs
both the static Min-min and static Max-min heuristics, and uses the better of the two

solutions [BrS01].

2.3.2 Subtask Level Mapping and Scheduling

Subtask level mapping and scheduling, also referred as DAG mapping and scheduling,
considers a scenario where each subtask is related, and there is data dependence between
them. These related subtasks compete for computational resources, and the subtask level
mapping and scheduling heuristics are to match these tasks with available computational

entities and increase overall system performance and computational usage.

In DAG scheduling, the target system is assumed to be a network of workstations, each
of which is composed of a processor and a local memory unit; they do not share memory
and communication between them relies solely on message-passing. The processors may
be heterogeneous or homogeneous. However, DAG scheduling assumes every module of
a parallel program can be executed on any workstation even though the completion times
on different processors may be different. The workstations are connected by an
interconnection network with a certain topology. The topology may be fully-connected or

of a particular structure such as a hypercube or mesh [Y. Kwok 99].
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Subtask mapping and scheduling algorithms exist in two forms: static and dynamic. As
mentioned, a parallel task can be represented by a DAG. In static scheduling, which is
usually done at compile time, the characteristics of a task (such as subtask processing
times, communication, data dependencies, and synchronization requirements) are known
before program execution. In dynamic scheduling, a few assumptions about the task can
be made before execution, and thus, scheduling decisions have to be made on-the-fly.
Dynamic schedulers usually can offer better performance, but the goal of a scheduling
algorithm includes not only the minimization of the program completion time but also the
minimization of the scheduling overhead. A dynamic approach, in contrast to static

scheduling, can increase the time-complexity of the scheduling algorithm [Y. Kwok 99].

Most scheduling algorithms are based on the list scheduling techniques. The basic idea of
list scheduling is to make a scheduling list (a sequence of subtasks for scheduling) by
assigning them some priorities, and then schedule those subtasks according to their

priorities [ Y. Kwok 99].

Two frequently used attributes for assigning priority are the t-level (top level), b-level
(bottom level), and p-level (partial level). The t-/evel of a node is the length of a longest
path (there can be more than one longest path) from an entry node to the node itself
(excluding itself). Here, the length of a path is the sum of all the node and edge weights
along the path. The b-level of a node is the length of the longest path (there can be more

than one longest path) to an exit node. Some scheduling algorithms do not take into

12



account the edge weights in computing the b-level. In such a case, the b-level does not
change throughout the scheduling process. This algorithm is referred to as the static b-
level. The p-level of a node is simply the computation cost of that given node; also, the p-
level does not change throughout the scheduling process. [KwA99][MaS99]. As it is

illustrated in Figure 1, a list of t-levels and b-levels are shown in Table 1.

Table 1. t-levels, b-levels, and p-levels for the DAG of Figure 1

Node t-level b-level p-level
N1 0 36 5
N2 8 19 4
N3 6 18 2
N4 14 12 2
NS5 16 11 3
N6 14 22 8
N7 11 11 6
N8 26 7 7
N9 29 1 1

Different algorithms use the t-level and b-level in different ways. Some algorithms assign
a higher priority to a node with a smaller t-level while some algorithms assign a higher
priority to a node with a larger b-level, or a larger p-level. Still some algorithms assign a
higher priority to a node with a larger (b-level — t-level). In general, scheduling in a
descending order of b-level tends to schedule critical path nodes first, while scheduling in
an ascending order of t-level tends to schedule nodes in a topological order. The
composite attribute (b-level — t-level) is a compromise between the previous two cases.
The notion behind the p-level was that by executing higher computationally intensive
subtasks first, the overall completion time of the task may be minimized

[KwA99][MaS99].
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List scheduling includes both static list scheduling and dynamic list scheduling. In static
list scheduling, the scheduling list is statically constructed before node allocation begins,
and most importantly, the sequencing in the list is not modified. A task is usually
scheduled on the processor that gives the earliest start time for the given task. Thus, at
each scheduling step, the task is selected first, then its destination processor. The
procedure of static list scheduling entails repeatedly executing the following two steps
until all the nodes in the graph are scheduled: 1) removing the first node from the
scheduling list; 2) allocating the node to a processor which allows the earliest start-time.
Dynamic list scheduling takes a different approach. After each allocation, the priorities of
all unscheduled nodes are re-computed, and consequently the scheduling list is then
rearranged. In this case, the tasks do not have a pre-computed priority. At each
scheduling step, each ready task is tentatively scheduled to each processor, and the best
task-processor pair is selected. Both the task and its destination processor are selected at
the same time. Thus, these algorithms essentially employ the following three-step
approaches: 1) determining new priorities of all unscheduled nodes; 2) selecting the node
with the highest priority for scheduling; 3) allocating the node to the processor that
allows the earliest start-time or earliest finish-time. Scheduling algorithms that employ
this three-step approach can potentially generate better schedules, but the tradeoff is the

scheduling time is increased [KwA99][RaGO00].

Both static and dynamic approaches of list scheduling have their advantages and

drawbacks in terms of the schedule quality they produce. Static approaches are better

14



suited for communication-intensive and irregular problems, where selecting important
tasks first is more crucial. Dynamic approaches are better suited for computationally
intensive applications with a high degree of parallelism, because these algorithms focus

on obtaining good processor utilization [RaG00].

2.3.3 Multiple Task Mapping and Scheduling

So far, we have discussed task mapping and scheduling, and signal DAG mapping and
scheduling. In this thesis, we analyze the behavior of multiple task (multiple DAG)
computing in a heterogeneous environment, therefore the objective of this research is to

study multiple DAG scheduling. However, there is little literature in this area.

Iverson presents a dynamic, competitive scheduling of multiple DAGs [IvO98]. In his
framework, each task is responsible for scheduling its own tasks. Thus, there is no
centralized scheduling authority. A task is scheduled without the knowledge of other
tasks; the task scheduler only knows the current work loading of the network. Iverson’s
algorithm is based on the expectation that if each task had the best mapping and

scheduling possible, the overall parallel computing performance would be optimal.
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3  Scheduling and Matching Algorithm

This chapter presents a detailed discussion of the scheduling and mapping algorithm. We
start with the definition and assumptions of the problem, and then we move on to a

detailed discussion of the algorithms under consideration.

