
- 1 -

[Letspic]Cryptography with Java

02
보고서 및 논문 윤리 서약

1. 나는 보고서 및 논문의 내용을 조작하지 않겠습니다.

2. 나는 다른 사람의 보고서 및 논문의 내용을 내 것처럼 무단으로 복사하지 않겠습니다.

3. 나는 다른 사람의 보고서 및 논문의 내용을 참고하거나 인용할 시 참고 및 인용 형식을

갖추고 출처를 반드시 밝히겠습니다.

4. 나는 보고서 및 논문을 대신하여 작성하도록 청탁하지도 청탁받지도 않겠습니다.

나는 보고서 및 논문 작성 시 위법 행위를 하지 않고, 명지인으로서 또한 공학인으로서
나의 양심과 명예를 지킬 것을 약속합니다.

보고서명 : [Letspic]Cryptography with Java 02

학 과 : 컴퓨터공학과

담당교수 : 신민호 교수님

학 번 : 60122480

이 름 : 전영민 (서명)

- 2 -

1. 목적

Letpics�안드로이드�어플�사용자�그룹�간�데이터�공유에서�발생하는�보안�문제와�parse.com에�저장되는�사진�

메타데이터들의�관리�문제에�대해�구체적인�보안�솔루션을�적용하기�전에�android에서�사용할�수�있는�Java�기반의�

cryptography를�확인한다.

2.�배경

안드로이드�기반�기기에서는�SUN�JCE나�BC�JCE의�보안�프로바이더가�제공하는�API를�사용한다.�따라서�Java�

기반으로�해당�기능들을�테스트�해보고�소스코드�분석을�통해�제공되는�API를�이해할�필요가�있다.

3.�방법론

‘Beginning�Cryptography�with�Java™’,�David�Hook�의�chapter�순대로�예제를�통해�API를�숙지한다.

https://www.bouncycastle.org/specifications.html�을�통해�알고리즘�등의�스펙을�확인한다.

- 3 -

4.�코드분석�정리

package�chpater3;
import�java.security.SecureRandom;
import�javax.crypto.KeyGenerator;
import�javax.crypto.SecretKey;
import�javax.crypto.spec.IvParameterSpec;
public�class�Utils�extends�chapter2.Utils{

public�static�SecretKey�createKeyForAES(int�bitLength,�SecureRandom�random)�throws�Exception{
KeyGenerator�generator�=�KeyGenerator.getInstance("AES",�"BC");
generator.init(bitLength,�random);
return�generator.generateKey();

}
public�static�IvParameterSpec�createCtrIvForAES(int�messageNumber,�SecureRandom�random){

byte[]�ivBytes�=new�byte[16];
//�initially�randomize
random.nextBytes(ivBytes);
//�set�the�message�number�bytes
ivBytes[0]�=�(byte)�(messageNumber�>>24);
ivBytes[1]�=�(byte)�(messageNumber�>>16);
ivBytes[2]�=�(byte)�(messageNumber�>>8);
ivBytes[3]�=�(byte)�(messageNumber�>>0);
//�set�the�counter�bytes�to�1
for(int�i�=0;�i�!=7;�i++�){

ivBytes[8+i]�=0;
}
ivBytes[15]�=1;
return�new�IvParameterSpec(ivBytes);

}

public�static�String�toString(byte[]�bytes,�intlength){
char[]�chars�=�new�char[length];
for(int�i�=0;�i�!=�chars.length;�i++�){

chars[i]�=�(char)�(bytes[i]�&�0xff);
}
return�new�String(chars);

}

public�static�String�toString(byte[]�bytes){
return�toString(bytes,�bytes.length);

}

public�static�byte[]�toByteArray(String�string){
byte[]�bytes�=�new�byte[string.length()];
char[]�chars�=�string.toCharArray();
for(int�i�=0�;�i�!=�chars.length;�i++�){

bytes[i]�=�(byte)chars[i];
}
return�bytes;

}
}

◆�주의할�점
Java에서�기본으로�제공되는�String�클래스에�getBytes()�메소드를�호출하거나�생성자를�통해�byte�array를�얻
을�수�있다.�하지만�기본�String�클래스는�JVM이�사용하는�default�charset에�영향을�받으면서�string-to-byte,�
byte-to-string�변환을�하게�된다.�모든�JVM이�예를�들어�String.getBytes(“UTF8”)와�같이�“UTF-8”�등�특정
한��charset을�지원하고�있지�않다.�따라서�toByteArray(String�string),�toString(byte[]�bytes,�intlength)�
의�구현이�필요하다.

