
- 1 -

[Letspic]Cryptography with Java

01
보고서 및 논문 윤리 서약

1. 나는 보고서 및 논문의 내용을 조작하지 않겠습니다.

2. 나는 다른 사람의 보고서 및 논문의 내용을 내 것처럼 무단으로 복사하지 않겠습니다.

3. 나는 다른 사람의 보고서 및 논문의 내용을 참고하거나 인용할 시 참고 및 인용 형식을

갖추고 출처를 반드시 밝히겠습니다.

4. 나는 보고서 및 논문을 대신하여 작성하도록 청탁하지도 청탁받지도 않겠습니다.

나는 보고서 및 논문 작성 시 위법 행위를 하지 않고, 명지인으로서 또한 공학인으로서
나의 양심과 명예를 지킬 것을 약속합니다.

보고서명 : [Letspic]Cryptography with Java 01

학 과 : 컴퓨터공학과

담당교수 : 신민호 교수님

학 번 : 60122480

이 름 : 전영민 (서명)

- 2 -

1. 목적
Letpics 안드로이드 어플 사용자 그룹 간 데이터 공유에서 발생하는 보안 문제와 parse.com에 저장되는 사진
메타데이터들의 관리 문제에 대해 구체적인 보안 솔루션을 적용하기 전에 android에서 사용할 수 있는 Java 기반의
cryptography를 확인한다.

2. 배경
안드로이드 기반 기기에서는 SUN JCE나 BC JCE의 보안 프로바이더가 제공하는 API를 사용한다. 따라서 Java
기반으로 해당 기능들을 테스트 해보고 소스코드 분석을 통해 제공되는 API를 이해할 필요가 있다.

3. 방법론
‘Beginning Cryptography with Java™’, David Hook 의 chapter 순대로 예제를 통해 API를 숙지한다.

4. 코드분석 정리

package�chapter1;
import�javax.crypto.Cipher;
import�javax.crypto.SecretKey;
import�javax.crypto.spec.SecretKeySpec;
public�class�SimplePolicyTest�{

public�static�void�main(String[]�args)�throws�Exception�{
byte[]�data�=�{�0x00,�0x01,�0x02,�0x03,�0x04,�0x05,�0x06,�0x07�};
//�create�a�64�bit�secret�key�from�raw�bytes
SecretKey�key64�=�new�SecretKeySpec(�new�byte[]�{
0x00,�0x01,�0x02,�0x03,�0x04,�0x05,�0x05,�0x06,�0x07},�"Blowfish");
//�create�a�cipher�and�attempt�to�encrypt�the�data�block�with�our�key
Cipher�c�=�Cipher.getInstance("Blowfish/ECB/NoPadding");

c.init(Cipher.ENCRYPT_MODE,�key64);
c.doFinal(data);
System.out.println("64�bit�test:�passed");

//�create�a�192�bit�secret�key�from�raw�bytes
SecretKey�key192�=�new�SecretKeySpec(�new�byte[]�{
0x00,�0x01,�0x02,�0x03,�0x04,�0x05,�0x06,�0x07,
0x08,�0x09,�0x0a,�0x0b,�0x0c,�0x0d,�0x0e,�0x0f,
0x10,�0x11,�0x12,�0x13,�0x14,�0x15,�0x16,�0x17�},�"Blowfish"�);

//�now�try�encrypting�with�the�larger�key
c.init(Cipher.ENCRYPT_MODE,�key192);
c.doFinal(data);
System.out.println("192�bit�test:�passed");
System.out.println("Tests�completed");

}
}

◆�Blowfish�?�1993년�브루스�슈나이어가�설계한�키(key)�방식의�대칭형�블록�암호,�특허가�없도록�고안된�디자
인
◆�확인하고자�하는�바
=>�64bit�key를�가지고�암호화�하는�것은�문제가�없었다.�다만�192bit�key를�가지고�암호화를�시도할�때�다음과�
같은�예외가�발생하였다.�‘java.security.InvalidKeyException:�Illegal�key�size�or�default�parameters’
◆�해결�과정
ⅰ)� %JAVA_HOME%/jre/lib/security� 하에� policy� 파일이� 이미� 있기에� 코드에� 문제가� 있는지� 확인하기� 위해�
Decomplier를�통해�source�attachment를�하여�확인해보았으나�문제는�없었다.
ⅱ)�UnlimitedJCEPolicyJDK6~8중�버전에�맞는�policy�파일로�교체하여�문제를�해결해야�한다.
ⅲ)�android�에도�이러한�key�size가�문제가�되는지�알아봐야�한다.

- 3 -

package�chapter1;
import�java.security.Security;
public�class�SimpleProviderTest�{

public�static�void�main(String[]�args){
String�providerName�="BC";
if(�Security.getProvider(providerName)�==�null){

System.out.println(providerName�+"�provider�not�installed");
}�else�{

System.out.println(providerName�+"�is�installed.");
}

}
}

◆�확인하고자�하는바
=>�JCA는�프로바이더�기반으로�하여서�구현�독립성(Implementation�Independence),�구현�호환성(Implementation
interoperability),�알고리즘�확장성(Algorithm�Extensibility)를�갖추고�있다.
이�프로바이더들은�JRE가�설치될�때�기본적으로�설치되며�(�Sun�)�추가로�설치할�수�있다.(�Bouncy�Castle�)
해당�프로바이더들은�java.security에�다음과�같이�정의�된다.
#
#�List�of�providers�and�their�preference�oreders�(see�above);
#
security.provider.1=sun.security.provider.Sun
security.provider.2=com.sun.net.ssl.internal.ssl.Provider
security.provider.3=com.sun.rsajca.Provider
security.provider.4=com.sun.crypto.provider.SunJCE
security.provider.5=org.bouncycastle.jce.provider.BouncyCastleProvider
◆�해결�과정
ⅰ)�java.security�파일에�명시�하지�않았다면�Bouncy�Castle�프로바이더를�인식하지�못한다.
ⅱ)�Bouncy�Castle�설치�했다면,�java.security에도�적용하자.
ⅲ)�android�에서는�java.security�파일을�수정해야�하는가?�확인해야�한다.

