01

==2 WEs W XX8 REH2=Z

=

al

210N

L= TE A2

[Letspic]Cryptography with Java

2.

. o
<r
180

o)

ol

ol

o

[Letspic]Cryptography with Java 01

JINH

H

ol
[0

_

HE
N\

=)

ol

3
E

o
ol

<J

<+
E

.

0o

-

a0

60122480

H

ol

0l

1. 58

Letpics QtE20|E o}F ARGAT 25 It glolH s RolA Lst= Bot A9} parse.comof A% E = AR
HEtdlolH&2] #a] A0 tish +AIAQ] Bt £248 AEst7] Aof androido|A A& 4~ Q& Java 7|§He]
cryptographys <HQlstc,

2. i
f=zolE 7|9k 7]7]o A= SUN JCEY BC JCEQ] EoF Z=zujo]7t Algst= APIS ARESITE T2tA Java
e o 7leeS HAE SiEY AAFE %ﬁ%ﬁﬁﬂﬂ%ﬂ%Améoﬁﬁl%EHQQ-

3. gl =
‘Beginning Cryptography with Java™’, David Hook 9] chapter &2 dA|E E3] APIS £X|stct.

[¢]

4. 2R Y

package chapter1;

import javax.crypto.Cipher;

import javax.crypto.SecretKey,

import javax.crypto.spec.SecretKeySpec;

public class SimplePolicyTest {

public static void main(String[] args) throws Exception {

byte[] data = { 0x00, 0x01, 0x02, 0x03, 0x04, Ox05, 0x06, 0x07 };
// create a 64 bit secret key from raw bytes
SecretKey key64 = new SecretKeySpec(new byte[] {
0x00, 0x01, 0x02, Ox03, Ox04, 0x05, 0x05, Ox06, 0x07}, "Blowfish");
// create a cipher and attempt to encrypt the data block with our key
Cipher ¢ = Cipher.getInstance("Blowfish/ECB/NoPadding");

c.init(Cipher.ENCRYPT_MODE, key64);
c.doFinal(data);
System.out.println("64 bit test: passed");

// create a 192 bit secret key from raw bytes

SecretKey key192 = new SecretKeySpec(new byte[] {

0x00, 0xd1, 0x02, Ox03, Ox04, 0x05, 0x06, 0x07,

0x08, 0x09, 0x0a, 0xOb, 0x0c, 0x0d, Ox0e, OxOf,

0x10, Ox11, 0x12, 0x13, Ox14, Ox15, 0x16, 0x17 }, "Blowfish");

// now try encrypting with the larger key
c.init(Cipher.ENCRYPT_MODE, key192);
c.doFinal(data);

System.out.println("192 bit test: passed");
System.out.println("Tests completed");

}

Blowfish ? 1993 EZFA HLIOIOZF AA et 7| (key) HAIQl CH2

ot
e

= =,

Jm
Ql
]
3%
H
Jhu
kl
Qo
rn
Al
D)

t 2} st Bf
bit keyS 7tA| 2 iif St A2 2A7F ARACH. CHEF 192bit keyS 7121 ASSE AIE=E o q% 2}
Of| Q| 7t ErAISHSCH. © java.security.InvalidKeyException: Illegal key size or default parameters ’

Mz oA
i) %JAVA_HOME%/jre/lib/security StOf| policy IIO| 0|0| UA7|0| ZEO| ZH7F U=z 2QI5H7| 2|5H
DecomplierE S5H source attachmentE ot0] SQISHE}USLE ZAH = QIRUCEH,
i) UnlimitedJCEPolicylDK6~82 HHZ0| 2= policy Y2 WA 5t ZAE sHZSHOE
i) android O &= 0|25t key size7Z} ﬂ—Xﬂ7f | =24 YOot&tof ict,

>

”Oo

ol &
o
2. 18
OII

Ct.

ro

package chapter1;
import java.security.Security;
public class SimpleProviderTest {
public static void main(String[] args){
String providerName ="BC";
if(Security.getProvider(providerName) == null){
} {System.out.println(providerName +" provider not installed");
else
System.out.println(providerName +" is installed.");

}
}

& 0I5t} st}
=> J(A= ZZ2HI0|H 7|Ete 2 St0A £33 SZ A (Implementation Independence), 78 Z 3t (Implementation
interoperability), &112|= &2t (Algorithm Extensibility)S Zt311 QUCH,

O Z2Hio|HE2 JReZt Ax|E W 7[2422 HA[ED (Sun) F7I2 Hz[e £ UCE. (Bouncy Castle)
MY T 2H0|H S java.securityO| Cr21 ZH0| Aol =ICt,

#

List of providers and their preference oreders (see above);

#

security.provider.1=sun.security.provider.Sun
security.provider.2=com.sun.net.ssl.internal.ssl.Provider
security.provider.3=com.sun.rsajca.Provider
security.provider.4=com.sun.crypto.provider.SunJCE
security.provider.5=org.bouncycastle.jce.provider.BouncyCastleProvider

