02

==2 WEs W XX8 REH2=Z

=

al

210N

L= TE A2

[Letspic]Cryptography with Java

2.

. o
<r
180

o)

ol

ol

o

[Letspic]Cryptography with Java 02

JINH

H

ol
[0

_

HE
N\

)

ol

3
E

o

oJ

<J

<+
E

.

0o

-

a0

60122480

H

ol

0l




1. 54
Letpics &HEZ0|E O
O EIH| Ol =2 2t
cryptographyS &H0l

uH

A& & 2 oY SROAM Zdsts 22 2A(2 parse.comd| HYE= At
Alof tHali a2l 2ot E2ES HESt7| MO androiddA AFEEY 4 U Java 7[EHO

Ct.

ol
s Mo

2. B

AHERO0|E 7|8k 7|7|0 A& SUN JCELt BC JCEQ| EQF T 2HIO|H 7} A &3t= APIE ARESICEH. T2tA Java
Htez Y 7|ss52 HAE B0 AARE BEME Ed| A3&l= APIS Olaffe ZLIt QUCt

3. HEE

‘ Beginning Cryptography with Java™ ’, David Hook 2| chapter #=CHZ O|XHE E35i APIE =Z|5tC}
https://www.bouncycastle.org/specifications.html & S &2l 59 AWE EQIGICE,




4. 2EEH He

package chpater3;

import java.security.SecureRandom;

import javax.crypto.KeyGenerator;

import javax.crypto.SecretKey,

import javax.crypto.spec.IvParameterSpec;

public class Utils extends chapter2.Utils{

public static SecretKey createKeyForAES(int bitLength, SecureRandom random) throws Exception{

KeyGenerator generator = KeyGenerator.getInstance("AES", "BC");
generator.init(bitLength, random);
return generator.generateKey();

public static IvParameterSpec createCtrIvForAES(int messageNumber, SecureRandom random){
byte[] ivBytes =new byte[16];
// initially randomize
random.nextBytes(ivBytes);
// set the message number bytes

ivBytes[0] = (byte) (messageNumber >>24);
ivBytes[1] = (byte) (messageNumber >>16);
ivBytes[2] = (byte) (messageNumber >>8);
ivBytes[3] = (byte) (messageNumber >>0);

// set the counter bytes to 1
for(int 1 =0; i !=7; i+ ){
ivBytes[8+i] =0;

ivBytes[15] =1;
return new IvParameterSpec(ivBytes);

}

public static String toString(byte[] bytes, intlength){
char[] chars = new char|[length];
for(int i =0; i != chars.length; i++ ){
chars[i] = (char) (bytes[i] & Oxff);

return new String(chars);

}

public static String toString(byte[] bytes){

return toString(bytes, bytes.length);

public static byte[] toByteArray(String string){
byte[] bytes = new byte[string.length()];
char[] chars = string.toCharArray();
for(int 1 =0 ; i != chars.length; i++ ){
bytes[i] = (byte)chars[i];

return bytes;

=
o
JavaOllM 7|22 =2 A

SE= String S2HA00| getBytes() HAES SE5tHL YGAS Sall byte arrays &
= |2 String 22fA = JWMO| AF23H= default charsetd YHS 2O MM string-to-byte,
byte-to-string H&Z ot ECt. 2F JWMO| O] & S0 String.getBytes( “UTF8” )%} #0| “UTF-8” & £%
ot charset2 A|¥5tD QYA Tt W2tA toByteArray(String string), toString(byte[] bytes, intlength)
o 73 0| TLsict.

1
£0
n
_O'ﬂ
>
a
J




package chpater3;

import java.security.Key;

import java.security.SecureRandom;

import javax.crypto.Cipher;

import javax.crypto.spec.IvParameterSpec;

public class TamperedExample {

public static void main(String[] args) throws Exception {

SecureRandom random = new SecureRandom();
IvParameterSpec ivSpec = Utils.createCtrIvForAES(1, random);
Key key = Utils.createKeyForAES(256, random);
Cipher cipher = Cipher.getInstance("AES/CTR/NoPadding”, "BC");
String input ="Transfer 0000100 to AC 1234-5678";
System.out.println("input : "+ input);