package�chapter1;
import�javax.crypto.Cipher;
public�class�PrecedenceTest�{

public�static�void�main(String[]�args)�throws�Exception�{
Cipher�cipher�=�Cipher.getInstance("Blowfish/ECB/NoPadding");
System.out.println(cipher.getProvider());
cipher�=�Cipher.getInstance("Blowfish/ECB/NoPadding",�"BC");
System.out.println(cipher.getProvider());

}
}

◆�확인하고자�하는바
=>�SunJCE�프로바이더와�BouncyCastle�프로바이더의�버전을�확인한다.

package�chapter2;
public�class�Utils�{

private�static�String�digits�="0123456789abcdef";
public�static�String�toHex(byte[]�data,�intlength)�{

StringBuffer�buf�=new�StringBuffer();
for�(int�i�=0;�i�!=length;�i++)�{

int�v�=�data[i]�&�0xff;
buf.append(digits.charAt(v�>>�4));
buf.append(digits.charAt(v�&�0xf));

}
return�buf.toString();

}
public�staticString�toHex(byte[]�data)�{

return�toHex(data,�data.length);
}

}

◆�확인하고자�하는바
=>�byte를�16진수로�변환하는�클래스

- 4 -

package�chapter2;
import�javax.crypto.Cipher;
import�javax.crypto.spec.SecretKeySpec;
public�class�SimpleSymmetricExample�{

public�static�void�main(String[]�args)�throws�Exception�{
byte[]�input�=new�byte[]�{�0x00,�0x11,�0x22,�0x33,�0x44,�0x55,�0x66,�0x77,

(byte)0x88,�(byte)0x99,�(byte)0xaa,�(byte)0xbb,
(byte)0xcc,�(byte)0xdd,�(byte)0xee,�(byte)0xff};

byte[]�keyBytes�=new�byte[]�{
0x00,�0x01,�0x02,�0x03,�0x04,�0x05,�0x06,�0x07,
0x08,�0x09,�0x0a,�0x0b,�0x0c,�0x0d,�0x0e,�0x0f,
0x10,�0x11,�0x12,�0x13,�0x14,�0x15,�0x16,�0x17�};

SecretKeySpec�key�=�new�SecretKeySpec(keyBytes,�"AES");
Cipher�cipher�=�Cipher.getInstance("AES/ECB/NoPadding",�"BC");
System.out.println("input�text�:�"+�Utils.toHex(input));

//�encryption�pass
byte[]�cipherText�=�new�byte[input.length];
cipher.init(Cipher.ENCRYPT_MODE,�key);
int�ctLength�=�cipher.update(input,��0,�input.length,�cipherText,�0);
ctLength�+=�cipher.doFinal(cipherText,�ctLength);
System.out.println("cipher�text:�"+�Utils.toHex(cipherText)�+"�bytes:�"+ctLength);

//�decryption�pass
byte[]�plainText�=�new�byte[ctLength];
cipher.init(Cipher.DECRYPT_MODE,�key);
int�ptLength�=�cipher.update(cipherText,�0,�ctLength,�plainText,�0);
ptLength�+=�cipher.doFinal(plainText,�ptLength);
System.out.println("plain�text�:�"+�Utils.toHex(plainText)�+"�bytes:�"+�ptLength�);

}
}

◆�출력결과
input�text�:�00112233445566778899aabbccddeeff
cipher�text:�dda97ca4864cdfe06eaf70a0ec0d7191�bytes:�16
plain�text�:�00112233445566778899aabbccddeeff�bytes:�16
◆�javax.crypto.Cipher�:�암복호화�엔진
ⅰ)�getInstance(String�transformation,�String�provider)
=>�“알고리즘이름/모드/패딩”,�“프로바이더이름”을�매개변수로�Cipher�객체화
ⅱ)�init(int�opmode,�Key�key)
=>�Cipher.ENCRYPT_MODE�or�Cipher.DECRYPT_MODE,�“key”�을�매개변수로�초기화�진행
ⅲ)�update(byte[]�input,�int�inputOffset,�int�inputLen,�byte[]�output,�int�outputOffset)�
=>“입력바이트배열”,�“입력�offset”,�“입력바이트배열의�길이”,�“출력바이트배열”,�“출력offset”으로�
암복호화를�진행.�(주의)�바이트배열의�인코딩을�명시하는�것이�바람직함
ⅳ)�doFinal(byte[]�output,�int�outputOffset)�
=>�“출력바이트배열”,�“출력�offset”으로�암복호화의�끝을�알림
◆�javax.crypto.SecretKeySpec�:�지정된�바이트배열로부터�지정된�알고리즘의�key를�구축함
ⅰ)�SecretKeySpec(byte[]�key,�String�algorithm)
=>�“key바이트배열”,�“알고리즘”�으로�key를�구축함.�다만�해당�바이트배열이�유효한지�검사하지는�않음

- 5 -

package chapter2;
import javax.crypto.Cipher;
import javax.crypto.spec.SecretKeySpec;
public class SimpleSymmetricPaddingExample {

public static void main(String[] args) throws Exception{
byte[] input =new byte[] {