& HZ -

i) java.security It HA| St2| @4RUACHH Bouncy Castle ZZHIO|HE QIAIGHA| X
ii) Bouncy Castle AX| 3iCtH java.securityOl= HE5}t4At.

i) android Ol &= java.security IS £ 5O St=71? &QIGHOL

Ct.

ro

ol
a

package chapter?;

import javax.crypto.Cipher;

public class PrecedenceTest {

public static void main(String[] args) throws Exception {

Cipher cipher = Cipher.getInstance("Blowfish/ECB/NoPadding");
System.out.println(cipher.getProvider());
cipher = Cipher.getInstance("Blowfish/ECB/NoPadding”, "BC");
System.out.println(cipher.getProvider());

}

-

}
& E0I5t12} Sh=Ht
=> SunJCE = 28}0|E 2} BouncyCastle Z2H}O|HO| HHE ZHQISHC

package chapter2;
public class Utils {
private static String digits ="0123456789%abcdef";
public static String toHex(byte[] data, intlength) {
StringBuffer buf =new StringBuffer();
for (int i =0; i !=length; i++) {
int v = data[i] & Oxff;
buf.append(digits.charAt(v >> 4));
buf.append(digits.charAt(v & 0xf));

}
return buf.toString();

public staticString toHex(byte[] data) {

return toHex(data, data.length);

r
Hgiste eha

package chapter2;

import javax.crypto.Cipher;

import javax.crypto.spec.SecretKeySpec;

public class SimpleSymmetricExample {

public static void main(String[] args) throws Exception {
byte[] input =new byte[] { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,

(byte)0x88, (byte)0x99, (byte)Oxaa, (byte)Oxbb,
(byte)oxcc, (byte)Oxdd, (byte)Oxee, (byte)Oxff};

byte[] keyBytes =new byte[] {
0x00, Ox01, 0x02, 0x03, Ox04, 0x05, Ox06, 0x07,
0x08, 0x09, 0x0a, 0xOb, 0x0c, 0x0d, O0x0e, OxOf,
0x10. Ox11, 0x12. 0x13. Ox14. 0x15. Ox16, Ox17 };

SecretKeySpec key = new SecretKeySpec(keyBytes, "AES");
Cipher cipher = Cipher.getInstance("AES/ECB/NoPadding"

: BCMY;
System.out.println("input text : "+ Utils.toHex(input));

byte[] cipherText = new byte[input.length];

cipher.init(Cipher .ENCRYPT_MODE, key);

int ctLength = cipher.update(input, 0, input.length, cipherText, 0);

ctlLength += cipher.doFinal(cipherText, ctLength);

System.out.println("cipher text: "+ Utils.toHex(cipherText) +" bytes: "+ctlLength);

byte[] plainText = new byte[ctlLengthl];
cipher.init(Cipher .DECRYPT_MODE, key);
int ptLength = cipher.update(cipherText, 0, ctlLength, plainText, 0);
ptLength += cipher.doFinal(plainText, ptLength);
| System.out.println("plain text : "+ Utils.toHex(plainText) +" bytes: "+ ptLength);
!

& =4

input text : 00112233445566778899%aabbccddeeff

cipher text: dda97ca4864cdfef6eat70a0ec0d7191 bytes: 16

plain text : 00112233445566778899aabbccddeeff bytes: 16

@ javax.crypto.Cipher : =253} ozl

i) getInstance(String transformation, String provider)

= “LNe|F05/2E/IY ", “IZ2HIO|HO0[E " & Df7H+2 Cipher Z{A|s}

i) init(int opmode, Key key)

=> Cipher.ENCRYPT_MODE or Cipher.DECRYPT_MODE, “key” S OW/WHH4LZ 27|53} 218

iii) update(byte[] input, int inputOffset, int inputLen, byte[] output, int outputOffset)

= “ YHHIO|EBIE 7, “ U offset”, “ LYHHIO|EHfES| ZO0|”, “ZHHIO|EH|IE ", “ EHoffset” 22
AESSHE R, (F29|) HIO|EB|EL| AZY S FAISt= 40| HiEAT
iv) doFinal(byte[] output, int outputOffset)

= “EZHHIO|EBIE ", “£Y offset” 22 AEZ3}O

@ javax.crypto.SecretKeySpec : A= HIO|EBIEZEE R ZFE L1N2|Z9| keyE F2T

i) SecretKeySpec(byte[] key, String algorithm)