- 4 -

package�chpater3;
import�java.security.Key;
import�java.security.SecureRandom;
import�javax.crypto.Cipher;
import�javax.crypto.spec.IvParameterSpec;
public�class�TamperedExample�{

public�static�void�main(String[]�args)�throws�Exception�{
SecureRandom�random�=�new�SecureRandom();
IvParameterSpec�ivSpec�=�Utils.createCtrIvForAES(1,�random);
Key�key�=�Utils.createKeyForAES(256,�random);
Cipher�cipher�=�Cipher.getInstance("AES/CTR/NoPadding",�"BC");
String�input�="Transfer�0000100�to�AC�1234-5678";
System.out.println("input�:�"+�input);

//�encryption�pass
cipher.init(Cipher.ENCRYPT_MODE,�key,�ivSpec);
byte[]�cipherText�=�cipher.doFinal(Utils.toByteArray(input));

//�tampering�step
cipherText[9]�^='0'�^�'9';

//�decryptiobn�step
cipher.init(Cipher.DECRYPT_MODE,�key,�ivSpec);
byte[]�plainText�=�cipher.doFinal(cipherText);
System.out.println("plain�:�"+Utils.toString(plainText));

}
}

◆�출력결과
input�:�Transfer�0000100�to�AC�1234-5678
plain�:�Transfer�9000100�to�AC�1234-5678
◆�확인하고자�하는�바
AES,�CTR,�NoPadding�으로�전달되는�암호화문이�변경되는�것을�확인

- 5 -

package�chpater3;
import�java.security.Key;
import�java.security.MessageDigest;
import�java.security.SecureRandom;
import�javax.crypto.Cipher;
import�javax.crypto.spec.IvParameterSpec;
public�class�TamperedWithDigestExample�{

public�static�void�main(String[]�args)�throws�Exception{
SecureRandom�random�=�new�SecureRandom();
IvParameterSpec�ivSpec�=�Utils.createCtrIvForAES(1,�random);
Key�key�=�Utils.createKeyForAES(256,�random);
Cipher�cipher�=�Cipher.getInstance("AES/CTR/NoPadding",�"BC");
String�input�="Transfer�0000100�to�AC�1234-5678";
MessageDigest�hash�=�MessageDigest.getInstance("SHA-1",�"BC");
System.out.println("input�:�"+input);

//�encryption�step
cipher.init(Cipher.ENCRYPT_MODE,�key,�ivSpec);
byte[]�cipherText�=�new�byte[cipher.getOutputSize(input.length()

+�hash.getDigestLength())];
int�ctLength�=�cipher.update(Utils.toByteArray(input),0,�input.length(),�cipherText,�0);
hash.update(Utils.toByteArray(input));
ctLength�+=�cipher.doFinal(hash.digest(),0,hash.getDigestLength(),cipherText,�ctLength);

//�tampering�step
cipherText[9]�^='0'�^�'9';

//�decryption�step
cipher.init(Cipher.DECRYPT_MODE,�key,�ivSpec);
byte[]�plainText�=�cipher.doFinal(cipherText,�0,�ctLength);
int�messageLength�=�plainText.length-�hash.getDigestLength();
hash.update(plainText,�0,�messageLength);

byte[]�messageHash�=newbyte[hash.getDigestLength()];
System.arraycopy(plainText,�messageLength,�messageHash,�0,�messageHash.length);
System.out.println("plain�:�"+Utils.toString(plainText,�messageLength)+