0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17 };

byte[] keyBytes =new byte[] {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17 };

SecretKeySpec key = new SecretKeySpec(keyBytes, "AES");
Cipher cipher = Cipher.getInstance("AES/ECB/PKCS7Padding", "BC");
System.out.println("input : "+ Utils.toHex(input));

// encryption pass
cipher.init(Cipher.ENCRYPT_MODE, key);
byte[] cipherText = new byte[cipher.getOutputSize(input.length)];
int ctLength = cipher.update(input, 0, input.length, cipherText, 0);
ctLength += cipher.doFinal(cipherText, ctLength);
System.out.println("cipher: "+Utils.toHex(cipherText)+" bytes: "+ctLength);

// decryption pass
cipher.init(Cipher.DECRYPT_MODE, key);
byte[] plainText = new byte[cipher.getOutputSize(ctLength)];
int ptLength = cipher.update(cipherText, 0, ctLength, plainText, 0);
ptLength += cipher.doFinal(plainText, ptLength);
System.out.println("plain : "+Utils.toHex(plainText)+" bytes: "+ptLength);

}
}
◆�출력결과
input�:�000102030405060708090a0b0c0d0e0f1011121314151617
cipher:�0060bffe46834bb8da5cf9a61ff220aefa46bbd3578579c0fd331874c7234233�bytes:�32
plain�:�000102030405060708090a0b0c0d0e0f10111213141516170000000000000000�bytes:�24
◆�확인하고자�하는바
=>�block�cipher�에서�input의�길이가�항상�block�size로�나누어지지�않으므로�0�bit나�다른�bit로�채우는�것을�
padding�이라함,�plain�text의�뒷부분이�0bit로�채워짐

- 6 -

package�chapter2;
import�javax.crypto.Cipher;
import�javax.crypto.spec.SecretKeySpec;
public�class�SimpleECBExample�{

public�static�void�main(String[]�args)�throws�Exception�{
byte[]�input�=�new�byte[]�{

0x00,�0x01,�0x02,�0x03,�0x04,�0x05,�0x06,�0x07,
0x08,�0x09,�0x0a,�0x0b,�0x0c,�0x0d,�0x0e,�0x0f,
0x00,�0x01,�0x02,�0x03,�0x04,�0x05,�0x06,�0x07�};

byte[]�keyBytes�=�new�byte[]�{
0x01,�0x23,�0x45,�0x67,
(byte)�0x89,�(byte)�0xab,�(byte)�0xcd,�(byte)�0xef�};

SecretKeySpec�key�=�new�SecretKeySpec(keyBytes,�"DES");
Cipher�cipher�=�Cipher.getInstance("DES/ECB/PKCS7Padding",�"BC");
System.out.println("input�:�"+�Utils.toHex(input));

//�encryption�pass
cipher.init(Cipher.ENCRYPT_MODE,�key);
byte[]�cipherText�=�new�byte[cipher.getOutputSize(input.length)];
int�ctLength�=�cipher.update(input,�0,�input.length,�cipherText,�0);
ctLength�+=�cipher.doFinal(cipherText,�ctLength);
System.out.println("cipher�:�"+�Utils.toHex(cipherText,�ctLength)+"�bytes:�"+ctLength);

//�decryption�pass
cipher.init(Cipher.DECRYPT_MODE,�key);
byte[]�plainText�=�new�byte[cipher.getOutputSize(ctLength)];
int�ptLength�=�cipher.update(cipherText,�0,�ctLength,�plainText,�0);
ptLength�+=�cipher.doFinal(plainText,��ptLength);
System.out.println("plain�:�"+Utils.toHex(plainText,�ptLength)+"�bytes:�"+ptLength);

}
}

◆�출력결과
input�:�000102030405060708090a0b0c0d0e0f0001020304050607
cipher�:�3260266c2cf202e28325790654a444d93260266c2cf202e2086f9a1d74c94d4e�bytes:�32
plain�:�000102030405060708090a0b0c0d0e0f0001020304050607�bytes:�24
◆�확인하고자�하는�바
=>�ECB�모드의�테스트

- 7 -

package�chapter2;
import�javax.crypto.Cipher;
import�javax.crypto.spec.IvParameterSpec;
import�javax.crypto.spec.SecretKeySpec;
public�class�SimpleCBCExample�{

public�static�void�main(String[]�args)�throws�Exception{
byte[]�input�=new�byte[]�{

0x00,�0x01,�0x02,�0x03,�0x04,�0x05,�0x06,�0x07,
0x08,�0x09,�0x0a,�0x0b,�0x0c,�0x0d,�0x0e,�0x0f,
0x00,�0x01,�0x02,�0x03,�0x04,�0x05,�0x06,�0x07�};

byte[]�keyBytes�=new�byte[]�{
0x01,�0x23,�0x45,�0x67,
(byte)�0x89,�(byte)�0xab,�(byte)�0xcd,�(byte)�0xef�};

byte[]�ivBytes�=new�byte[]�{
0x07,�0x06,�0x05,�0x04,�0x03,�0x02,�0x01,�0x00�};

SecretKeySpec�key�=�new�SecretKeySpec(keyBytes,�"DES");
IvParameterSpec�ivSpec�=�new�IvParameterSpec(ivBytes);
Cipher�cipher�=�Cipher.getInstance("DES/CBC/PKCS7Padding",�"BC");
System.out.println("input�:�"+Utils.toHex(input));

//�encryption�pass
cipher.init(Cipher.ENCRYPT_MODE,�key,�ivSpec);
byte[]�cipherText�=�new�byte[cipher.getOutputSize(input.length)];
int�ctLength�=�cipher.update(input,�0,�input.length,�cipherText,�0);
ctLength�+=�cipher.doFinal(cipherText,�ctLength);
System.out.println("cipher�:�"+Utils.toHex(cipherText,�ctLength)+"�bytes:�"+�ctLength);