3.1 Problem Definition and Assumption

Consider a WAN consisting of several LANs. All LANs in the WAN reach an agreement
to share their computing resources. In addition, the computer network nodes of each LAN
are also resource sharing. This makes it is possible that a subtask 7 of task j submitted

from computer network node w in LAN x is executed on computer network node y of

LAN z.

A task consists of a various numbers of subtasks, which are organized as a DAG. Within
the DAG, a DAG node represents a subtask and an edge represents the data dependency
between two subtasks. If there is no data dependency between two subtasks, they can be
executed on different workstations concurrently. However, in order to limit network
traffic, all task execution should be within a LAN. This means that all subtasks of a task
should be executed on machines within a specific LAN. When multiple tasks are
submitted for execution, they compete with each other for the available computational
resources. A mapping and scheduling algorithm is needed to fairly and efficiently utilize

available computational resources to execute these tasks.

16



The simulation of a distributed heterogeneous computer network is a difficult endeavor
due to the complexity of a WAN environment. In order to simplify the problem, the

simulation model was designed based on following assumptions.

A machine can only execute one subtask at a time (single programming), and a subtask
cannot coexist in memory with other subtasks on one computer node. Subtask execution
is based on a First In First Served (FIFS) basis. Once a subtask starts running, it competes
with other local tasks for resources and is scheduled by the operating system of that
computer network node. Therefore, the actual execution time of a subtask can vary from

the pre-estimated execution time due to the CPU loading.

Once a subtask starts, other subtasks have to wait until the running subtask is finished.
Subtask execution is non-preemptive, which signifies that there are no checkpoints for
subtask processes and that a subtask cannot be moved to another node after it starts. A
subtask only starts after all input data are available. It is assumed that no additional data
are needed during subtask execution. The output of a subtask, if any, is available only

after the subtask is completed.

The DAG of a task is known when it is submitted. Task information includes the DAG,
and deadline. Each task is represented by a set of communicating subtasks. These tasks
are organized using a DAG, G=(V, E), where the set of vertices V={v;, v, ... v}
represents the set of tasks to be executed, and the set of weighted, directed edges E

represents  communication  between tasks. Thus e, =(v,,v;)e E indicates

17



communication from task v; to v;, and |e;| represents the volume of data sent between
these tasks. However, in this research we assume that the communication cost of a task is
identical, therefore the communication cost |e;| between any subtask of a task are
identical. Nevertheless, the communication cost of different tasks can be different, which
means that |e;| of task A can be different from |e;| of task B. As mentioned, the execution
environment consists of a set of heterogeneous machine, which can be represented by the
set of M={m;, m,,...m,!. The computation cost function, C(v; m;), represents the
execution time of a individual subtask on each available machine. The task deadline is
the time line before when the user expects the task to be completed. It is assumed that all
users have the same priorities. Therefore the scheduler needs to meet as many task

deadlines as possible.

In the simulation model, it is assumed that network bandwidth and delay time are static,
which means they do not change with time. It is also assumed that no new workstations
join during the simulation, but some workstations can crash and be temporarily out of
service. However, it is assumed that a computer node failure will not affect network
communication, a computer node failure solely affects that machine is not able to execute

subtasks, and the external scheduler and internal scheduler are never crushed.

3.2 Mapping and Scheduling Algorithm

Mapping and scheduling in this research simulation model consists of two steps: external

mapping and scheduling, and internal mapping and scheduling. The external scheduling

18



involves WAN-wide, task-level, and distributed mapping and scheduling, whereas
internal scheduling involves LAN-wide, subtask-level, and centralized mapping and
scheduling. An external scheduler and internal scheduler reside in each LAN. An
external scheduler carries out external mapping and scheduling, and an internal scheduler

carries out internal mapping and scheduling.

External mapping and scheduling is task-level, thereby the external scheduler has no
knowledge of the associated DAGs and it views each LAN as a signal computational
entity. The responsibilities of external scheduler are: 1) receiving a task submitted by a
computer node of LAN; 2) sending a bidding request to an internal scheduler; 3) based on
bidding replies, received from internal schedulers, selecting a LAN that is best suited for

the task (external scheduling); and 4) receiving results from internal scheduler.

Internal mapping and scheduling is done on the subtask level, therefore the internal
scheduler has full awareness of subtasks. However, the internal scheduler has no
knowledge of other LANs. The computational entities for the internal scheduler are the
computer nodes within its LAN. The responsibilities of an internal scheduler are: 1)
replying to bidding requests according to current local LAN task loading; 2) receiving
tasks from an external scheduler; 3) conducting internal scheduling by sending subtasks
to the computer nodes of the local LAN for execution; 4) receiving subtask results from

computer nodes; and 5) sending task results back to the external scheduler.
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3.2.1 External Mapping and Scheduling

External scheduling is based on the MCT algorithm (which was discussed in Chapter 2)
to share the computing load among the LANs. The External scheduler archives the
completion time for a task through “bidding”. After an external scheduler receives a task,
it sends its bidding request to the internal schedulers, including the internal scheduler of a
local LAN, for “task auction”. The bidders (internal schedulers) reply to the request with
an Estimated Task Execution Time (ETET) of the task on their LAN. The algorithm for
calculating ETET will be explained in the next section of internal scheduling. After the
external scheduler receives all replies from the internal schedulers, it chooses a LAN
based on the MCT algorithm. The external scheduler determines the best suited LAN
based on the Estimated Task Response Time (ETRT). A Task Response Time (TRT) is
defined as the difference between the time the task would be returned and the time the
task would be sent. The ETRT is determined by considering three issues: ETET, Network

Transfer Rate (NTR), and Average LAN Credibility (ALC).

LAN Credibility (LC) represents the computing reliability of that LAN. After a task is
completed and sent back to the external scheduler, we get the LC of the LAN in which
the completed task was executed. It is the result of the Actual Task Response Time
(ATRT), which is the ATRT achieved after the task result has come back, divided by

ETRT claimed by the internal scheduler, which can be represented by Equation 1.
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o _ATRT,
"/ ETRT,,

Equation 1

Where: LC ; j= LAN credibility of LAN i for task j
ATRT ;; = Actual task response time of task j on LAN i.
ETRT ;; = Estimated task Response execution time of task j on

LAN i.