=> “keyHIO|EH{E >, “Yi2S> 2= keyE =&, CiC ST HIO|EH{EO| R=5HA| At = %

s

package chapter?;
import javax.crypto.Cipher;
import javax.crypto.spec.SecretKeySpec:
public class SimpleSymmetricPaddingExample {
public static void main(String[] args) throws Exception{
byte[] input =new byte[] {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0xO0c, 0x0d, O0xOe, 0xOf,
0x10, Ox11, Ox12, Ox13, Ox14, 0x15, Oxl6, 0x17 };
byte[] keyBytes =new byte[] {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0xOb, 0x0c, 0x0d, 0x0Oe, 0xOf,
0x10, Ox11, 0x12, 0x13, Ox14, Ox15, Ox16, 0x17 }

SecretKeySpec key = new SecretKeySpec(keyBytes, "AES");
Cipher cipher = Cipher.getinstance('AES/ECB/PKCS7Padding", "BC"):
System.out.printIn("input : "+ Utils.toHex(input));

// encryption pass

cipher.init(Cipher.ENCRYPT_MODE, key);

byte[] cipherText = new byte[cipher.getOutputSize(input.length)];

int ctLength = cipher.update(input, 0, input.length, cipherText, 0):
ctLength += cipher.doFinal(cipherText, ctLength):
System.out.printIn("cipher: "+Utils.toHex(cipherText)+" bytes: "+ctLength):

// decryption pass

cipher.init(Cipher. DECRYPT_MODE, key):

byte[] plainText = new byte[cipher.getOutputSize(ctLength)]:

int ptLength = cipher.update(cipherText, 0, ctLength, plainText, 0):
ptLength += cipher.doFinal(plainText, ptLength):
System.out.println('plain : "+Utils.toHex(plainText)+" bytes: "+ptLength):

}
}

& =3

input : 000102030405060708090a0b0c0d0ed®T1011121314151617

cipher: 0060bffe46834bb8da5cf9a61ff220aefadbbbd3578579c0fd331874¢7234233 bytes: 32

plain : 000102030405060708090a0b0c0d0e0f10111213141516170000000000000000 bytes: 24

& 0I5t} sttt

=> block cipher Of|A input@| Z 0|7} &tAF block size2 LHRO0{Z|R| Y282 ¢ bitl CIE bit2 <L
padding O|2}3}, plain textl| SIE 20| obitZ 2| Y2

package chapter2;
import javax.crypto.Cipher;
import javax.crypto.spec.SecretKeySpec;
public class SimpleECBExample {
public static void main(String[] args) throws Exception {
byte[] input = new byte[] {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, OxOb, 0x0Oc, 0x0d, 0x0e, 0OxOf,
0x00, 0x01, 0x02, 0x03, Ox04, Ox05, 0x06, 0x07 };
byte[] keyBytes = new byte[] {
0x01, 0x23, 0x45, 0x67,
(byte) 0x89, (byte) Oxab, (byte) Oxcd, (byte) Oxef };

SecretKeySpec key = new SecretKeySpec(keyBytes, "DES");
Cipher cipher = Cipher.getInstance("DES/ECB/PKCS7Padding”, "BC");
System.out.println("input : "+ Utils.toHex(input));

// encryption pass

cipher.init(Cipher.ENCRYPT_MODE, key);

byte[] cipherText = new byte[cipher.getOutputSize(input.length)];

int ctlength = cipher.update(input, 0, input.length, cipherText, 0);

ctlLength += cipher.doFinal(cipherText, ctlLength);

System.out.println("cipher : "+ Utils.toHex(cipherText, ctlLength)+" bytes: "+ctlLength);

// decryption pass

cipher.init(Cipher .DECRYPT_MODE, key);

byte[] plainText = new byte[cipher.getOutputSize(ctLength)];

int ptLength = cipher.update(cipherText, 0, ctlLength, plainText, 0);

ptLength += cipher.doFinal(plainText, ptLength);

System.out.println("plain : "+Utils.toHex(plainText, ptLength)+" bytes: "+ptLength);

}
}

& =3

input : 000102030405060708090a0b0c0d0edT0001020304050607

cipher : 3260266c2cf202e28325790654a444d93260266c2cT202e208619a1d74c94d4e bytes: 32
plain : 000102030405060708090a0b0c0d0e0f0001020304050607 bytes: 24

& oI5tz 5t Hi

=> E(B REO| HAE

package chapter2;
import javax.crypto.Cipher;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
public class SimpleCBCExample {
public static void main(String[] args) throws Exception{
byte[] input =new byte[] {
0x00, 0x01, 0x02, 0x03, Ox04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, OxOb, 0x0c, 0x0d, Ox0e, OxOf,
0x00, 0x01, 0x02, Ox03, 0x04, 0x05, 0x06, Ox07 };
byte[] keyBytes =new byte[] {
0x01, 0x23, 0x45, 0x67,
(byte) 0x89, (byte) Oxab, (byte) Oxcd, (byte) Oxef };
byte[] ivBytes =new byte[] {
0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, Ox00 };