"�verified�:�"+MessageDigest.isEqual(hash.digest(),�messageHash));
}

}

◆�출력결과
input�:�Transfer�0000100�to�AC�1234-5678
plain�:�Transfer�9000100�to�AC�1234-5678�verified�:�false
◆�확인하고자�하는�바
기존의�단계에서�MessageDigest(�SHA-1�)를�추가하여�암호화문을�전송하고,
암호문의�일부분을�변경하였을�때,
복호화�과정에서�나온�평문을�hash한�결과와�전송된�hash�값을�비교하여�검증할�수�있다.
◆�MessageDigest
ⅰ)�getInstance(String�algorithm,�String�provider)
ⅱ)�update(byte[]�input)
ⅲ)�digest()
ⅳ)�getDigestLength()
ⅴ)�isEqual(byte[]�digesta,�byte[]�digestb)

- 6 -

package�chpater3;
import�java.security.Key;
import�java.security.MessageDigest;
import�java.security.SecureRandom;
import�javax.crypto.Cipher;
import�javax.crypto.spec.IvParameterSpec;
public�class�TamperedDigestExample�{

public�static�void�main(String[]�args)�throws�Exception�{
SecureRandom�random�=�new�SecureRandom();
IvParameterSpec�ivSpec�=�Utils.createCtrIvForAES(256,�random);
Key�key�=�Utils.createKeyForAES(256,�random);
Cipher�cipher�=�Cipher.getInstance("AES/CTR/NoPadding",�"BC");
String�input�="Transfer�0000100�to�AC�1234-5678";
MessageDigest�hash�=�MessageDigest.getInstance("SHA-1",�"BC");
System.out.println("input�:�"+�input);

//�encryption�pass
cipher.init(Cipher.ENCRYPT_MODE,�key,�ivSpec);
byte[]�cipherText�=newbyte[cipher.getOutputSize(input.length()

+�hash.getDigestLength())];
int�ctLength�=�cipher.update(Utils.toByteArray(input),0,input.length(),�cipherText,�0);
hash.update(Utils.toByteArray(input));
ctLength�+=�cipher.doFinal(hash.digest(),0,hash.getDigestLength(),cipherText,�ctLength);

//�tampering�step
cipherText[9]�^='0'�^�'9';

//�replace�digest
byte[]�originalHash�=�hash.digest(Utils.toByteArray(input));
byte[]�tamperedHash�=�hash.digest(Utils.toByteArray(

"Transfer�9000100�to�AC�1234-5678"));
for(int�i�=�ctLength�-�hash.getDigestLength(),�j�=0;�i�!=�ctLength;�i++,�j++�){

cipherText[i]�^=�originalHash[j]�^�tamperedHash[j];
}

//�decryption�step
cipher.init(Cipher.DECRYPT_MODE,�key,�ivSpec);
byte[]�plainText�=�cipher.doFinal(cipherText,�0,�ctLength);
int�messageLength�=�plainText.length-�hash.getDigestLength();
hash.update(plainText,�0,�messageLength);
byte[]�messageHash�=newbyte[hash.getDigestLength()];
System.arraycopy(plainText,�messageLength,�messageHash,�0,�messageHash.length);

System.out.println("plain�:�"+Utils.toString(plainText,�messageLength)
+"�verified�:�"+�MessageDigest.isEqual(hash.digest(),�messageHash));

}
}

◆�출력결과
input�:�Transfer�0000100�to�AC�1234-5678
plain�:�Transfer�9000100�to�AC�1234-5678�verified�:�true
◆�확인하고자�하는�바
이전�단계에서�MessageDigest(�SHA-1�)을�변경된�것을�검증해낼�수�있었지만,
Hash�전부를�변경해버리면�복호화�과정에서의�검증이�무의미�해진다.