//�decryption�pass
cipher.init(Cipher.DECRYPT_MODE,�key,�ivSpec);
byte[]�plainText�=�new�byte[cipher.getOutputSize(ctLength)];
int�ptLength�=�cipher.update(cipherText,��0,�ctLength,�plainText,�0);
ptLength�+=�cipher.doFinal(plainText,�ptLength);
System.out.println("plain�:�"+Utils.toHex(plainText,�ptLength)+"�bytes:�"+ptLength);

}
}

◆�출력결과
input�:�000102030405060708090a0b0c0d0e0f0001020304050607
cipher�:�8a87d41c5d3caead0c21f1b3f12a6cd75424fa086e029e404c89d4c1b9457818�bytes:�32
plain�:�000102030405060708090a0b0c0d0e0f0001020304050607�bytes:�24
◆�확인하고자�하는�바
=>�CBC�모드의�테스트
◆�IvParameterSpec�:�초기화백터를�지정함
ⅰ)�IvParameterSpec(byte[]�iv)
=>�iv�내의�바이트를�초기화�백터로서�사용함
◆�javax.crypto.Cipher�:�암복호화�엔진
ⅰ)�init(int�opmode,�Key�key,�AlgorithmParameterSpec�params)
=>�Cipher.ENCRYPT_MODE�or�Cipher.DECRYPTMODE,�“key”,�“Iv”�을�매개변수로�초기화�진행

- 8 -

package�chapter2;
import�javax.crypto.Cipher;
import�javax.crypto.spec.IvParameterSpec;
import�javax.crypto.spec.SecretKeySpec;
public�class�InlineIvCBCExample�{

public�static�void�main(String[]�args)�throws�Exception�{
byte[]�input�=�new�byte[]�{

0x00,�0x01,�0x02,�0x03,�0x04,�0x05,�0x06,�0x07,
0x08,�0x09,�0x0a,�0x0b,�0x0c,�0x0d,�0x0e,�0x0f,
0x00,�0x01,�0x02,�0x03,�0x04,�0x05,�0x06,�0x07�};

byte[]�keyBytes�=�new�byte[]�{
0x01,�0x23,�0x45,�0x67,
(byte)�0x89,�(byte)�0xab,�(byte)�0xcd,�(byte)�0xef�};

byte[]�ivBytes�=�new�byte[]�{
0x07,�0x06,�0x05,�0x04,�0x03,�0x02,�0x01,�0x00�};

SecretKeySpec�key�=�new�SecretKeySpec(keyBytes,�"DES");
IvParameterSpec�ivSpec�=�new�IvParameterSpec(new�byte[8]);
Cipher�cipher�=�Cipher.getInstance("DES/CBC/PKCS7Padding",�"BC");
System.out.println("input�:�"+�Utils.toHex(input));

//�encryption�pass
cipher.init(Cipher.ENCRYPT_MODE,�key,�ivSpec);
byte[]�cipherText�=�new�byte[cipher.getOutputSize(ivBytes.length+input.length)];
int�ctLength�=�cipher.update(ivBytes,�0,�ivBytes.length,�cipherText,�0);
ctLength�+=�cipher.update(input,�0,�input.length,�cipherText,�ctLength);
ctLength�+=�cipher.doFinal(cipherText,�ctLength);
System.out.println("cipher�:�"+Utils.toHex(cipherText,�ctLength)+"�bytes:�"+ctLength);

//�decryption�pass
cipher.init(Cipher.DECRYPT_MODE,�key,�ivSpec);
byte[]�buf�=�new�byte[cipher.getOutputSize(ctLength)];
int�bufLength�=�cipher.update(cipherText,�0,�ctLength,�buf,�0);
bufLength�+=�cipher.doFinal(buf,�bufLength);

//�remove�the�iv�from�the�start�of�the�message
byte[]�plainText�=�new�byte[bufLength�-�ivBytes.length];
System.arraycopy(buf,�ivBytes.length,�plainText,�0,�plainText.length);
System.out.println("plain�:�"+�Utils.toHex(plainText,�plainText.length)

+"�bytes:�"+plainText.length);
}

}

◆�출력결과
input�:�000102030405060708090a0b0c0d0e0f0001020304050607
cipher�:�159fc9af021f30024211a5d7bf88fd0b9e2a82facabb493f39c5a9febe6a659e85039332be56f6a4�bytes:�40
plain�:�000102030405060708090a0b0c0d0e0f0001020304050607�bytes:�24
◆�확인하고자�하는�바
=>�초기화�벡터를�포함한�암호화,�초기화�벡터를�제외한�복호화�CBC�모드�테스트

- 9 -

package�chapter2;
import�javax.crypto.Cipher;
import�javax.crypto.spec.IvParameterSpec;
import�javax.crypto.spec.SecretKeySpec;
public�class�NonceIvCBCExample�{

public�static�void�main(String[]�args)�throws�Exception�{
byte[]�input�=�new�byte[]�{

0x00,�0x01,�0x02,�0x03,�0x04,�0x05,�0x06,�0x07,
0x08,�0x09,�0x0a,�0x0b,�0x0c,�0x0d,�0x0e,�0x0f,
0x00,�0x01,�0x02,�0x03,�0x04,�0x05,�0x06,�0x07�};

byte[]�keyBytes�=�new�byte[]�{
0x01,�0x23,�0x45,�0x67,
(byte)�0x89,�(byte)�0xab,�(byte)�0xcd,�(byte)�0xef�};

byte[]�msgNumber�=�new�byte[]�{
0x00,�0x00,�0x00,�0x00,�0x00,�0x00,�0x00,�0x00�};