SecretKeySpec key = new SecretKeySpec(keyBytes, "DES");
IvParameterSpec ivSpec = new IvParameterSpec(ivBytes);

Cipher cipher = Cipher.getInstance("DES/CBC/PKCS7Padding”, "BC");
System.out.println("input : "+Utils.toHex(input));

// encryption pass

cipher.init(Cipher .ENCRYPT_MODE, key, ivSpec);

byte[] cipherText = new byte[cipher.getOutputSize(input.length)];

int ctLength = cipher.update(input, 0, input.length, cipherText, 0);

ctLength += cipher.doFinal(cipherText, ctLength);

System.out.println("cipher : "+Utils.toHex(cipherText, ctlLength)+" bytes: "+ ctlLength);

// decryption pass

cipher.init(Cipher .DECRYPT_MODE, key, ivSpec);

byte[] plainText = new byte[cipher.getOutputSize(ctLength)];

int ptLength = cipher.update(cipherText, 0, ctLength, plainText, 0);

ptLength += cipher.doFinal(plainText, ptLength);

System.out.println("plain : "+Utils.toHex(plainText, ptLength)+" bytes: "+ptLength);

}
}

& =4

input : 000102030405060708090a0b0c0d0edT0001020304050607

cipher : 8a87d41c5d3caeaddc21f1b3f12a6cd754241a086e029e404c89d4c 109457818 bytes: 32
plain : 000102030405060708090a0b0c0d0edTOOO1020304050607 bytes: 24

& Q52 5t= Ht

=> (BC RE9| HAE

& IvParameterSpec : Z7|SIHHEIE Z|Z T

i) IvParameterSpec(byte[] iv)

=> iv 2| HIO|EE 27|35 HHEAM AtEE

@ javax.crypto.Cipher : ¥E2353 Q2

i) init(int opmode, Key key, AlgorithmParameterSpec params)

=> Cipher.ENCRYPT MODE or Cipher.DECRYPTMODE, “key”, “Iv’ S Oj7f#4=2 27|35} 23

package chapter2;
import javax.crypto.Cipher;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
public class InlineIv(BCExample {
public static void main(String[] args) throws Exception {
byte[] input = new byte[] {
0x00, 0x01, 0x02, 0x03, Ox04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, OxOb, 0x0c, 0x0d, Ox0e, OxOf,
0x00, 0x01, 0x02, 0x03, Ox04. Ox05, 0x06, 0x07 };
byte[] keyBytes = new byte[] {
0x01, 0x23, 0x45, 0x67,
(byte) 0x89, (byte) Oxab, (byte) Oxcd, (byte) Oxef };
byte[] ivBytes = new byte[] {
0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, Ox00 };
SecretKeySpec key = new SecretKeySpec(keyBytes, "DES");
IvParameterSpec ivSpec = new IvParameterSpec(new byte[8]);
Cipher cipher = Cipher.getInstance("DES/CBC/PKCS7Padding”, "BC");
System.out.println("input : "+ Utils.toHex(input));

// encryption pass

cipher.init(Cipher .ENCRYPT_MODE, key, ivSpec);

byte[] cipherText = new byte[cipher.getOutputSize(ivBytes.length+input.length)];

int ctlLength = cipher.update(ivBytes, 0, ivBytes.length, cipherText, 0);

ctlLength += cipher.update(input, O, input.length, cipherText, ctlLength);

ctLength += cipher.doFinal(cipherText, ctLength);

System.out.println("cipher : "+Utils.toHex(cipherText, ctlLength)+" bytes: "+ctLength);

// decryption pass

cipher.init(Cipher .DECRYPT_MODE, key, ivSpec);

byte[] buf = new byte[cipher.getOutputSize(ctLength)];

int buflLength = cipher.update(cipherText, 0, ctLength, buf, 0);
bufLength += cipher.doFinal(buf, buflLength);

// remove the iv from the start of the message

byte[] plainText = new byte[bufLength - ivBytes.length];

System.arraycopy(buf, ivBytes.length, plainText, 0, plainText.length);

System.out.println("plain : "+ Utils.toHex(plainText, plainText.length)
+" bytes: "+plainText.length);

}
} =
EEER

input : 000102030405060708090a0bOc0d0e0f0001020304050607

cipher : 159fc9af021f30024211a5d7bf88fd0b9e2a82facabb493f39c5a9febe6ab59e85039332be56f6a4 bytes: 40
plain : 000102030405060708090a0b0c0d0e0FO001020304050607 bytes: 24