- 7 -

package�chpater3;
import�java.security.Key;
import�java.security.MessageDigest;
import�java.security.SecureRandom;
import�javax.crypto.Cipher;
import�javax.crypto.Mac;
import�javax.crypto.spec.IvParameterSpec;
import�javax.crypto.spec.SecretKeySpec;
public�class�TamperedWithHMacExample�{

public�static�void�main(String[]�args)�throws�Exception�{
SecureRandom�random�=�new�SecureRandom();
IvParameterSpec�ivSpec�=�Utils.createCtrIvForAES(1,�random);
Key�key�=�Utils.createKeyForAES(256,�random);
Cipher�cipher�=�Cipher.getInstance("AES/CTR/NoPadding",�"BC");
String�input�="Transfer�0000100�to�AC�1234-5678";
Mac�hMac�=�Mac.getInstance("HmacSHA1",�"BC");
Key�hMacKey�=new�SecretKeySpec(key.getEncoded(),�"HmacSHA1");
System.out.println("input�:�"+�input);

//�encryption�step
cipher.init(Cipher.ENCRYPT_MODE,�key,�ivSpec);
byte[]�cipherText�=newbyte[cipher.getOutputSize(input.length()+hMac.getMacLength())];
int�ctLength�=�cipher.update(Utils.toByteArray(input),0,�input.length(),�cipherText,�0);
hMac.init(hMacKey);
hMac.update(Utils.toByteArray(input));
ctLength�+=�cipher.doFinal(hMac.doFinal(),�0,hMac.getMacLength(),�cipherText,�ctLength);

//�tampering�step
cipherText[9]�^='0'�^�'9';

//�replace�digest
//�?

//�decryption�pass
cipher.init(Cipher.DECRYPT_MODE,�key,�ivSpec);
byte[]�plainText�=�cipher.doFinal(cipherText,�0,�ctLength);
int�messageLength�=�plainText.length-�hMac.getMacLength();
hMac.init(hMacKey);
hMac.update(plainText,0,messageLength);
byte[]�messageHash�=newbyte[hMac.getMacLength()];
System.arraycopy(plainText,�messageLength,�messageHash,�0,�messageHash.length);
System.out.println("plain�:�"+Utils.toString(plainText,�messageLength)

+"�verfied�:�"+�MessageDigest.isEqual(hMac.doFinal(),�messageHash));

}
}

◆�출력결과
input�:�Transfer�0000100�to�AC�1234-5678
plain�:�Transfer�9000100�to�AC�1234-5678�verfied�:�false
◆�확인하고자�하는�바
이전�단계의�MessageDigest로�메시지�검증을�하는�것이�아닌�hMac(�HmacSHA1�)을�통해�검증을�하려�한다.
결과적으로�인증과�메시지�검증을�할�수�있다.
◆�MAC
ⅰ)�getInstance(String�algorithm,�String�provider)
ⅱ)�init(Key�key)
ⅲ)�update(byte[]�input)
ⅳ)�doFinal()
ⅴ)�getMacLength()

- 8 -

package�chpater3;
import�java.security.Key;
import�java.security.MessageDigest;
import�java.security.SecureRandom;
import�javax.crypto.Cipher;
import�javax.crypto.Mac;
import�javax.crypto.spec.IvParameterSpec;
import�javax.crypto.spec.SecretKeySpec;
public�class�CipherMacExample�{

public�static�void�main(String[]�args)�throws�Exception�{
SecureRandom�random�=�new�SecureRandom();
IvParameterSpec�ivSpec�=�Utils.createCtrIvForAES(1,�random);
Key�key�=�Utils.createKeyForAES(256,�random);
Cipher�cipher�=�Cipher.getInstance("AES/CTR/NoPadding",�"BC");
String�input�="Transfer�0000100�to�AC�1234-5678";
Mac�mac�=�Mac.getInstance("DES",�"BC");
byte[]�macKeyBytes�=�new�byte[]�{

0x01,�0x02,�0x03,�0x04,�0x05,�0x06,�0x07,�0x08�};
Key�macKey�=new�SecretKeySpec(macKeyBytes,�"DES");
System.out.println("input�:�"+input);

//�encryption�step
cipher.init(Cipher.ENCRYPT_MODE,�key,�ivSpec);
byte[]�cipherText�=�new�byte[cipher.getOutputSize(input.length()�+�mac.getMacLength())];
int�ctLength�=�cipher.update(Utils.toByteArray(input),0,�input.length(),�cipherText,�0);
mac.init(macKey);
mac.update(Utils.toByteArray(input));
ctLength�+=�cipher.doFinal(mac.doFinal(),�0,�mac.getMacLength(),�cipherText,�ctLength);