If the LC is higher than 1, it demonstrates that the internal scheduler overestimates the
computing ability of the LAN it represents. Conversely, if the LC is less than 1, it means
that the internal scheduler underestimates the computing ability of the LAN. The Average
LC (ALC) is a weighted average that is shown in Equation 2. The initial ALC is set to be

1.

ALC, =old ALC,-0.99+LC,,-0.01 Equation 2

Where: ALC ; = Average LAN credibility of LAN j
old ALC ;= Previous Average LAN credibility of LAN j

LC ;j = LAN Credibility of LAN j of task i

The external scheduler decides which LAN the task is sent to by the ETRT. This is

defined using Equation 3.

Task Data Size, N Task Outcome Size,

ETRT, = (ETET, , + =) ALC Equation 3
! ! NTR,, NTR,, !
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Where: ETRT;; = Expected task response time of job i in LAN j
ETET;; = Expected task execution time of job i in LAN j
ALC ;= Average LAN credibility of LAN j in the credibility table
of LAN k
Task Data Size ; = Size of task data of task i
Task Outcome Size; =Size of outcome of task i
Network Trans Rate ; = Network transfer rate between LAN j and

LAN k

Since every LAN has only one internal scheduler and external scheduler, the internal
scheduler and external scheduler are assumed to be located on the gateway of the LAN.
Therefore, if a task is assigned to a local LAN, no network data needs to be transferred.
In this case the second part of equation 3 is 0. After an external scheduler receives all
replies, it selects the LAN that offers the minimum ETRT and sends the job to it for

execution. The pseudo-code for external scheduling is represented in Figure 2.
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external scheduling {
if a task submitted {;
for every internal scheduler participating in bidding {
send bidding request;
/

/
if a bidding reply comes in {
Store the bidding replay,
if all bidding replies for this task are received {
for all bidding replies{
select the minimum ETRT;
select LAN = LAN offers minimum ETRT;
/
send task to selected LAN;
/
if a task completion message comes in {
get the task result;
update ALC;

/

Figure 2. Pseudo-Code for External Scheduling

3.2.2 Internal Mapping and Scheduling

As mentioned, subtasks of a task can run concurrently on different computer nodes within
a LAN if there is no data dependence among them. After a task arrives at a LAN for
execution, the subtasks are distributed to workstations of the local LAN according to the
internal mapping and scheduling algorithm. The internal scheduler is responsible for

carrying out internal mapping and scheduling.

Once a task arrives, all subtasks of that task are placed into an Arrive Subtask Set (ASS),
which also holds subtasks from other tasks. Those subtasks of which all the necessary

input data are available are further moved into a Ready Subtask Queue (RSQ). Thus there
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is no data dependence among the subtasks in an RSQ. Every time before an internal
scheduler conducts an internal scheduling, it will check its ASS and move any subtasks
that are ready to an RSQ. An internal scheduler only schedules those subtasks within the

RSQ.

An internal scheduler uses the static b-level to assign priorities to subtasks. Subtasks are
assigned a priority before they are mapped and scheduled. A Subtask Priority (SP) is

determined using following equation.

SP, = Deadline, — blevel Equation 4

Where: SP ; = Priority of subtask i
Deadline; =Deadline of job;

blevel /= b-level of subtask;

Once subtasks are assigned priorities, they are queued up in an RSQ with lower SP values
in the front and higher SP values in the back. Subtasks with lower SP values have higher
priority in mapping to a machine for execution. An internal scheduler picks up the
subtask on the top of the RSQ and assigns it to the machine that can offer minimum
Expected Subtask Response Time (ESRT). ESRT is defined as the difference between the
time the subtask would be returned and the time the subtask would be sent, which is

shown in Equation 5.

24



ESRT,, = EMFT, + SET, N Subtask Size, N Re sult Size,

Computing Power, NRT, NRT,
Equation 5
Where: ESRT ; =Expected subtask response time of subtask i on computer

node j.
EMFT;= Expected machine free time of computer node j for new
task
SET; =Subtask execution time of subtaski
Computing Power ;= Computing Power of computer node j
Subtask Size; = Subtask data size of subtask i
Result Size;= Result size of subtask i

NTR; = Network transfer rate to node j

Machine Free Time (MFT) is defined as the time that a machine is free to execute new
tasks. EMFT is an Estimated MFT predicted by an internal scheduler, and AMFT is the
Actual MFT. The second part of Equation 5 is defined as Estimated Subtask Execution
Time (ESET), which is defined as the result of SET divided by Computing Power.
However, the Actual Subtask Execution Time (ASET), which represents the actual
running time of the subtask on that workstation, could be different because of the
dynamic nature of CPU loading. SET is calculated on a workstation of which the
computing power is 1; ESET is calculated by assuming the machine is 100% free,
therefore the ASET of a subtask on a computer node is equal to or less than ESET; and

ASET is the real running time of that subtask on a machine. A system crash, however,
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can cause the ASET to be infinite, which in turn causes the Actual Subtask Response

Time (ASRT) to be infinite.

Internal schedulers make decisions based on the ESRT. If we knew the ASET of
subtasks, then we could further know the ASRT. From this, we could make a better
mapping and scheduling algorithm, but in practice, this is impossible. Therefore, we set
up a threshold for the ASRT. When a subtask is executed for too long and passes the late
threshold, we consider that computer to have crashed. In this situation, all the subtasks
inside the SWQ, including the subtask currently running, are pulled back for
rescheduling. The internal scheduler will claim that the computer in question has crashed

and erase its computer ID from the participating workstation list.

Threshold determination is difficult. Under some circumstances, internal schedulers will
make an incorrect mapping, but to improve on this would require more computational
cost. On the other hand, sometimes an internal scheduler has to correct the wrong
mapping because if it continued, it would make things worse and cause more damage.
Most of the time, the ASRT is different from ESRT. But if the difference is slight, it is
better to keep the old scheduling because to rearrange the SWQ is a big job and it would
not be worth it. But if the difference is beyond some range, it is better for the internal
scheduler to redo the scheduling because as a tradeoff of the effort spent on rescheduling,

the efficiency of the computing resource usage increases.
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After an internal scheduler sends a subtask, it erases the subtask entry from the RSQ,

moves the elements in the RSQ one space forward, and then updates the EMFT of that

machine. The EMFT is updated by using Equation 6.