IvParameterSpec�zeroIv�=�new�IvParameterSpec(newbyte[8]);
SecretKeySpec�key�=�new�SecretKeySpec(keyBytes,�"DES");
Cipher�cipher�=�Cipher.getInstance("DES/CBC/PKCS7Padding",�"BC");
System.out.println("input�:�"+Utils.toHex(input));

//�encryption�pass
//�generate�IV
cipher.init(Cipher.ENCRYPT_MODE,�key,�zeroIv);
IvParameterSpec�encryptionIv�=�new�IvParameterSpec(�cipher.doFinal(msgNumber),�0,�8);

//�encrypt�message
cipher.init(Cipher.ENCRYPT_MODE,�key,�encryptionIv);
byte[]�cipherText�=�new�byte[cipher.getOutputSize(input.length)];
int�ctLength�=�cipher.update(input,�0,�input.length,�cipherText,�0);
ctLength�+=�cipher.doFinal(cipherText,�ctLength);
System.out.println("cipher�:�"+Utils.toHex(cipherText,�ctLength)+"�bytes�:�"+ctLength);

//�decryption�pass
//�generate�IV
cipher.init(Cipher.ENCRYPT_MODE,�key,�zeroIv);
IvParameterSpec�decryptionIv�=new�IvParameterSpec(cipher.doFinal(msgNumber),�0,�8);

//�decrypt�message
cipher.init(Cipher.DECRYPT_MODE,�key,�decryptionIv);
byte[]�plainText�=�new�byte[cipher.getOutputSize(ctLength)];
int�ptLength�=�cipher.update(cipherText,�0,�ctLength,�plainText,�0);
ptLength�+=�cipher.doFinal(plainText,�ptLength);
System.out.println("plain�:�"+Utils.toHex(plainText,�ptLength)+"�bytes�:�"+�ptLength�);

}
}

◆�출력결과
input�:�000102030405060708090a0b0c0d0e0f0001020304050607
cipher�:�eb913126049ccdea00f2d86fda94a02fd72e0914fd361400d909f45f73058fc3�bytes�:�32
plain�:�000102030405060708090a0b0c0d0e0f0001020304050607�bytes�:�24
◆�확인하고자�하는�바
=>�Iv를�Nonce�로�만들기�위해�암호화�과정을�거쳐�사용,�현�코드는�Iv�생성과�메시지�암복호화�key가�같음

- 10 -

package�chapter2;
import�javax.crypto.Cipher;
import�javax.crypto.spec.IvParameterSpec;
import�javax.crypto.spec.SecretKeySpec;
public�class�SimpleCTRExample�{

public�static�void�main(String[]�args)�throws�Exception{
byte[]�input�=�new�byte[]�{

0x00,�0x01,�0x02,�0x03,�0x04,�0x05,�0x06,�0x07,
0x08,�0x09,�0x0a,�0x0b,�0x0c,�0x0d,�0x0e,�0x0f,
0x00,�0x01,�0x02,�0x03,�0x04,�0x05,�0x06�};

byte[]�keyBytes�=�new�byte[]�{
0x01,�0x23,�0x45,�0x67,
(byte)�0x89,�(byte)�0xab,�(byte)�0xcd,�(byte)�0xef�};

byte[]�ivBytes�=�new�byte[]�{
0x00,�0x01,�0x02,�0x03,�0x00,�0x00,�0x00,�0x01�};

SecretKeySpec�key�=�new�SecretKeySpec(keyBytes,�"DES");
IvParameterSpec�ivSpec�=�new�IvParameterSpec(ivBytes);
Cipher�cipher�=�Cipher.getInstance("DES/CTR/NoPadding",�"BC");
System.out.println("input�:�"+Utils.toHex(input));

//�encryption�pass
cipher.init(Cipher.ENCRYPT_MODE,�key,�ivSpec);
byte[]�cipherText�=newbyte[cipher.getOutputSize(input.length)];
int�ctLength�=�cipher.update(input,�0,�input.length,�cipherText,�0);
ctLength�+=�cipher.doFinal(cipherText,�ctLength);
System.out.println("cipher�:�"+Utils.toHex(cipherText,�ctLength)+"�bytes:�"+ctLength);

//�decryption�pass
cipher.init(Cipher.DECRYPT_MODE,�key,�ivSpec);
byte[]�plainText�=newbyte[cipher.getOutputSize(ctLength)];
int�ptLength�=�cipher.update(cipherText,�0,�ctLength,�plainText,�0);
ptLength�+=�cipher.doFinal(plainText,�ptLength);
System.out.println("plain�:�"+Utils.toHex(plainText,�ptLength)+"�bytes:�"+ptLength);

}
}

◆�출력결과
input�:�000102030405060708090a0b0c0d0e0f00010203040506
cipher�:�61a1f886ff9bc709dd37cd9ce33adc6ff9ab110e46f387�bytes:�23
plain�:�000102030405060708090a0b0c0d0e0f00010203040506�bytes:�23
◆�확인하고자�하는�바
=>�CTR�모드의�테스트

- 11 -

package�chapter2;
import�javax.crypto.Cipher;
import�javax.crypto.spec.SecretKeySpec;
public�class�SimpleStreamExample�{

public�static�void�main(String[]�args)�throws�Exception{
byte[]�input�=�new�byte[]�{