//�decryption�step
cipher.init(Cipher.DECRYPT_MODE,�key,�ivSpec);
byte[]�plainText�=�cipher.doFinal(cipherText,�0,�ctLength);
int�messageLength�=�plainText.length-�mac.getMacLength();
mac.init(macKey);
mac.update(plainText,�0,�messageLength);
byte[]�messageHash�=new�byte[mac.getMacLength()];
System.arraycopy(plainText,�messageLength,�messageHash,�0,�messageHash.length);

System.out.println("plain�:�"+Utils.toString(plainText,�messageLength)
+"�verified�:�"+MessageDigest.isEqual(mac.doFinal(),�messageHash));

}
}

◆�출력결과
input�:�Transfer�0000100�to�AC�1234-5678
plain�:�Transfer�0000100�to�AC�1234-5678�verified�:�true
◆�확인하고자�하는�바
이전단계와�같이�메시지�검증과�인증을�동시에�하고자�하는데,
hash�MAC이�아닌�고전적인�MAC을�암호화하여�이를�하고자�한다.

- 9 -

package�chpater3;
import�java.security.MessageDigest;
public�class�PKCS5Scheme1�{

private�MessageDigest�digest;
public�PKCS5Scheme1(MessageDigest�digest){

this.digest�=�digest;
}
public�byte[]�generateDeriveKey(char[]�password,�byte[]�salt,�int�iterationCount){

for(int�i�=0�;�i��!=�password.length;�i++�){
digest.update((byte)password[i]);

}
digest.update(salt);
byte[]�digestBytes�=�digest.digest();
for(int�i�=1;�i�<�iterationCount;�i++�){

digest.update(digestBytes);
digestBytes�=�digest.digest();

}
return�digestBytes;

}
}

package�chpater3;
import�java.security.MessageDigest;
import�javax.crypto.Cipher;
import�javax.crypto.SecretKeyFactory;
import�javax.crypto.spec.IvParameterSpec;
import�javax.crypto.spec.PBEKeySpec;
import�javax.crypto.spec.SecretKeySpec;
public�class�PKCS5Scheme1Test�{

public�static�void�main(String[]�args)�throws�Exception�{
char[]�password�="hello".toCharArray();
byte[]�salt�=�new�byte[]�{�1,�2,�3,�4,�5,�6,�7,�8,�9,�0�};
byte[]�input�=�new�byte[]�{�0x0a,�0x0b,�0x0c,�0x0d,�0x0e,�0x0f�};
int�iterationCount�=100;

System.out.println("input�:�"+Utils.toHex(input));

//�encryption�step�using�regular�PBE
Cipher�cipher�=�Cipher.getInstance("PBEWithSHA1AndDES",�"BC");
SecretKeyFactory�fact�=�SecretKeyFactory.getInstance("PBEWithSHA1AndDES",�"BC");
PBEKeySpec�pbeKeySpec�=new�PBEKeySpec(password,�salt,�iterationCount);
cipher.init(Cipher.ENCRYPT_MODE,�fact.generateSecret(pbeKeySpec));
byte[]�enc�=�cipher.doFinal(input);
System.out.println("encrypt:�"+�Utils.toHex(enc));

//�decryption�step�-�using�the�local�implementation
cipher�=�Cipher.getInstance("DES/CBC/PKCS5Padding");
PKCS5Scheme1�pkcs5s1�=new�PKCS5Scheme1(�MessageDigest.getInstance("SHA-1",�"BC"));
byte[]�derivedKey�=�pkcs5s1.generateDeriveKey(password,�salt,�iterationCount);
cipher.init(Cipher.DECRYPT_MODE,�new�SecretKeySpec(derivedKey,�0,�8,�"DES"),

new�IvParameterSpec(derivedKey,�8,�8));
byte[]�dec�=�cipher.doFinal(enc);
System.out.println("decrypt�:�"+Utils.toHex(dec));