SET,
EMFT, =old EMFT, + : Equation 6

Computing Power,

Where: EMFT;= Expected machine free time of computer node j
old EMFT;=old Expected machine free time of computer node j
SET; =Subtask execution time of subtask i, which was just sent

Computing Power ;= Computing Power of computer node j
Then internal scheduler repeats the same procedure until either the RSQ is empty or the

Subtask Waiting Queue (SWQ) of that assigned computer is full. Figure 2 illustrates the

subtask movement between subtask sets during internal scheduling.
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Figure 3. Internal Scheduler Subtask Movement

An SWQ is the subtask waiting queue held by each workstation to insure subtasks are
executed by following FIFS. Subtasks sent to workstations are queued up in an SWQ
where they wait for execution. If a SWQ of a machine is full, the internal scheduler
cannot send a subtask to that workstation. The length of an SWQ is another major issue
in internal scheduling. Internal schedulers depend on EMFT to conduct internal
scheduling. Nevertheless, the actual network computing performance depends on Actual
Machine Free Time. The longer the SWQ, the earlier the subtasks within the SWQ are
sent out. On one hand, we want to keep the SWQ as short as possible because: 1) the
EMEFT is different from the AMFT because of the variation of CPU loading, therefore the
later the subtasks are sent, the more actual run time information the internal scheduler can
use to do more precise scheduling; 2) in case of machine failure, an internal scheduler
needs to pull back subtasks in the SWQ and resend the subtask data, which will increase

network traffic and delay subtask execution. On the other hand, if the subtask-waiting
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queue is too short, some machines will find the SWQ is empty after they finish their
current subtask and sit idle waiting for the internal scheduler to send another one, in
which case wasting precious CPU time. Based on the information above, the choice of

size of an SWQ is a balance between these effects.

Internal scheduling is an event-driven procedure. The firing events, which are named
“mapping events,” include the arrival of new tasks, the completion of subtasks, and
system traps. A system trap occurs when a subtask is running on a machine for too long
and passes the threshold (ASRT > threshold). Upon receiving a subtask completion
message, an internal scheduler checks if it is the last subtask of that task. If it is, the
internal scheduler will send the task result back to the external scheduler. The pseudo-

code of the internal scheduling is listed in Figure 4.

internal scheduling {
if receive a bidding request {
check current subtasks in ASS and RSQO;
check EMFT of each machine in local LAN;
get simulated ETET;
send ETET back to external scheduler;
/
if receive a task execution request {
put subtasks of the task into ASS;
move ready subtasks to RSQ;
while (RSQ #empty ) {
for computer € local LAN {
pick a machine offering minimum ESRT;
best machine = machine offering minimum ESRT;
/
if SWQ of best machine has position {
send the subtask on top of RSQ to the best machine;
telse
break;
rearrange RSQ;
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if receive a subtask completion message {
if that subtask is the last subtask of a task

send the task result back to external scheduler;
move ready subtasks to RSQ;

while (RSQ #empty ) {
for every computer node in local LAN {
pick a machine offering minimum ESRT;
best machine = machine offering minimum ESRT;
/
if SOW of best machine has position {
send the subtask on top of RSQ to the best machine;

telse
break;
rearrange SWQ;
/
/
if (ASRT > threshold) {
remove all subtasks inside SWQ of that node back to RSQ;
rearrange RSQ;
while (RSQ =empty ) {
for every computer node in local LAN {
pick a machine offering minimum ESRT;
best machine = machine offering minimum ESRT;;
/
if SOW # full {
send the subtask on top of RSQ to the best machine;
Jelse
break;
rearrange RSQ;
/
/

/

Figure 4. Pseudo-Code for Internal Scheduling
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4 Simulation Program

In this chapter, the details of the simulation program implementation are given. The

specification of the simulation system is also listed.

4.1 Simulation Language and Design

The simulation software was written in the PARSEC parallel simulation language
[MeB98]. As explained in the PARSEC User Manual: “PARSEC (for PARallel
Simulation Environment for Complex systems) is a C-based discrete-event simulation
language. It adopts the process interaction approach to discrete-event simulation. An
object (also referred to as a physical process) or set of objects in the physical system is
represented by a logical process. Interactions among physical processes (events) are
modeled by timestamped message exchanges among the corresponding logical

processes.”

The overview of the simulation program layout is illustrated in Figure 5. A simple
approach to designing a network simulation model is to create each computer network
node as an entity. Although it is easy to understand and implement, it has a scalability
problem [BaT99]. By increasing the number of computer network nodes, the number of
entities that the simulation program generates will increase. This amplifies both memory
requirements and the number of messages passed among entities, which significantly

deteriorates the performance of the simulation.
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A different approach was adopted for this thesis. Instead, each computer network node is
represented by an entity. A genetic entity was created to represent all computer network
nodes. Messages are passed with a tag showing the destination of the message. After the
machine entity receives the message, first it examines the tag of the message. According
to the tag, it changes its local variable to represent the computer network nodes the
message is supposed to arrive at. The same approach was used for the external
schedulers and internal schedulers. This approach decreased the overhead of message
passing and dramatically increased the performance of the simulation. In the simulation
program, only four entities were created: the job maker entity, the external scheduler
entity, the internal scheduler entity, and the machine entity. Tiers Random Network
Generator, Tiers—1.1, generated the computer network topology [Do96]. Tiers-1.1 is a
random network topology generator used to generate the simulation test bed. With the
Tiers package, the user can configure the complexity of the network (i.e. specify number
of nodes and connectivity) and it will generate a random network with the specified
properties. The link propagation delays are derived from the length of the links (i.e. the
distance between the two nodes being connected). Also, a bandwidth is suggested. The

user can interactively change those values after topology generation.
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Figure 5. Simulation Program Layout

4.2 System Specifications

To write simulation software, it is necessary to set system variables to define the
simulation environment. The overview of the system environmental specifications used
in this research is listed on Table 1. Simulation Environmental Specifications are grouped
into four categories: network specification, machine specification, task specification, and

run time specification. The details of these specifications are explained in following

subsections.
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Table 2. Simulation Environmental Specification