& =I5tz st Bt

= Z7|3t HHE s ASst, 27|85 HE S A =555} BC ZE HAE

package chapter2;
import javax.crypto.Cipher;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
public class NonceIvCBCExample {
public static void main(String[] args) throws Exception {
byte[] input = new byte[] {
0x00, 0x01, 0x02, Ox03, Ox04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, OxOb, 0x0c, 0x0d, Ox0e, OxOf,
0x00, 0x01, 0x02, 0x03, Ox04. Ox05, 0x06, 0x07 };
byte[] keyBytes = new byte[] {
0x01, 0x23, 0x45, 0x67,
(byte) 0x89, (byte) Oxab, (byte) Oxcd, (byte) Oxef };
byte[] msgNumber = new byte[] {
0x00, 0x00, 0x00, 0x00, 0x00, Ox00, 0x00, Ox60 };
IvParameterSpec zerolv = new IvParameterSpec(newbyte[8]);
SecretKeySpec key = new SecretKeySpec(keyBytes, "DES");
Cipher cipher = Cipher.getInstance("DES/CBC/PKCS7Padding”, "BC");
System.out.println("input : "+Utils.toHex(input));

// encryption pass

// generate IV

cipher.init(Cipher .ENCRYPT_MODE, key, zerolv);

IvParameterSpec encryptionlv = new IvParameterSpec(cipher.doFinal(msgNumber), 0, 8);

// encrypt message

cipher.init(Cipher.ENCRYPT_MODE, key, encryptionlv);

byte[] cipherText = new byte[cipher.getOutputSize(input.length)];
int ctLength = cipher.update(input, 0, input.length, cipherText, 0);
ctlLength += cipher.doFinal(cipherText, ctlLength);
System.out.println("cipher : "+Utils.toHex(cipherText, ctlLength)+" bytes : "+ctlLength);

// decryption pass

// generate IV

cipher.init(Cipher.ENCRYPT_MODE, key, zerolv);

IvParameterSpec decryptionlv =new IvParameterSpec(cipher.doFinal(msgNumber), 0, 8);

// decrypt message
cipher.init(Cipher .DECRYPT_MODE, key, decryptionlv);
byte[] plainText = new byte[cipher.getOutputSize(ctLength)];
int ptLength = cipher.update(cipherText, 0, ctlength, plainText, 0);
ptLength += cipher.doFinal(plainText, ptLength);
} System.out.println("plain : "+Utils.toHex(plainText, ptLength)+" bytes : "+ ptlLength);

}
=420
input : 000102030405060708090a0b0c0d0e0fO001020304050607
cipher : eb913126049ccdeaddf2d86fdad4a02fd72¢0914d361400d90945f73058Fc3 bytes : 32
plain : 000102030405060708090a0b0c0d0eOfO001020304050607 bytes : 24
& 2SNzt St HE
=> IvE Nonce 2 2H=7| Qlolf Ao Y= HH ME, o ZEE Tv 40 HAIA H=SS) key’t 25

package chapter2;
import javax.crypto.Cipher;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
public class SimpleCTRExample {
public static void main(String[] args) throws Exception{
byte[] input = new byte[] {
0x00, 0x01, 0x02, 0x03, Ox04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, OxOb, 0x0c, 0x0d, Ox0e, OxOf,
0x00, 0x01, 0x02, 0x03, Ox04, 0x05, Ox06 };
byte[] keyBytes = new byte[] {
0x01, 0x23, 0x45, 0x67,
(byte) 0x89, (byte) Oxab, (byte) Oxcd, (byte) Oxef };
byte[] ivBytes = new byte[] {
0x00, 0x01, 0x02, 0x03, 0x00, Ox00, 0x00, Ox01 };

SecretKeySpec key = new SecretKeySpec(keyBytes, "DES");
IvParameterSpec ivSpec = new IvParameterSpec(ivBytes);

Cipher cipher = Cipher.getInstance("DES/CTR/NoPadding"”, "BC");
System.out.println("input : "+Utils.toHex(input));

// encryption pass

cipher.init(Cipher .ENCRYPT_MODE, key, ivSpec);

byte[] cipherText =newbyte[cipher.getOutputSize(input.length)];

int ctLength = cipher.update(input, 0, input.length, cipherText, 0);

ctLength += cipher.doFinal(cipherText, ctLength);

System.out.println("cipher : "+Utils.toHex(cipherText, ctlLength)+" bytes: "+ctLength);

// decryption pass

cipher.init(Cipher .DECRYPT_MODE, key, ivSpec);

byte[] plainText =newbyte[cipher.getOutputSize(ctLength)];

int ptlLength = cipher.update(cipherText, 0, ctlLength, plainText, 0);

ptLength += cipher.doFinal(plainText, ptLength);

System.out.println("plain : "+Utils.toHex(plainText, ptLength)+" bytes: "+ptLength);

}
}

& =334

input : 000102030405060708090a0b0cOd0eOTOO010203040506

cipher : 61a1f886ff9bc709dd37cd9ce33adc6Tf9ab110e461387 bytes: 23
plain : 000102030405060708090a0b0cOd0eOTO0010203040506 bytes: 23
& =I5t 5h= Ht