0x00,�0x11,�0x22,�0x33,�0x44,�0x55,�0x66,�0x77,
(byte)�0x88,�(byte)�0x99,�(byte)�0xaa,�(byte)�0xbb,
(byte)�0xcc,�(byte)�0xdd,�(byte)�0xee,�(byte)�0xff�};

byte[]�keyBytes�=�new�byte[]�{
0x00,�0x01,�0x02,�0x03,�0x04,�0x05,�0x06,�0x07,
0x08,�0x09,�0x0a,�0x0b,�0x0c,�0x0d,�0x0e,�0x0f�};

SecretKeySpec�key�=�new�SecretKeySpec(keyBytes,�"ARC4");
Cipher�cipher�=�Cipher.getInstance("ARC4",�"BC");
System.out.println("input�text�:�"+�Utils.toHex(input));

//�encryption�pass
byte[]�cipherText�=�new�byte[input.length];
cipher.init(Cipher.ENCRYPT_MODE,�key);
int�ctLength�=�cipher.update(input,�0,�input.length,�cipherText,�0);
ctLength�+=�cipher.doFinal(cipherText,�ctLength);
System.out.println("cipher�text�:�"+�Utils.toHex(cipherText)+"�bytes:�"+ctLength);

//�decryption�pass
byte[]�plainText�=�new�byte[ctLength];
cipher.init(Cipher.DECRYPT_MODE,�key);
int�ptLength�=�cipher.update(cipherText,�0,�ctLength,�plainText,�0);
ptLength�+=�cipher.doFinal(plainText,�ptLength);
System.out.println("plain�text�:�"+�Utils.toHex(plainText)+"�bytes:�"+ptLength);

}
}

◆�출력결과
input�text�:�00112233445566778899aabbccddeeff
cipher�text�:�e98d62ca03b77fbb8e423d7dc200c4b0�bytes:�16
plain�text�:�00112233445566778899aabbccddeeff�bytes:�16
◆�확인하고자�하는�바
=>�ARC4�스트림�알고리즘�테스트,�다른�block�cipher와�비슷하나�모드나�패딩이�필요�없음

- 12 -

package�chapter2;
import�java.security.Key;
import�javax.crypto.Cipher;
import�javax.crypto.KeyGenerator;
import�javax.crypto.spec.IvParameterSpec;
import�javax.crypto.spec.SecretKeySpec;
public�class�KeyGeneratorExample�{

public�static�void�main(String[]�args)�throws�Exception�{
byte[]�input�=�new�byte[]�{

0x00,�0x01,�0x02,�0x03,�0x04,�0x05,�0x06,�0x07,
0x08,�0x09,�0x0a,�0x0b,�0x0c,�0x0d,�0x0e,�0x0f,
0x00,�0x01,�0x02,�0x03,�0x04,�0x05,�0x06,�0x07�};

byte[]�ivBytes�=�new�byte[]�{
0x00,�0x00,�0x00,�0x01,�0x04,�0x05,�0x06,�0x07,
0x00,�0x00,�0x00,�0x00,�0x00,�0x00,�0x00,�0x01�};

Cipher�cipher�=�Cipher.getInstance("AES/CTR/NoPadding",�"BC");
KeyGenerator�generator�=�KeyGenerator.getInstance("AES",�"BC");
generator.init(192);
Key�encryptionKey�=�generator.generateKey();
System.out.println("key�:�"+�Utils.toHex(encryptionKey.getEncoded()));
System.out.println("input�:�"+�Utils.toHex(input));

//�encryption�pass
cipher.init(Cipher.ENCRYPT_MODE,�encryptionKey,�new�IvParameterSpec(ivBytes));
byte[]�cipherText�=�new�byte[cipher.getOutputSize(input.length)];
int�ctLength�=�cipher.update(input,�0,�input.length,�cipherText,�0);
ctLength�+=�cipher.doFinal(cipherText,�ctLength);

//�create�our�decryption�key�using�information
//�extracted�from�the�encryption�Key
Key�decryptionkey�=�new�SecretKeySpec(encryptionKey.getEncoded(),�

encryptionKey.getAlgorithm());
cipher.init(Cipher.DECRYPT_MODE,�decryptionkey,�new�IvParameterSpec(ivBytes));
byte[]�plainText�=�new�byte[cipher.getOutputSize(ctLength)];
int�ptLength�=�cipher.update(cipherText,�0,�ctLength,�plainText,�0);
ptLength�+=�cipher.doFinal(plainText,�ptLength);
System.out.println("plain�:�"+�Utils.toHex(plainText,�ptLength)�+"�bytes:�"+ptLength);

}
}

◆�출력결과
key�:�1b33f26cc4f88a0538f0633a4561f09ecaf3a705181a1ad1
input�:�000102030405060708090a0b0c0d0e0f0001020304050607
plain�:�000102030405060708090a0b0c0d0e0f0001020304050607�bytes:�24
◆�확인하고자�하는�바
=>�KeyGenerator를�통해�AES�key�를�생성�후�암복호화
◆�javax.crypto.KeyGenerator�:�대칭�key�를�생성
ⅰ)�getInstanc(String�algorithm,�String�provider)
=>�“알고리즘”,�“프로바이더”를�매개변수로�KeyGenerator를�생성
ⅱ)�init(int�keysize)
=>�“key�사이즈”를�매개변수로�key�사이즈를�명시
ⅲ)�generateKey()
=>�Cipher�암복호화�엔진에�쓰일�Key를�생성
◆�java.security.Key
ⅰ)�getEncoded()
=>�key를�바이트배열로�반환
ⅱ)�getAlgorithm()
=>�key생성시�명시하였던�알고리즘�반환