// encryption pass
cipher.init(Cipher .ENCRYPT_MODE, key, ivSpec);
byte[] cipherText = cipher.doFinal(Utils.toByteArray(input));

// tampering step
cipherText[9] ~="'0" ~ '9';

// decryptiobn step

cipher.init(Cipher .DECRYPT_MODE, key, ivSpec);

byte[] plainText = cipher.doFinal(cipherText);
System.out.println(“plain @ "+Utils.toString(plainText));

}

ZER

="

put : Transfer 0000100 to AC 1234-5678

ain : Transfer 9000100 to AC 1234-5678

0I5t 12t St= Ht

ES, CTR, NoPadding 2 XELE= ASSF0| HAL

>02§0”‘

rir
N
o
Jok
0




package chpater3;

import java.security.Key;

import java.security.MessageDigest,

import java.security.SecureRandom;

import javax.crypto.Cipher;

import javax.crypto.spec.IvParameterSpec;

public class TamperedWithDigestExample {

public static void main(String[] args) throws Exception{

SecureRandom random = new SecureRandom();
IvParameterSpec ivSpec = Utils.createCtrIvForAES(1, random);
Key key = Utils.createKeyForAES(256, random);
Cipher cipher = Cipher.getInstance("AES/CTR/NoPadding”, "BC");
String input ="Transfer 0000100 to AC 1234-5678";
MessageDigest hash = MessageDigest.getInstance("SHA-1", "BC");
System.out.println("input : "+input);

cipher.init(Cipher .ENCRYPT_MODE, key, ivSpec);
byte[] cipherText = new byte[cipher.getOutputSize(input.length()
+ hash.getDigestlLength())];
int ctlLength = cipher.update(Utils.toByteArray(input),0, input.length(), cipherText, 0);
hash.update(Utils.toByteArray(input));
ctLength += cipher.doFinal(hash.digest(),0,hash.getDigestLength(),cipherText, ctLength);

cipherText[9] ~="'0" ~ '9';

cipher.init(Cipher .DECRYPT_MODE, key, ivSpec);

byte[] plainText = cipher.doFinal(cipherText, 0, ctlLength);
int messagelength = plainText.length- hash.getDigestLength();
hash.update(plainText, 0, messagelLength);

byte[] messageHash =newbyte[hash.getDigestLength()];
System.arraycopy(plainText, messagelLength, messageHash, 0, messageHash.length);
System.out.println("plain : "+Utils.toString(plainText, messagelength)+

" verified : "+MessageDigest.isEqual(hash.digest(), messageHash));

}
!
& 2521
input : Transfer 0000100 to AC 1234-5678
plain : Transfer 9000100 to AC 1234-5678 verified : false
& =I5tz Sh= Ht
7|Z9| THAO|A MessageDigest( SHA-1 )& F7t5t0] AESHES HE5HD,
Ao zo AR EE HESIUES O,
525 HHoM L2 WES hashet 2242t MESE hash 2S HWSHH A3 & UCE
@ lessageDigest
i ) getInstance(String algorithm, String provider)
i) update(byte[] input)
i) digest()
iv) getDigestlLength()
v ) isEqual(byte[] digesta, byte[] digestb)




package chpater3;

import java.security.Key;

import java.security.MessageDigest,

import java.security.SecureRandom;

import javax.crypto.Cipher;

import javax.crypto.spec.IvParameterSpec;

public class TamperedDigestExample {

public static void main(String[] args) throws Exception {

SecureRandom random = new SecureRandom();
IvParameterSpec ivSpec = Utils.createCtrIvForAES(256, random);
Key key = Utils.createKeyForAES(256, random);
Cipher cipher = Cipher.getInstance("AES/CTR/NoPadding”, "BC");
String input ="Transfer 0000100 to AC 1234-5678";
MessageDigest hash = MessageDigest.getInstance("SHA-1", "BC");
System.out.println("input : "+ input);

cipher.init(Cipher .ENCRYPT_MODE, key, ivSpec);
byte[] cipherText =newbyte[cipher.getOutputSize(input.length()
+ hash.getDigestLength())];
int ctlLength = cipher.update(Utils.toByteArray(input),0,input.length(), cipherText, 0);
hash.update(Utils.toByteArray(input));
ctLength += cipher.doFinal(hash.digest(),0,hash.getDigestLength(),cipherText, ctLength);