}
}

◆�출력결과
input�:�0a0b0c0d0e0f
encrypt:�af1c264c0946104d
decrypt�:�0a0b0c0d0e0f
◆�확인하고자�하는�바
패스워드�기반의�(�SHA1,�DES�)암복호화를�진행한다.�

- 10 -

package�chpater3;
import�java.security.MessageDigest;
public�class�MGF1�{

private�MessageDigest�digest;
public�MGF1(MessageDigest�digest){

this.digest�=�digest;
}
private�void�ItoOSP(int�i,�byte[]�sp){

sp[0]�=�(byte)(i�>>>24);
sp[1]�=�(byte)(i�>>>16);
sp[2]�=�(byte)(i�>>>8);
sp[3]�=�(byte)(i�>>>0);

}
public�byte[]�generateMask(byte[]�seed,�intlength){

byte[]�mask�=new�byte[length];
byte[]�C�=new�byte[4];
int�counter�=0;
int�hLen�=�digest.getDigestLength();
while(�counter�<�(length/�hLen)�){

ItoOSP(counter,�C);
digest.update(seed);
digest.update(C);
System.arraycopy(digest.digest(),0,mask,counter�*�hLen,�hLen);
counter++;

}
if(�(counter�*�hLen)�<�length�){

ItoOSP(counter,�C);
digest.update(seed);
digest.update(C);
System.arraycopy(digest.digest(),�0,�mask,�counter�*�hLen,

mask.length-�(counter�*�hLen));
}
return�mask;

}
public�static�void�main(String[]�args)�throws�Exception�{

MGF1�mgf1�=new�MGF1(MessageDigest.getInstance("SHA-1",�"BC"));
byte[]�source�=new�byte[]�{�1,�2,�3,�4,�5,�6,�7,�8,�9,�10�};
System.out.println(Utils.toHex(mgf1.generateMask(source,�20)));

}
}

◆�출력결과
e0a63d7c8c4d81cd1c0567bfab6c22ed2022977f
◆�확인하고자�하는�바
PKCS�#1�V2.1�에�존재하는�Mask�Generation�Function의�예제이다.

- 11 -

package�chpater3;
import�java.io.ByteArrayInputStream;
import�java.io.ByteArrayOutputStream;
import�java.security.DigestInputStream;
import�java.security.DigestOutputStream;
import�java.security.MessageDigest;
public�class�DigestIOExample�{

public�static�void�main(String[]�args)�throws�Exception�{
byte[]�input�=�new�byte[]�{

0x00,�0x01,�0x02,�0x03,�0x04,�0x05,�0x06,�0x07,
0x08,�0x09,�0x0a,�0x0b,�0x0c,�0x0d,�0x0e,�0x0f,
0x00,�0x01,�0x02,�0x03,�0x04,�0x05,�0x06�};

MessageDigest�hash�=�MessageDigest.getInstance("SHA1");
System.out.println("input�:�"+Utils.toHex(input));

//�input�pass
ByteArrayInputStream�bIn�=�new�ByteArrayInputStream(input);
DigestInputStream�dIn�=�new�DigestInputStream(bIn,�hash);
ByteArrayOutputStream�bOut�=�new�ByteArrayOutputStream();
int�ch;
while(�(ch�=�dIn.read())�>=�0�){

bOut.write(ch);
}
byte[]�newInput�=�bOut.toByteArray();
System.out.println("in�digest�:�"+Utils.toHex(dIn.getMessageDigest().digest()));

//�output�pass
bOut�=�new�ByteArrayOutputStream();
DigestOutputStream�dOut�=new�DigestOutputStream(bOut,�hash);
dOut.write(newInput);
dOut.close();
System.out.println("out�digest:�"+Utils.toHex(dOut.getMessageDigest().digest()));

}
}

◆�출력결과
input�:�000102030405060708090a0b0c0d0e0f00010203040506
in�digest�:�864ea9ee65d6f86847ba302ded2da77ad6c64722
out�digest:�864ea9ee65d6f86847ba302ded2da77ad6c64722
◆�확인하고자�하는�바
I/O�Stream을�통한�암복호화�및�메시지�검증