Simulation Environmental Parameters

Network Specification

LAN number

Node number of each LAN

Total number WAN level node

WAN bandwidth

LAN bandwidth

Node propaganda delay

Workstation Specification

Machine recover time

Machine failure rate

Machine computing power

Task Specification

Task size

Task result size

Subtask execution time

Max number of subtask in each task

DAG degree

Run Time Specification

External scheduling execution time

Internal scheduling execution time

Total task number

SWQ size

Task interval

Total number of bidding LAN

4.2.1 Workstation Specification

The simulation program was defined to simulate a WAN consisting of 100 LANs. Each
LAN consisted of 10 nodes. In addition, 10 nodes belonged to the WAN itself. Therefore,
there are a total of 1100 nodes in the simulation. The bandwidth between WAN nodes
was defined to be 10 Kbytes/sec, and the bandwidth between LAN nodes was set to be
100 Kbytes/sec. The node delay, which presents the message passing processing time,
was ranged from 51 ms to 5060 ms. Messages passing through a node were delayed by

the node delay time of that computer node. A network topology generated by Tiersl.1 is
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displayed on Figure 7. Based on the above information, the data transfer time can be

determined by equation 7.

Network Topology

Figure 6. Nework topology generated by Tiersl.1[YalJ].

DS

— if(z=1+1
Bandwidth, . A )
T,. = ’ Equation 7

g z DS <
————————+ Y Delay. if(z=1+1
,Z:;‘ Bandwidth, ,-;1 A :

Where:
DS = Data size transferred, Kbytes,
Bandwidth;, = Network bandwidth between node | and z, Kbytes/sec.
Delay;=Network traffic delay of node i, sec.

[+1...z-1 = network node numbers along the path of | to z;
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4.2.2 Workstation Specifications

The simulation is based on a heterogeneous workstation network environment. As
discussed in the literature, heterogeneity takes the form of the heterogeneity of a
configuration, architectural heterogeneity, and operating system heterogeneity. In this
simulation, however, only the heterogeneity of a configuration is considered. The
computing power that is pre-assigned to each node reflects the heterogeneity of a
configuration. The computing power ranged from 0.3 to 1. We assume that the subtask
execution time is inversely proportional with the computing power of the machine it is
executed on, and consists of the computational cost divided by the computing power. For
example, if a computer node i has a computing power of x and another computer node j
has a computing power of y, therefore the computer node 7 is x/y times as fast as node ;.

Subtask execution time on node i is equal to y/x of the execution time on node j.

A dynamic environment brings dynamic CPU loading. As mentioned before,
workstations can crash during subtask execution. However, if a workstation crashed,
there would be no means to notify the internal scheduler. Therefore, a threshold was set
up as 2 x ESRT of the task-workstation pair. After a subtask is sent to a machine for
execution, a threshold was set up to trace that subtask and workstation. If the subtask
ASRT was greater than 2 x ESRT, the internal scheduler would assume that the machine

has failed.
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The computer failure rate was defined as the possibility of the ESRT being higher than 2
x ASRT during a subtask’s execution. The machine failure rate ranged from 0% ~ 0.2%.
For example, if the failure rate was 0.1%, it indicated the possibility that the ESRT would
be higher than 2 x ASRT once every 1000 subtask executions. However, the simulation
ignored other causes of workstation failure such as power off, or system maintenance
shutdown. If a workstation never executed a subtask, it would never crash. After a
computer node crashed, it would take from 1 sec to 1 hr for the computer node to actually
come back to service. It was assumed that a workstation crash could only affect its ability
to execute subtasks, but it did not affect other abilities like scheduling (if the scheduler is

located on that computer node) or transferring data.

4.2.3 Task Specification

Network computing requires task data and result transferring around the WAN and LAN.
It was assumed that the task size ranged from 10 Kbytes and 2 Mbytes, and the size of a
task’s result ranged from 10 Kbytes to 5 Mbytes. Each task had at most 50 and at least
10 subtasks. All subtasks in a task were organized by a tree structure. The maximum
degree of the tree was 5, which required that each subtask would have at most 5 child

subtasks.

Subtasks had different execution times. The subtask execution time was determined as
the running time of that subtask on a computer node with a computing power of 1. In the

simulation program, the subtask execution time ranged from 1 min to 10 min. The EST of
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that subtask was determined by the computing power of the computer node that the

subtask was executed on using following equation.

SET,
EST, , = ’ Equation 8
* Computing Power;

Where:
EST; ;= Estimated subtask execution time of task i on machine j;
SET; = Subtask execution time of task i on a machine with computing power of 1.

Computing Power; = Computing ability of machine j.

4.2.4 Run Time Specifications

The time of external and internal scheduling were fixed to be 12 ms and 28 ms,
respectively. Task arrival for interval scheduling followed an exponential distribution.
Once a task was submitted, the external scheduler asked the internal schedulers to bid for
the task. The external scheduler could broadcast its task-bidding request to every internal
scheduler within the WAN, which had the benefit of evenly distributing task loading
across the WAN. But as a tradeoff, broadcast bidding requests increased network traffic.
In this simulation, the number of internal schedulers participating in task bidding was set
to be 10, including the local internal scheduler. The participating internal schedulers were

selected randomly.

38



As the number of submitted tasks increased, the computing load on the entire network
increased also. In the simulation, different numbers of tasks were tested in order to the

observe impact on the performance of network computing.
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S  Experiment Result and Discussion

Based on the discussion above, the simulation was carried out in four phases: varying the
task numbers; varying the task interval; changing of machine failure rate; and varying the
network infrastructure. In order to analyze the impact of the SWQ size, each variation
was carried out with different waiting queue sizes. Every simulation was repeated 100
times with different random seeds to get an average. The simulation was conducted on a
computer with 8 Pentium III 550 processors, with 4 GB memory, and running on a Linux

Red Had 6.1 platform.

In the simulation, we used two major key indexes to measure network-computing
performance: the percentage of tasks meeting their deadlines and the average response
time. The percentage of tasks meeting their deadlines was the percentage of tasks
submitted to the simulation that were returned to the external scheduler before their
deadline. The average response time was the average time difference between the time a
task is returned to the external scheduler and the time the task is sent out by the external

scheduler.