cipherText[9] ~="'0" ~ '9';

byte[] originalHash = hash.digest(Utils.toByteArray(input));

byte[] tamperedHash = hash.digest(Utils.toByteArray(
"Transfer 9000100 to AC 1234-5678"));

for(int i = ctlength - hash.getDigestLength(), j =0; i != ctLength; i++, j++ ){
cipherText[i] ”= originalHash[j] ~ tamperedHash[j];

cipher.init(Cipher .DECRYPT_MODE, key, ivSpec);

byte[] plainText = cipher.doFinal(cipherText, 0, ctlLength);

int messagelength = plainText.length- hash.getDigestlLength();
hash.update(plainText, 0, messagelength);

byte[] messageHash =newbyte[hash.getDigestLength()];
System.arraycopy(plainText, messagelength, messageHash, 0, messageHash.length);

System.out.println("plain : "+Utils.toString(plainText, messagelength)
+" verified : "+ MessageDigest.isEqual(hash.digest(), messageHash));

}
}

& =52y

input : Transfer 0000100 to AC 1234-5678

plain : Transfer 9000100 to AC 1234-5678 verified :@ true
& =05 07} she bt

ol EﬂWMiM%aRMQSQS 1)s HEE AS ASoE & AUA| D,
Hash ME S HEFH2H =55 WYMo H#S0| F2/0] a2t




package chpater3;

import java.security.Key;

import java.security.MessageDigest,

import java.security.SecureRandom;

import javax.crypto.Cipher;

import javax.crypto.Mac;

import javax.crypto.spec.IvParameterSpec;

import javax.crypto.spec.SecretKeySpec;

public class TamperedWithHMacExample {

public static void main(String[] args) throws Exception {

SecureRandom random = new SecureRandom();
IvParameterSpec ivSpec = Utils.createCtrIvForAES(1, random);
Key key = Utils.createKeyForAES(256, random);
Cipher cipher = Cipher.getInstance("AES/CTR/NoPadding”, "BC");
String input ="Transfer 0000100 to AC 1234-5678";
Mac hMac = Mac.getInstance("HmacSHAT", "BC");
Key hMacKey =new SecretKeySpec(key.getEncoded(), "HmacSHA1");
System.out.println("input : "+ input);

cipher.init(Cipher .ENCRYPT_MODE, key, ivSpec);

byte[] cipherText =newbyte[cipher.getOutputSize(input.length()+hMac.getMacLength())];
int ctlength = cipher.update(Utils.toByteArray(input),®, input.length(), cipherText, 0);
hMac.init(hMacKey);

hMac.update(Utils.toByteArray(input));

ctLength += cipher.doFinal(hMac.doFinal(), 0,hMac.getMacLength(), cipherText, ctlLength);

cipherText[9] ~="'0" ~ '9';

cipher.init(Cipher .DECRYPT_MODE, key, ivSpec);
byte[] plainText = cipher.doFinal(cipherText, 0, ctlLength);
int messagelLength = plainText.length- hMac.getMacLength();
hMac.init(hMacKey);
hMac . update(plainText,0,messagelLength);
byte[] messageHash =newbyte[hMac.getMacLength()];
System.arraycopy(plainText, messagelength, messageHash, 0, messageHash.length);
System.out.println("plain : "+Utils.toString(plainText, messagelLength)
+" verfied : "+ MessageDigest.isEqual(hMac.doFinal(), messageHash));

—

Ji
U
H

. Transfer 0000100 to AC 1234-5678

. Transfer 9000100 to AC 1234-5678 verfied : false
St 1A} 3f= H}

FA | MessageDigest®2 H|A|Z| AZE st= Z10| OFYl hMac( HmacSHA1 )2 £ AZ2E 5t
o2 Q21 ojAIA AES T 4 AUtk

AC

getInstance(String algorithm, String provider)
init(Key key)

update(byte[] input)

doFinal()

getMacLength()