=> (TR 2C9| HAE

package chapter2;
import javax.crypto.Cipher;
import javax.crypto.spec.SecretKeySpec;
public class SimpleStreamExample {
public static void main(String[] args) throws Exception{
byte[] input = new byte[] {
0x00, Ox11, 0x22, 0x33, Ox44, Ox55, 0x66, Ox77,
(byte) 0x88, (byte) 0x99, (byte) Oxaa, (byte) Oxbb,
(byte) Oxcc, (byte) 0xdd, (byte) Oxee, (byte) Oxff };
byte[] keyBytes = new byte[] {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, Ox07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, OxOf };

SecretKeySpec key = new SecretKeySpec(keyBytes, "ARC4");
Cipher cipher = Cipher.getInstance("ARC4", "BC");
System.out.println("input text : "+ Utils.toHex(input));

// encryption pass

byte[] cipherText = new byte[input.length];

cipher.init(Cipher .ENCRYPT_MODE, key);

int ctlength = cipher.update(input, 0, input.length, cipherText, 0);

ctlLength += cipher.doFinal(cipherText, ctlLength);

System.out.println("cipher text : "+ Utils.toHex(cipherText)+" bytes: "+ctlLength);

// decryption pass

byte[] plainText = new byte[ctlLength];

cipher.init(Cipher .DECRYPT_MODE, key);

int ptLength = cipher.update(cipherText, 0, ctlength, plainText, 0);

ptLength += cipher.doFinal(plainText, ptLength);

System.out.println("plain text : "+ Utils.toHex(plainText)+" bytes: "+ptLength);

}
}

& =3

input text : 00112233445566778899%aabbccddeeff

cipher text : €98d62ca03b77fbb8e423d7dc200c4b0 bytes: 16

plain text : 00112233445566778899aabbccddeeff bytes: 16

& oI5tz 5t Hi

= ARC4 AEZ] 22|22 HAE CI2 block cipher?t H|X35LE ZEL IjE0] e gle

a z

package chapter2;
import java.security.Key;
import javax.crypto.Cipher;
import javax.crypto.KeyGenerator;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
public class KeyGeneratorExample {
public static void main(String[] args) throws Exception {
byte[] input = new byte[] {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, Ox07,
0x08, 0x09, 0x0a, 0xOb, 0xOc, 0x0d, 0x0e, OxOf,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, Ox07 };
byte[] ivBytes = new byte[] {
0x00, 0x00, 0x00, Ox01, 0x04, 0x05, 0x06, Ox07,
0x00, 0x00, Ox00, 0x00, 0x00, 0x00, 0x00, 0x01 };

Cipher cipher = Cipher.getInstance("AES/CTR/NoPadding"”, "BC");
KeyGenerator generator = KeyGenerator.getInstance("AES", "BC");
generator.init(192);

Key encryptionKey = generator.generateKey();

System.out.println("key : "+ Utils.toHex(encryptionKey.getEncoded()));
System.out.println("input : "+ Utils.toHex(input));

cipher.init(Cipher.ENCRYPT_MODE, encryptionKey, new IvParameterSpec(ivBytes));
byte[] cipherText = new byte[cipher.getOutputSize(input.length)];

int ctlength = cipher.update(input, 0, input.length, cipherText, 0);

ctlength += cipher.doFinal(cipherText, ctlength);

Key decryptionkey = new SecretKeySpec(encryptionKey.getEncoded(),
encryptionKey.getAlgorithm());

cipher.init(Cipher .DECRYPT_MODE, decryptionkey, new IvParameterSpec(ivBytes));

byte[] plainText = new byte[cipher.getOutputSize(ctLength)];

int ptlLength = cipher.update(cipherText, 0, ctlength, plainText, 0);

ptLength += cipher.doFinal(plainText, ptLength);

System.out.println("plain : "+ Utils.toHex(plainText, ptLength) +" bytes: "+ptLength);

}
}

& =H¥ZEY
key : 1b33f26cc4t88a0538f0633a4561f09%caf3a705181a1ad1

input : 000102030405060708090a0b0c0d0eOTO001020304050607

plain : 000102030405060708090a0b0c0d0e0f0001020304050607 bytes: 24
& QlstN2t St Hi

=> KeyGeneratorE Eofl AES key € MH & YESS}

@ javax.crypto.KeyGenerator : CHZl key & A4M

i) getInstanc(String algorithm, String provider)

= ‘N2’ “IZHIO|H " 2 OfIBLZ KeyGeneratorS A4A
ii) init(int keysize)

=> “key AO|2” E Di7HRHEZ key AFO|RE FA|

iii) generateKey()

=> (ipher ¥&E33} A0 AU Key
@ java.security.Key

i) getEncoded()

=> keyE HIO|EH|EZ Bt3t

ii) getAlgorithm()