Network traffic was also monitored. Network loading was divided into two components:
the network traffic caused by external scheduling and that caused by internal scheduling.
Networking loading caused by task bidding, tasks sent to a LAN for execution, and
results sent back to the external scheduler belonged to external network traffic. Network

loading caused by subtasks distributed to computer network nodes within a LAN
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belonged to internal network traffic. Both internal and external network traffic were
recorded during the simulation. Network traffic was measured by the sum of the size of
the packet transferred multiplied and the number nodes the packet had to travel through.
For example, if the size of a packet was 2 MB, and it traveled from node A to node B, to
node C, and then to its destination of node D, and the total traveling time is 10 sec, the
network traffic caused by that packet is deemed to be 0.8 MB/sec during that 10 sec

period. This is to record to the network loading on entire network.

5.1 Variation of Task Number

The first experimental phase was to examine the influence of the number of tasks on
network computing performance. The simulation environmental parameter setting is
represented in Table 3. The bold and italic entries are the specifications that were
variables in this simulation phase. As demonstrated in Table 3, the simulation was
conducted on various numbers of tasks and sizes of SWQs. All other parameter were kept

constant throughout this simulation phase.
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Table 3. Simulation Phase I Environmental Parameter Setting

Simulation Environmental Parameter Value
Network Number of LANs 100
Specifications | Number of nodes in each LAN 10
Total number WAN level node 10
WAN bandwidth 10 Kbytes/sec.
LAN bandwidth 100 Kbytes/sec.
Node propaganda delay [51 ms, 5060 ms]
Machine Machine recover time [1sec, 1 hr]
Specifications | Machine failure rate 0.2 %
Machine computing power [30%, 100%]
Task Task size [10 Kbytes, 2,000 Kbytes]
Specifications | Task result size [10 Kbytes, 5,000 Kbytes]
Subtask execution time [1 min., 10 min.]
Max number of subtask in each task | [10, 50]
DAG degree [1, 5]
Run Time External scheduling execution time | 12 ms
Specifications | Internal scheduling execution time 28 ms
Total number of tasks {1000, 1500, 2000, 2500, 3000}
SWQ size {1,23,4,5, 10, 15, 20}
Task interval 4000
Total number of bidding LAN 10

The impact of the number of tasks on the percentage of tasks meeting their deadlines and
the average response time were illustrated in chart 1 and 2 of Figure 7, respectively. It
can be observed from chart 1 and 2 that as the number of tasks increased, the network
performance worsened. This is easily understood. As more tasks were submitted, the less
computational resources were available for the tasks to share. This was reflected by a
decrease in the percentage of tasks that met their deadlines and by an increase in average

response time.

The impact of changing the SWQ size was also apparent. It is observed from Figure 7

that network computing performance increased dramatically as SWQ size increased from

42



1 to 2. Nevertheless, as the SWQ size continued to increase from there, only small
changes in computing performance could be observed. The network computing
performance reached its peak as the SWQ size was increased. Depending on the number
of submitted tasks, where the SWQ size reached its peak performance differed. As
hypothesized before, choosing the best SWQ size was a balance between the negative
effects of having a size that was too long or too short. The results confirmed this theory.

As the SWQ size was continually increased, the network performance began to decrease.
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Figure 7. The impact of submitted task number on network computing performance
during simulation Phase I.
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Chart 1 and chart 2 of Figure 8 illustrated the impact of the number of tasks and SWQ
size on external and internal network traffic. Network traffic was caused by sending
bidding requests, sending tasks to other LANs for execution, and sending subtasks within
a LAN. External and internal network traffic increased as the number of tasks increased.
As more tasks were submitted, more network traffic was generated because of internal

and external scheduling.

It was interesting to find that as the size of the SWQ increased from 1 to 3, the external
network traffic increased. As the SWQ size continued to increase, the external network
traffic dropped. An increase in external network traffic indicates that more tasks were
sent to the LANs than executed locally. The change of external network traffic matched
the change of network computing performance, and as more tasks were distributed in the
WAN, the computing resources could be better shared, which produced a better
computing result. However, the change of the external network traffic caused by the
change of SWQ size could only be observed in a high task number experiment. As the
number of tasks decreased from 3000 to 1000, the change became negligible. The
explanation for this is that as the number of tasks decreased, tasks were most likely
executed on the local LAN, and there was no need to transfer them to other LANS.

Therefore, external network traffic did not change very much.

As the SWQ size increased, the internal network traffic also increased. As discussed

before, an increase in SWQ size resulted in more subtasks being pulled back in the case

of a machine crash. The results matched the assumptions we made. The internal network
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traffic increase caused by the changes of SWQ size was higher in high task number
experiment runs. As fewer tasks were submitted, the SWQs, which stored the subtasks
assigned to be run on a given machine, stored only a few subtasks any way. The change

of SWQ size had little impact.
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Figure 8. The impact of submitted task number on network traffic loading during
simulation Phase I.
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5.2 Variation of Task Interval

Of interest in the second simulation experimental phase was to observe how task intervals

affected the network computing performance. The simulation’s environmental

specifications were listed in Table 3. The bold and italic entries were the parameters that

were changed in this simulation phase. Simulation phase II was conducted on various

task intervals and different sizes of SWQs.

through this simulation phase.

All other parameters were kept constant

Table 4. Simulation Phase Il Environmental Parameter Setting

Simulation Environmental Parameter Value
Network Spc. | Number of LANs 100
Number of nodes in each LAN 10
Total number WAN level node 10
WAN bandwidth 10 Kbytes/sec.
LAN bandwidth 100 Kbytes/sec.
Node propaganda delay [51 ms, 5060 ms]
Workstation Machine recover time [1sec, 1 hr]
Spc. Machine failure rate 0.2 %
Machine computing power [30%, 100%]
Task Spc. Task size [10 Kbytes, 2,000 Kbytes]

Task result size

[10 Kbytes, 5,000 Kbytes]

Subtask execution time

[1 min., 10 min.]

Max number of subtask in each task | [10, 50]
DAG degree [1, 5]
Run Time Spc. | External scheduling execution time | 12 ms
Internal scheduling execution time 28 ms
Total number of tasks 2000

SWQ size

{1,23,4,5,10, 15, 20}

Task interval

{5000 sec., 4000 sec, 3000 sec.,
2000 sec., 1000 sec.}

Total number of bidding LAN

10
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The impact of task intervals on the percentage of tasks meeting their deadlines and the
average response time was illustrated in chart 1 and chart 2 of Figure 9, respectively. The
simulation with 1000 ms task intervals had very poor network computing performance
compared to other simulations with higher task intervals. As task intervals continued to
increase, the computing performance dropped. The possible reasons for these phenomena

are local bidding errors and remote bidding errors.