- 13 -

package�chapter2;
import�java.security.Key;
import�javax.crypto.Cipher;
import�javax.crypto.SecretKeyFactory;
import�javax.crypto.spec.IvParameterSpec;
import�javax.crypto.spec.PBEKeySpec;
import�javax.crypto.spec.PBEParameterSpec;
import�javax.crypto.spec.SecretKeySpec;
public�class�PBEWithparamsExample�{

public�static�void�main(String[]�args)�throws�Exception�{
byte[]�input�=�new�byte[]�{

0x00,�0x01,�0x02,�0x03,�0x04,�0x05,�0x06,�0x07,
0x08,�0x09,�0x0a,�0x0b,�0x0c,�0x0d,�0x0e,�0x0f,
0x00,�0x01,�0x02,�0x03,�0x04,�0x05,�0x06,�0x07�};

byte[]�KeyBytes�=�new�byte[]�{
0x73,�0x2f,�0x2d,�0x33,�(byte)�0xc8,�0x01,�0x73,
0x2b,�0x72,�0x06,�0x75,�0x6c,�(byte)�0xbd,�0x44,
(byte)�0xf9,�(byte)�0xc1,�(byte)�0xc1,�0x03,�(byte)�0xdd,
(byte)�0xd9,�0x7c,�0x7c,�(byte)�0xbe,�(byte)�0x8e�};

byte[]�ivBytes�=�new�byte[]�{
(byte)�0xb0,�0x7b,�(byte)�0xf5,�0x22,�(byte)�0xc8,
(byte)�0xd6,�0x08,�(byte)�0xb8�};

//�encrypt�the�data�using�precalculated�keys
Cipher�cEnc�=�Cipher.getInstance("DESede/CBC/PKCS7Padding",�"BC");
cEnc.init(Cipher.ENCRYPT_MODE,�new�SecretKeySpec(KeyBytes,�"DESede"),

new�IvParameterSpec(ivBytes));
byte[]�out=�cEnc.doFinal(input);

//�decrypt�the�data�using�PBE
char[]�password�="password".toCharArray();
byte[]�salt�=�new�byte[]�{

0x7d,�0x60,�0x43,�0x5f,
0x02,�(byte)�0xe9,�(byte)�0xe0,�(byte)�0xae�};

int�iterationCount�=2048;
PBEKeySpec�pbeSpec�=new�PBEKeySpec(password);
SecretKeyFactory�keyFact�=�SecretKeyFactory

.getInstance("PBEWithSHAAnd3KeyTripleDES",�"BC");
Cipher�cDec�=�Cipher.getInstance("PBEWithSHAAnd3KeyTripleDES",�"BC");
Key�sKey�=�keyFact.generateSecret(pbeSpec);
cDec.init(Cipher.DECRYPT_MODE,�sKey,�new�PBEParameterSpec(salt,�iterationCount));
System.out.println("cipher�:�"+Utils.toHex(out));
System.out.println("gen�key�:�"+Utils.toHex(sKey.getEncoded()));
System.out.println("gen�iv�:�"+Utils.toHex(cDec.getIV()));
System.out.println("plain�:�"+Utils.toHex(cDec.doFinal(out)));

}
}

◆�출력결과
cipher�:�a7b955896f750665ba71eb50ac3071d9832a8b02760c600bf619a75a0697c87c
gen�key�:�732f2c32c801732a7307756dbc45f8c1c102dcd97c7cbf8f
gen�iv�:�b07bf522c8d608b8
plain�:�000102030405060708090a0b0c0d0e0f0001020304050607
◆�확인하고자�하는�바
=>�PassWord-Based�Encryption�암복호화를�진행,�해당�KeyBytes�는�PBEKeySpec의�바이트배열�값.
문제는
byte[]�KeyBytes�=�new�byte[]�{

0x73,�0x2f,�0x2c,�0x32,�(byte)�0xc8,�0x01,�0x73,
0x2a,�0x73,�0x07,�0x75,�0x6d,�(byte)�0xbc,�0x45,
(byte)�0xf8,�(byte)�0xc1,�(byte)�0xc1,�0x02,�(byte)�0xdc,
(byte)�0xd9,�0x7c,�0x7c,�(byte)�0xbf,�(byte)�0x8f�};

이것으로�암호화한�정보와
byte[]�KeyBytes�=�new�byte[]�{

0x73,�0x2f,�0x2d,�0x33,�(byte)�0xc8,�0x01,�0x73,
0x2b,�0x72,�0x06,�0x75,�0x6c,�(byte)�0xbd,�0x44,
(byte)�0xf9,�(byte)�0xc1,�(byte)�0xc1,�0x03,�(byte)�0xdd,
(byte)�0xd9,�0x7c,�0x7c,�(byte)�0xbe,�(byte)�0x8e�};

이것으로�암호화한�정보가�같다.
why�?

- 14 -

package�chapter2;
import�java.security.Key;
import�javax.crypto.Cipher;
import�javax.crypto.KeyGenerator;
public�class�SimpleWrapExample�{

public�static�void�main(String[]�args)�throws�Exception�{
//�create�a�key�to�wrap
KeyGenerator�generator�=�KeyGenerator.getInstance("AES",�"BC");
generator.init(128);
Key�keyToBeWrapped�=�generator.generateKey();
System.out.println("input�:�"+Utils.toHex(keyToBeWrapped.getEncoded()));

//�create�a�wrapper�and�do�the�wrapping
Cipher�cipher�=�Cipher.getInstance("AESWrap",�"BC");
KeyGenerator�keyGen�=�KeyGenerator.getInstance("AES",�"BC");
keyGen.init(256);
Key�wrapKey�=�keyGen.generateKey();
cipher.init(Cipher.WRAP_MODE,�wrapKey);
byte[]�wrappedKey�=�cipher.wrap(keyToBeWrapped);
System.out.println("wrapped�:�"+Utils.toHex(wrappedKey));