© S
55 Mo

Z

F_._J
r

B
ofi
0o

S - GWOGRE &
= i
mro

~

< <
S— N




package chpater3;
java.security.Key,
java.security.MessageDigest;
java.security.SecureRandom;
javax.crypto.Cipher;
javax.crypto.Mac;
javax.crypto.spec.IvParameterSpec;
javax.crypto.spec.SecretKeySpec,
class CipherMacExample {
public static void main(String[] args) throws Exception {

import
import
import
import
import
import
import
public

SecureRandom random = new SecureRandom();
IvParameterSpec ivSpec = Utils.createCtrIvForAES(1, random);
Key key = Utils.createKeyForAES(256, random);
Cipher cipher = Cipher.getInstance("AES/CTR/NoPadding”, "BC");
String input ="Transfer 0000100 to AC 1234-5678";
Mac mac = Mac.getInstance("DES", "BC");
byte[] macKeyBytes = new byte[] {

0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08 };
Key macKey =new SecretKeySpec(macKeyBytes, "DES");
System.out.println("input : "+input);

cipher.init(Cipher .ENCRYPT_MODE, key, ivSpec);

byte[] cipherText = new byte[cipher.getOutputSize(input.length() + mac.getMacLength())
int ctlength = cipher.update(Utils.toByteArray(input),®, input.length(), cipherText, 0
mac.init(macKey);

mac.update(Utils.toByteArray(input));

1;
);

ctlength += cipher.doFinal(mac.doFinal(), 0, mac.getMacLength(), cipherText, ctlLength);

cipher.init(Cipher .DECRYPT_MODE, key, ivSpec);

byte[] plainText = cipher.doFinal(cipherText, 0, ctlLength);

int messagelLength = plainText.length- mac.getMacLength();

mac.init(macKey);

mac.update(plainText, 0, messagelLength);

byte[] messageHash =new byte[mac.getMacLength()];

System.arraycopy(plainText, messagelLength, messageHash, 0, messageHash.length);

System.out.println("plain : "+Utils.toString(plainText, messagelength)
+" verified : "+MessageDigest.isEqual(mac.doFinal(), messageHash));

}
!
& =EHZEY
input : Transfer 0000100 to AC 1234-5678
plain : Transfer 0000100 to AC 1234-5678 verified : true

& =I5zt St Hf

O|MTtA|QF Z0| DIA|A] AS2 S
hash MACO| Of

= SAl0| stz st=d,
o DA MACE YSSI5t0] O S StUAF BHCE.




package chpater3;

import java.security.MessageDigest;

public class PKCS5Schemel {

private MessageDigest digest;

public PKCS5Schemel(MessageDigest digest){

}

this.digest = digest;

public byte[] generateDeriveKey(char[] password, byte[] salt, int iterationCount){

}

for(int 1 =0 ; i != password.length; i++ ){
digest.update((byte)password[i]);

digest.update(salt);

byte[] digestBytes = digest.digest();

for(int i =1; 1 < iterationCount; i++ ){
digest.update(digestBytes);
digestBytes = digest.digest();

return digestBytes;

package chpater3;
java.security.MessageDigest;
javax.crypto.Cipher;
javax.crypto.SecretKeyFactory;
javax.crypto.spec.IvParameterSpec;
javax.crypto.spec.PBEKeySpec;
javax.crypto.spec.SecretKeySpec;

import
import
import
import
import
import
public

class

PKCS5Scheme1Test {

public static void main(String[] args) throws Exception {

char[] password ="hello".toCharArray();

byte[] salt = new byte[] { 1, 2, 3, 4, 5,6, 7,8, 9, 01};
byte[] input = new byte[] { 0x0a, Ox0b, 0x0c, 0x0d, Ox0e, OxOf };
int iterationCount =100,

System.out.println("input : "+Utils.toHex(input));

// encryption step using regular PBE

Cipher cipher = Cipher.getInstance("PBEWithSHATANdDES", "BC");

SecretKeyFactory fact = SecretKeyFactory.getInstance("PBEWithSHATANdDES", "BC");
PBEKeySpec pbeKeySpec =new PBEKeySpec(password, salt, iterationCount);
cipher.init(Cipher.ENCRYPT _MODE, fact.generateSecret(pbeKeySpec));

byte[] enc = cipher.doFinal(input);