The local networks were superior to the remote networks in bidding tasks because the
local networks did not need task and result transferring, therefore the time needed to
transfer data was 0. Thus, tasks were tended to execute on the local network if the
computing load was low. The bidding replies of the internal scheduler were based on the
current network computing load. There was a time interval that occurred between when a
task would begin to be bid upon and when the task finally arrived at its destination
network. In the case when a submitted task interval was very intense, many tasks could
be sent to a local network during the time interval of task bidding. For example, consider
the situation of task 1 being submitted to a network. The external scheduler would send a
bidding request out, and wait for the bidding replies. In the meantime, task 2 would also
be submitted to the same network, so the external scheduler sends the bidding request of
task 2 out. Because the local internal scheduler would use the current network computing
load to make a bid, and if task 1 had not arrived yet, it would send a “good” bid for task 2
as well as for task 1. This could result in both task 1 and 2 being sent to the local LAN

and cause it to be overloaded.
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As the task submission interval increased, more tasks were sent to remote LANSs, by
which the local bidding error problem was solved. But another remote bidding error
problem arose. Some remote LANs were superior to others because of better bandwidth
and faster computer systems. As mentioned, there was a time interval between when task
bidding started and when the task finally arrived at the destination LAN for execution. In
the case of a task being sent to a remote LAN, the time interval was greater than for a
local submission because the task’s data needed to be sent to the remote LAN. Even
when a task was assigned to execute on a LAN and the task data was on its way, the
internal scheduler would not consider the incoming task when it conducted the ETRT
calculation. Since the bidding algorithm was based on the current network computing
load, a task sent to the current “best LAN” may become overloaded very soon. Thus
many tasks can be sent to the same remote LAN, in which case it caused the remote LAN
to become overloaded which in turn deteriorated the overall network computing

performance. As more tasks were sent remotely, the situation became worse.

SWQ size continued to have an influence on network computing performance regardless
of changes in the task submission interval. The results showed that a size of 3 or 4 for the
SWQ was the best overall; it gave the highest percentage of completed tasks before their

deadline and the lowest average response time.

The impact of the task submission interval on external and internal network traffic was
illustrated in charts 1 and 2 of Figure 10, respectively. Chart 1 confirmed the statement
above, that as the task submission interval increased, external network traffic also

increased, which indicated that more tasks were run remotely. However, from chart 2 of
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Figure 10, it seemed that the task submission interval had no obvious impact on internal

network traffic.
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5.3 Variation of Machine Failure Rate

Of interest in the third simulation phase was the observation of how the machine failure

rate impacted computing performance. The simulation’s environmental parameter

settings were represented in Table 4. The bold and italic entries were the variables in this

simulation phase. Simulation phase three was conducted on various machine failure rates

and SWQ sizes. All other parameters were kept constant through this simulation phase.

Table 5. Simulation Phase III Environmental Parameter Setting

Simulation Environmental Parameter Value
Network Number of LANs 100
Specification Number of Nodes in each LAN 10
Total number WAN level node 10
WAN bandwidth 10 Kbytes/sec.
LAN bandwidth 100 Kbytes/sec.
Node propaganda delay [51 ms, 5060 ms]
Workstation Machine recover time [1 sec, 1 hr]
Specification Machine failure rate {0.2 %, 0.15%, 0.1%, 0.05, 0}
Machine computing power [30%, 100%]
Task Task size [10 Kbytes, 2,000 Kbytes]
Specification Task result size [10 Kbytes, 5,000 Kbytes]
Subtask execution time [1 min., 10 min.]
Max number of subtask in each task | [10, 50]
DAG degree [1,5]
Run Time External scheduling execution time | 12 ms
Specification Internal scheduling execution time 28 ms
Total number of tasks 2000

SWQ size

{1, 2 3,4,5,10, 15, 20}

Task interval

4000 sec

Total number of bidding LAN

10

The impact of the machine failure rate on the percentage of tasks completed before their

deadlines and the average response time was illustrated in chart 1 and chart 2 of Figure
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11, respectively. From Figure 11, it can be observed that as the machine failure rate
increased, the network computing performance degraded. A sudden decrease in network
computing performance occurred after the machine failure rate increased from 0 to 0.5%.
As the machine failure continued to increase, the decrease in computing performance
became slight. Both charts 1 and 2 confirmed our assumptions that the decrease in the
machine failure rate helped computing performance. All of the subtasks in the SWQ were
pulled back for rescheduling and remapping when a node failure occurred, and

consequently this delayed subtask execution.

Figure 11 also illustrated that while SWQ size increased from 1 to 3 or 4, the computing
performance increased regardless of the impact of the change in the machine failure rate.
As discussed before, if the SWQ size is too short, some machines will sit idle, waiting for
internal scheduler to send them subtasks. This would result in a degradation of computing
performance. However, as the SWQ size continued to increase, there was a negative
influence on performance. If the SWQ size was too long, it affected computing
performance in two ways: 1) The internal scheduler used EST to conduct scheduling--
sending subtasks earlier resulted in using less actual run time information, which
consequently resulted in less optimal mapping and scheduling; 2) In case of machine
failures, the internal scheduler needed to pull back subtasks in the SWQ and resend the
subtask data, which increased network traffic and delayed subtask execution. However,

as the machine failure rate dropped to zero, the second effect was eliminated.
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during simulation Phase II1.
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Figure 12 illustrated the impact of the machine failure rate and SWQ size on internal and
external network traffic, respectively. It can be observed that as the machine failure rate
decreased, the external scheduler tended to send tasks to non-local LANs for execution,
which reflected in higher external network traffic. Another interesting observation was
that as the machine failure rate decreased, there was a tendency for a decrease in internal
network traffic as well. Since fewer machines failed, the internal network traffic caused

by subtask resending also decreased, thus the overall internal network traffic dropped.
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54 Variation of Network Infrastructure

The fourth experimental phase was to observe how network infrastructure affects
network computing performance. The simulation’s environmental parameter settings
were represented in Table 6. The bold and italic entries were the parameters that changed
in this simulation phase. As shown in Table 5, the simulation was conducted on two
different network infrastructures and various SWQ sizes. All other parameters were kept

constant through this simulation phase.