//�unwrap�the�wrapped�key
cipher.init(Cipher.UNWRAP_MODE,�wrapKey);
Key�key�=�cipher.unwrap(wrappedKey,�"AES",�Cipher.SECRET_KEY);
System.out.println("unwrapped:�"+Utils.toHex(key.getEncoded()));

}
}

◆�출력결과
input�:�dcee75d652a22f04fe4ab89f4d7a440b
wrapped�:�7babb10243894338c01d48b7ef9f5be35d3453ed33303cbe
unwrapped:�dcee75d652a22f04fe4ab89f4d7a440b
◆�확인하고자�하는�바
=>�key를�wrapping�하고�unwrapping�함
◆�javax.crypto.Cipher
ⅰ)�getInstance(String�transformation,�String�provider)
=>�“알고리즘이름/모드/패딩”,�“프로바이더이름”을�매개변수로�Cipher�객체화
ⅱ)�init(int�opmode,�Key�key)
=>�Cipher.WRAP_MODE�or�Cipher.UNWRAP_MODE,�“key”�을�매개변수로�초기화�진행
ⅲ)�wrap(Key�key)�
=>�“wrap�하고자�하는�key”를�매개변수로�바이트배열의�wrapkey를�생성
ⅳ)�unwrap(byte[]�wrappedKey,�String�wrappedKeyAlgorithm,�int�wrappedKeyType)
=>�“바이트배열의�wrapkey”,�“wrapkey의�알고리즘”,�“wrapkey의�타입”을�매개변수�Key의�unwrapkey�생성

- 15 -

package�chapter2;
import�java.io.ByteArrayInputStream;
import�java.io.ByteArrayOutputStream;
import�javax.crypto.Cipher;
import�javax.crypto.CipherInputStream;
import�javax.crypto.CipherOutputStream;
import�javax.crypto.spec.IvParameterSpec;
import�javax.crypto.spec.SecretKeySpec;
public�class�SimpleIOExample�{

public�static�void�main(String[]�args)�throws�Exception�{
byte[]�input�=�new�byte[]�{

0x00,�0x01,�0x02,�0x03,�0x04,�0x05,�0x06,�0x07,
0x08,�0x09,�0x0a,�0x0b,�0x0c,�0x0d,�0x0e,�0x0f,
0x00,�0x01,�0x02,�0x03,�0x04,�0x05,�0x06�};

byte[]�keyBytes�=�new�byte[]�{
0x00,�0x01,�0x02,�0x03,�0x04,�0x05,�0x06,�0x07,
0x08,�0x09,�0x0a,�0x0b,�0x0c,�0x0d,�0x0e,�0x0f,
0x10,�0x11,�0x12,�0x13,�0x14,�0x15,�0x16,�0x17�};

byte[]�ivBytes�=�new�byte[]�{
0x00,�0x01,�0x02,�0x03,�0x00,�0x01,�0x02,�0x03,
0x00,�0x00,�0x00,�0x00,�0x00,�0x00,�0x00,�0x01�};

SecretKeySpec�key�=�new�SecretKeySpec(keyBytes,�"AES");
IvParameterSpec�ivSpec�=�new�IvParameterSpec(ivBytes);
Cipher�cipher�=�Cipher.getInstance("AES/CTR/NoPadding",�"BC");
System.out.println("input�:�"+Utils.toHex(input));

//�encryption�pass
cipher.init(Cipher.ENCRYPT_MODE,�key,�ivSpec);
ByteArrayInputStream�bIn�=new�ByteArrayInputStream(input);
CipherInputStream�cIn�=new�CipherInputStream(bIn,�cipher);
ByteArrayOutputStream�bOut�=new�ByteArrayOutputStream();
int�ch;
while(�(ch�=�cIn.read())�>=0�){

bOut.write(ch);
}
byte[]�cipherText�=�bOut.toByteArray();
System.out.println("cipher�:�"+Utils.toHex(cipherText));

//�decryption�pass
cipher.init(Cipher.DECRYPT_MODE,�key,�ivSpec);
bOut�=new�ByteArrayOutputStream();
CipherOutputStream�cOut�=new�CipherOutputStream(bOut,�cipher);
cOut.write(cipherText);
cOut.close();
System.out.println("plain�:�"+Utils.toHex(bOut.toByteArray()));

}
}

◆�출력결과
input�:�000102030405060708090a0b0c0d0e0f00010203040506
cipher�:�bbfe17383cc002047c11be5dfc524e4ead5f2a887d197b
plain�:�000102030405060708090a0b0c0d0e0f00010203040506
◆�확인하고자�하는�바
=>�I/O�Stream을�통해�암복호화
◆�javax.crypto.CipherInputStream
ⅰ)�CipherInputStream(InputStream�is,�Cipher�c)
=>�“Input스트림”,�Cipher�암복호화�엔진을�매개변수로�암호화된�InputStream�객체화
ⅱ)�read()
=>�stream의�next�byte를�읽음
◆�javax.crypto.CipherOutputStream
ⅰ)�CipherOutputStream(OutputStream�os,�Cipher�c)
=>�“Output스트림”,�Cipher�암복호화�엔진을�매개변수로�암호화된�OutputStream�객체화
ⅱ)�write(byte[]�b)
=>�바이트배열�b에�stream의�next�byte를�씀
ⅲ)�close()
=>�Cipher�암복호화�엔진의�doFinal()�과�같은�맥락,�누락�시�메시지가�잘리게�됨