= key’ Al HA[SIAUTE ne|

44

ujny
>
>

ol

gt

ig

package chapter2;
import java.security.Key;
import javax.crypto.Cipher;
import javax.crypto.SecretKeyFactory,
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.PBEKeySpec;
import javax.crypto.spec.PBEParameterSpec;
import javax.crypto.spec.SecretKeySpec;
public class PBEWithparamsExample {
public static void main(String[] args) throws Exception {
byte[] input = new byte[] {
0x00, 0x01, 0x02, 0x03, Ox04, Ox05, Ox06, 0x07
0x08, 0x09, 0x0a, 0xOb, 0x0Oc, 0x0d, 0x0e, OxOf
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, Ox07 };
byte[] KeyBytes = new bytef] {
0x73, Ox2f, Ox2d, 0x33, (byte) Oxc8, Ox01, 0x73,
Ox2b, Ox72, Ox06, 0x75, Ox6c, (byte) Oxbd, 0x44,
(byte) 0xf9, (byte) Oxc1, (byte) Oxc1, 0x03, (byte) 0xdd,
(byte) 0xd9, 0x7c, 0x7c, (byte) Oxbe, (byte) 0x8e };
byte[] ivBytes = new byte[] {
(byte) 0xb@®, 0x7b, (byte) 0xf5, 0x22, (byte) 0xc8,
(byte) 0xd6, 0x08, (byte) 0xb8 };

// encrypt the data using precalculated keys

Cipher cEnc = Cipher.getInstance('DESede/CBC/PKCS7Padding™, "BC");

cEnc.init(Cipher.ENCRYPT_MODE, new SecretKeySpec(KeyBytes, "DESede"),
new IvParameterSpec(ivBytes));

byte[] out= cEnc.doFinal(input);

// decrypt the data using PBE
char[] password ="password".toCharArray();
byte[] salt = new byte[] {

0x7d, 0x60, 0x43, Ox5f,

0x02, (byte) 0xe9, (byte) 0xe®, (byte) Oxae };
int iterationCount =2048,
PBEKeySpec pbeSpec =new PBEKeySpec(password);
SecretKeyFactory keyFact = SecretKeyFactory

.getInstance("PBEWithSHAANd3KeyTripleDES", "BC");

Cipher cDec = Cipher.getInstance("PBEWithSHAANd3KeyTripleDES", "BC");
Key sKey = keyFact.generateSecret(pbeSpec);
cDec.init(Cipher.DECRYPT_MODE, sKey, new PBEParameterSpec(salt, iterationCount));
System.out.println("cipher : "+Utils.toHex(out));
System.out.println("gen key : "+Utils.toHex(sKey.getEncoded()));
System.out.println("gen iv : "+Utils.toHex(cDec.getIV()));
System.out.println("plain : "+Utils.toHex(cDec.doFinal(out)));

}
}

& 2321
cipher : a7b955896f750665ba71eb50ac3071d9832a8b02760c600bT619a75a0697c87¢
gen key : 732f2¢32c¢801732a7307756dbc45f8c1c102dcd97c7cbf8f
gen iv : b07bf522c8d608b8
plain : 000102030405060708090a0b0cOd0e0T0001020304050607
& QIstN2t 5t Hi
=) PassWord-Based Encryption Y23 3tE I, siE KeyBytes — PBEKeySpec2| HIO|EBHLE Zf.
A=
byte[] KeyBytes = new byte[] {
0x73, Ox2f, Ox2c, 0x32, (byte) Oxc8, 0x01, 0x73,
Ox2a, 0x73, 0x07, 0x75, Ox6d, (byte) Oxbc, 0x45,
(byte) 0xf8, (byte) 0xc1, (byte) Oxc1, 0x02, (byte) Oxdc,
(byte) 0xd9, 0x7c, 0x7c, (byte) Oxbf, (byte) Ox8f };
O|He=z & 35tst AHE9
byte[] KeyBytes = new byte[] {
0x73, 0x2f, 0x2d, 0x33, (byte) Oxc8, 0x01, 0x73,
Ox2b, 0x72, 0x06, 0x75, Ox6c, (byte) Oxbd, 0x44,
(byte) 0xf9, (byte) Oxc1, (byte) Oxc1, 0x03, (byte) 0xdd,
(byte) 0xd9, 0x7c, 0x7c, (byte) Oxbe, (byte) 0x8e };
O|lAe= A5t It ZCt,

package chapter2;
import java.security.Key;
import javax.crypto.Cipher;
import javax.crypto.KeyGenerator;
public class SimpleWrapExample {
public static void main(String[] args) throws Exception {

KeyGenerator generator = KeyGenerator.getInstance("AES", "BC");
generator.init(128);

Key keyToBeWrapped = generator.generateKey();

System.out.println("input : "+Utils.toHex(keyToBeWrapped.getEncoded()));