System.out.println("encrypt: "+ Utils.toHex(enc));

// decryption step - using the local implementation
cipher = Cipher.getInstance("DES/CBC/PKCS5Padding”);
PKCS5Scheme1 pkcs5s1 =new PKCS5Scheme1( MessageDigest.getInstance("SHA-1", "BC"));
byte[] derivedKey = pkcs5s1.generateDeriveKey(password, salt, iterationCount);
cipher.init(Cipher .DECRYPT_MODE, new SecretKeySpec(derivedKey, 0, 8, "DES"),
new IvParameterSpec(derivedKey, 8, 8));
byte[] dec = cipher.doFinal(enc);
System.out.println("decrypt : "+Utils.toHex(dec));

}
!
EEER
input : 0aBbOcOdOedf

encrypt: af1c264c0946104d

decrypt :

0a0b0cOdoedf

€ 20151112 St Hf

IjAQIE 7|8ko] (SHA1, DES )Y 253}

ujn
pl
0
rol
a




package chpater3;

import java.security.MessageDigest;

public class MGF1 {
private MessageDigest digest;
public MGF1(MessageDigest digest){
| this.digest = digest;

private void ItoOSP(int i, byte[] sp){

sp[0] = (byte)(i pp>24);
sp[1] = (byte)(i »)>>16);
spl2] = (byte)(i >>>8);
spl3] = (byte)(i D>>0);

public byte[] generateMask(byte[] seed, intlength){
byte[] mask =new byte[length];
byte[] C =new byte[4];
int counter =0,
int hLen = digest.getDigestLength();
while( counter < (length/ hLen) ){
ItoOSP(counter, C);
digest.update(seed);
digest.update(C);
System.arraycopy(digest.digest(),0,mask,counter * hLen, hlLen);
) counter++;
if( (counter * hLen) < length ){
Ito0SP(counter, C);
digest.update(seed);
digest.update(C);
System.arraycopy(digest.digest(), 0, mask, counter * hLen,
mask.length- (counter * hLen));

return mask;

public static void main(String[] args) throws Exception {
MGF1 mgf1 =new MGF1(MessageDigest.getInstance("SHA-1", "BC"));
byte[] source =new byte[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
System.out.println(Utils.toHex(mgf1.generateMask(source, 20)));

}
} —
& =321
ed Q3d7c8 c4d81cd1c0567bfabbc22ed2022977f
& =QlstnA} st Ht
PKCS #1 V2.1 Of ZZ§3H= Mask Generation Function®| Of|A|O|C},




package chpater3;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayQutputStream,
import java.security.DigestInputStream;
import java.security.DigestOutputStream;
import java.security.MessageDigest,
public class DigestIOExample {
public static void main(String[] args) throws Exception {
byte[] input = new byte[] {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0Ob, 0xOc, 0x0d, 0x0e, OxOf,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06 };
MessageDigest hash = MessageDigest.getInstance("SHA1");
System.out.println("input : "+Utils.toHex(input));

// input pass
ByteArrayInputStream bIn = new ByteArrayInputStream(input);
DigestInputStream dIn = new DigestInputStream(bIn, hash);
ByteArrayOutputStream bOut = new ByteArrayOutputStream();
int ch;
while( (ch = dIn.read()) >= 0 ){

bOut.write(ch);

}
byte[] newInput = bOut.toByteArray();
System.out.println("in digest : "+Utils.toHex(dIn.getMessageDigest().digest()));

// output pass

bOut = new ByteArrayQutputStream();

DigestOutputStream dOut =new DigestOutputStream(bOut, hash);
dOut.write(newInput);

dOut.close();

System.out.println("out digest: "+Utils.toHex(dOut.getMessageDigest().digest())),

‘ =2+

input : 000102030405060708090a0b0c0d0eOTO0010203040506
in digest : 864ea%ee65d6186847ba302ded2da77ad6c64722
out digest: 864ea%ee65d6786847ba302ded2da77ad6c64722
& Q0I5 Sh= Ht

I/0 Stream2 S8t A=E353 L GAIR] HS