Simulation phase four was different from the previous three simulation phases since this
used two different network layouts. Two different network infrastructures were
compared, one had 100 LANs with each LAN consisting of 10 nodes, and the other one
had one LAN consisting of 1000 nodes. In order to achieve an ideal condition and
eliminate the effects of network throughput and scheduling overhead, network
transferring time was set to be 2000 ms regardless of task size and nodes. All other
effects caused by the change in network infrastructure were not considered and were

assumed identical.
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Table 6. Simulation Phase IV Environmental Parameter Setting

Simulation Environmental Parameter Value
Network Number of LANs {1, 100}
Specification Number of nodes in each LAN {1000, 10}
Number of WAN level node 10
Network transferring time 2000 ms
Machine Machine recover time [1 sec, 1 hr]
Specification Machine failure rate 0
Machine computing power [30%, 100%]
Task Task size [10 Kbytes, 2,000 Kbytes]
Specification Task result size [10 Kbytes, 5,000 Kbytes]
Estimated subtask execution time | [1 min., 10 min.]
Number of subtask in a task [10, 50]
Max degree of DAG [1,5]
Run Time External scheduling time 12 ms
Specification Internal scheduling time 28 ms
Total number of tasks 2000

Size of Subtask Waiting Queue

{1, 2 3,4,5,10, 15, 20}

Task interval

4000 sec

Total number of bidding LAN

10

The impact of network infrastructure on the percentage of tasks meeting their deadlines
and the average response time was illustrated in chart 1 and chart 2 of Figure 13,
respectively. From Figure 13, it could be observed that the 1-LAN structure had a better
network-computing performance than the 100-LAN structure. That is because in both
scenarios it was the pre-requirement that a task had to be executed within a LAN. Thus,
in the 100-LAN structure, a submitted task had to go through an external scheduler to
locate the best LAN, and then the task could be sent. In a 100-LAN structure, an internal
scheduler only had 10 nodes to assign subtasks to. But in a 1-LAN structure, the internal
scheduler had 1000 nodes. Thus, in a 1-LAN network structure, the computational
resources were distributed better and were utilized across the entire network, which

resulted in a better network-computing performance.
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However, the simulation was conducted without considering other effects. For example,
managing 1000 nodes instead of 10 nodes would cause a dramatic difference in
computing load on internal scheduling, which would increase the scheduling and
mapping time. In the experiment, it was noticed that the execution time of a 1-LAN
network is much longer than that of a 100-LAN network, which should be the result of an
increase in scheduling and mapping time for each task. Therefore, scheduling time in a 1-
LAN structure should be much greater than the scheduling time of a 100-LAN structure.
But how big is it? How do the number of nodes affect scheduling and mapping time?
This aspect is beyond the scope of this research. Notwithstanding, in this experimental
phase, we ignored this effect and set the mapping and scheduling time for both network

structures to be identical.

Another interesting point that needed to be mentioned was that the waiting queue size had
no impact on a 1-LAN structure. The reason is that with a 1000 node computing resource,
subtasks can be better distributed; therefore the waiting queue of each computer system

was short enough that the SWQ size had no effect on network performance.
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6 Conclusion and Future Studies

This thesis describes a distributed dynamic scheduling algorithm of composite tasks on a
grid computing system. The algorithms include two steps: external scheduling and
internal scheduling. Five factors are analyzed in the simulation experiments. The factors
include the number of task submissions, the task submission interval, the machine failure

rate, the network infrastructure, and SWQ size.

The number of task submissions definitely affects network-computing performance. As
more tasks are submitted, the network-computing performance drops because more tasks
are competing for a fixed number of computing resources. Task submission intervals
have two effects on network-computing performance. If a task submission interval is too
short, it will cause local bidding errors; conversely, as the task submission interval
increases, the number of remote bidding errors rises. A decrease in the machine failure
rate helped augment computing performance because it gave network computing more
computing resources and minimized the impact that machine failure has on rescheduling
and re-mapping. Ideally, if the network infrastructure does not affect other environmental
parameters, like scheduling and mapping time, a 1-LAN structure is superior to a 100-
LAN structure. SWQ size had impacts network computing performance, choosing the
best SWQ size was a balance between the negative effects of having a size that was too
long or too short. Change of other factors had an impact on the SWQ size when network

computing reaches its best performance.
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In this research, the experimental result suggested that when conducting a design of task
and subtask scheduling and mapping algorithm, the impact of number of submitted tasks,
task submission intensity, reliability of computer system, and network infrastructure
should be considered. The size of SWQ in where network performance reaches the best
varies with the variation of these parameters. As a rule of thumb, the size of SWQ is at

lease to be 2.

The task submission interval has an interesting impact on network computing
performance. If a near-future network computing load can be used instead of the current
network computing load during external scheduling and mapping, it will help to eliminate
the problems associated with local and remote bidding errors. The impact of a network’s
infrastructure is another topic for future studies, such as how the nodes of a LAN can
affect the scheduling and mapping time. In addition, different network specifications can
affect overall network computing performance. In this thesis only a few factors were
considered. Other factors include scheduling and mapping time, network bandwidth, task

data size, etc. Future studies can focus on these parameters.
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Acronyms

ALC
AMFT
ASET
ASRT
ASS
FIFS
MFT
AMFT
ATET
ATRT
EMFT
ESET
ESRT
ETET
ETRT
KPB
LAN
LC
MCT
MET

NOW

Average LAN Credibility

Actual Machine Free Time
Actual Subtask Execution Time
Actual Subtask Response Time
Arrive Subtask Set

First Come First Serve

Machine Free Time

Actual Machine Free Time
Actual Task Execution Time
Actual Task Response Time
Expected Machine Free Time
Estimated Subtask Execution Time
Expected Subtask Response Time
Estimated Task Execution Time
Task Response Time

K-Percent Best

Local Area Network

LAN Credibility

Minimum Completion Time
Minimum Execution Time

Network of Workstations
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NOW Network of Workstation

NTR Network Transfer Rate

OLB Opportunistic Load Balancing
RSQ Ready Subtask Queue

SA Switching Algorithm

SET Subtask Execution Time

SP Subtask Priority

TRT Task Response Time

SWQ Subtask Waiting Queue

WAN Wide Area Network
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