Cipher cipher = Cipher.getInstance("AESWrap"”, "BC");
KeyGenerator keyGen = KeyGenerator.getInstance("AES", "BC");
keyGen.init(256);

Key wrapKey = keyGen.generateKey();

cipher.init(Cipher .WRAP_MODE, wrapKey),

byte[] wrappedKey = cipher.wrap(keyToBeWrapped);
System.out.println("wrapped : "+Utils.toHex(wrappedKey));

cipher.init(Cipher .UNWRAP_MODE, wrapKey);
Key key = cipher.unwrap(wrappedKey, "AES", Cipher.SECRET_KEY);
System.out.println(“unwrapped: "+Utils.toHex(key.getEncoded()));

}
}

& =52

input : dcee75d652a22f04fed4ab89f4d7a440b

wrapped : 7babb10243894338c01d48b7ef9f5be35d3453ed33303che

unwrapped: dcee75d652a22f04fed4ab89f4d7a440b

& QlstN2t 5t Hi

=> keyE wrapping St1 unwrapping &

@ javax.crypto.Cipher

i) getInstance(String transformation, String provider)

= “2ANPZ0|2/2C/Ij Y ", “I2HIO|HO|2 " S OjIfEH 42 Cipher |3}
ii) init(int opmode, Key key)

=> Cipher.WRAP_MODE or Cipher.UNWRAP_MODE, “key” & Of7HEL&Z= 27|35} RIH
i) wrap(Key key)

=> “wrap ot1Z ot= key " & OS2 BIO|EBIE 2| wrapkeyE 4

iv) unwrap(byte[] wrappedKey, String wrappedKeyAlgorithm, int wrappedKeyType)
=) “HIO|EBIE | wrapkey ", “wrapkeyl| Y 12|S”, “wrapkey2| Et®” S OH7/HH 4 Key2| unwrapkey ‘44

package chapter2;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayQutputStream,
import javax.crypto.Cipher;
import javax.crypto.CipherInputStream;
import javax.crypto.CipherQOutputStream;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
public class SimpleIOExample {
public static void main(String[] args) throws Exception {
byte[] input = new byte[] {
0x00, 0x01, 0x02, 0x03, Ox04, Ox05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0xOb, 0x0c, 0x0d, 0x0e, 0OxOf,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, Ox06 };
byte[] keyBytes = new bytef] {
0x00, 0x01, 0x02, 0x03, Ox04, Ox05, O0x06, 0x07,
0x08, 0x09, 0x0a, OxOb, 0x0c, Ox0d, OxBe, OxOf,
0x10, Ox11, 0x12, 0x13, 0x14, Ox15, 0x16, 0x17 };
byte[] ivBytes = new byte[] {
0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x02, 0x03,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Ox00, Ox01 };
SecretKeySpec key = new SecretKeySpec(keyBytes, "AES");
IvParameterSpec ivSpec = new IvParameterSpec(ivBytes);
Cipher cipher = Cipher.getInstance("AES/CTR/NoPadding", "BC");
System.out.println("input : "+Utils.toHex(input));

cipher.init(Cipher.ENCRYPT_MODE, key, ivSpec);
ByteArrayInputStream bIn =new ByteArrayInputStream(input);
CipherInputStream cIn =new CipherInputStream(bIn, cipher);
ByteArrayOutputStream bOut =new ByteArrayOutputStream();
int ch;
while((ch = cIn.read()) >=0){

bOut.write(ch);

}
byte[] cipherText = bOut.toByteArray();
System.out.println("cipher : "+Utils.toHex(cipherText));

cipher.init(Cipher .DECRYPT_MODE, key, ivSpec);

bOut =new ByteArrayOutputStream();

CipherQutputStream cOut =new CipherQutputStream(bOut, cipher);
cOut.write(cipherText);

cOut.close();

System.out.println("plain : "+Utils.toHex(bOut.toByteArray()));

}
}

& 2321

input : 000102030405060708090a0b0c0d0eOTO0010203040506

cipher : bbfe17383cc002047c11be5dfc524e4ead512a887d197b

plain : 000102030405060708090a0b0c0d0e0T00010203040506

& Qlst2t St Hi

=> 1/0 Stream2 Eoff A=S3t

@ javax.crypto.CipherInputStream

i) CipherInputStream(InputStream is, Cipher c)

= “InputAEZ ", Cipher 823t RIS Of7fH+2 L2 5HEl InputStream ZHA| 3}
i) read()

=> stream®| next byteE %A=

@ javax.crypto.CipherQutputStream

i) CipherOutputStream(OQutputStream os, Cipher c)

=> “QutputAEZ " (ipher 4ES S RIS Of7ftH~Z A4S SEE QutputStream 28| St
ii) write(byte[] b)

=> HIO|EB{E b0l stream?| next byteE &

ii) close()

=> (ipher Y553} AR doFinal() 2t &2 GHer L=2f Al OA[X| 7} &2 &

