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1. Introduction

ABSTRACT

Cloud computing, with its promise of virtually infinite resources, seems to suit well in solving resource
greedy scientific computing problems. To study this, we established a scientific computing cloud
(SciCloud) project and environment on our internal clusters. The main goal of the project is to study the
scope of establishing private clouds at the universities. With these clouds, students and researchers can
efficiently use the already existing resources of university computer networks, in solving computationally
intensive scientific, mathematical, and academic problems. However, to be able to run the scientific
computing applications on the cloud infrastructure, the applications must be reduced to frameworks that
can successfully exploit the cloud resources, like the MapReduce framework. This paper summarizes the
challenges associated with reducing iterative algorithms to the MapReduce model. Algorithms used by
scientific computing are divided into different classes by how they can be adapted to the MapReduce
model; examples from each such class are reduced to the MapReduce model and their performance
is measured and analyzed. The study mainly focuses on the Hadoop MapReduce framework but also
compares it to an alternative MapReduce framework called Twister, which is specifically designed for
iterative algorithms. The analysis shows that Hadoop MapReduce has significant trouble with iterative
problems while it suits well for embarrassingly parallel problems, and that Twister can handle iterative
problems much more efficiently. This work shows how to adapt algorithms from each class into the
MapReduce model, what affects the efficiency and scalability of algorithms in each class and allows us to
judge which framework is more efficient for each of them, by mapping the advantages and disadvantages
of the two frameworks. This study is of significant importance for scientific computing as it often uses
complex iterative methods to solve critical problems and adapting such methods to cloud computing
frameworks is not a trivial task.

© 2011 Elsevier B.V. All rights reserved.

failures. To deal with hardware or network failures in a distributed
system, the best course usually is to replicate important data

Scientific computing is a field of study that applies computer
science to solve typical scientific problems. It should not be con-
fused with just computer science. Scientific computing is usually
associated with large scale computer modeling and simulation and
often requires a large amount of computer resources. Cloud com-
puting [1] suits well in solving these scientific computing prob-
lems, with its promise of provisioning virtually infinite resources.

In the adaptation of resource-intensive applications for the
clouds, the applications must be reduced to frameworks that can
successfully exploit the cloud resources, which is the approach we
are studying in our Scientific Computing on the Cloud (SciCloud)
project [2]. Generally, cloud infrastructure is based on commodity
computers, which are cost effective but are bound to fail regularly.
This can cause serious problems as the software has to adapt to
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and retry computations which fail. There are also distributed
computing frameworks that provide fault tolerance by design and
one such framework is the MapReduce [3] framework.

MapReduce was first developed by Google as a parallel comput-
ing framework to perform distributed computing on a large num-
ber of commodity computers. Since then, it has gained popularity
as a cloud computing framework on which to perform automati-
cally scalable distributed applications. Google MapReduce imple-
mentation is proprietary and this has resulted in the development
of open source counterparts like Hadoop [4] MapReduce. Hadoop
is a Java software framework inspired by Google’s MapReduce and
Google File System [5] (GFS). The Hadoop project is being actively
developed by Apache and is widely used both commercially and for
research, and as a result has a large user base and adequate docu-
mentation.

While the automatic scalability is very attractive when working
with distributed applications, the structure of a MapReduce appli-
cation is very strict. It is not trivial to reduce complex algorithms to
the MapReduce model and there is no guarantee that the resulting
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MapReduce algorithms are effective. Previous work has shown that
MapReduce is well suited for simple, often embarrassingly paral-
lel problems. Google show in their paper [3] that they use MapRe-
duce for a wide variety of problems like large-scale indexing, graph
computations, machine learning and extracting specific data from
a huge set of indexed web pages. Other related work [6] shows that
MapReduce can be successfully used for graph problems, like find-
ing graph components, barycentric clustering, enumerating rect-
angles and enumerating triangles. MapReduce has also been tested
for scientific problems [7]. It performed well for simple problems
like the Marsaglia polar method for generating random variables
and integer sort.

However, MapReduce has also been shown to have significant
problems [7] with more complex algorithms, like conjugate
gradient, fast Fourier transform and block tridiagonal linear system
solver. Moreover, most of these problems use iterative methods
to solve them, indicating that MapReduce may not be well
suited for algorithms that have an iterative nature. However,
there is more than one type of iterative algorithm. To study if
MapReduce model is unsuitable for all iterative algorithms or only
a certain subset of them, we devised a set of classes for scientific
algorithms. Algorithms are divided between these classes by how
difficult it is to adapt them to the MapReduce model and their
resulting structure. To be able to compare the classes to each
other, we selected and adapted algorithms from each class to the
MapReduce model and studied their efficiency and scalability. Such
a classification allows us to precisely judge which algorithms are
more easily adaptable to the MapReduce model and what kind of
effect belonging to a specific class has on the parallel efficiency and
scalability of the adapted algorithms.

The rest of the paper is structured as follows. Section 2
briefly introduces the SciCloud project. Section 3 describes the
Hadoop MapReduce model on our SciCloud infrastructure and
Section 4 describes the different classes for iterative algorithms.
Section 5 outlines the algorithms that were implemented and an-
alyzed. Section 6 describes an alternative MapReduce framework
called Twister and produces the analysis of the algorithms on the
framework. Section 7 mentions the related work and Section 8 con-
cludes the paper and describes the future research directions in the
context of the SciCloud project.

2. SciCloud

The main goal of the scientific computing cloud (SciCloud)
project [2] is to study the scope of establishing private clouds at
universities. With these clouds, students and researchers can effi-
ciently use the already existing resources of university computer
networks, in solving computationally intensive scientific, mathe-
matical, and academic problems. Traditionally, such computation-
ally intensive problems were targeted by batch-oriented models
of the GRID computing domain. SciCloud tries to achieve this with
more interactive and service oriented models of cloud computing
that fit a larger class of applications. It targets the development
of a framework, including models and methods for establishment,
proper selection, state and data management, auto scaling and
interoperability of the private clouds. Once such clouds are
feasible, they can be used to provide better platforms for col-
laboration among interested groups of universities and in testing
internal pilots, innovations and social networks. SciCloud also fo-
cuses on finding new distributed computing algorithms and tries to
reduce some of the scientific computing problems to MapReduce
algorithm.

While there are several public clouds on the market, Google
Apps (examples include Google Mail, Docs, Sites, Calendar etc.),
Google App Engine [8] (which provides an elastic platform for
Java and Python applications with some limitations) and Amazon

EC2 [9] are probably the most known and widely used. Amazon
EC2 allows full control over the virtual machine, starting from the
operating system. It is possible to select a suitable operating system
and platform (32 and 64 bit) from many available Amazon Machine
Images (AMI) and several possible virtual machines, which differ
in CPU power, memory and disk space. This functionality allows us
to freely select suitable technologies for any particular task. In the
case of EC2, the price for the service depends on the machine size,
its uptime, and the used bandwidth in and out of the cloud.

There are also free implementations of cloud infrastructure
e.g. Eucalyptus [10]. Eucalyptus allows the creation of private
clouds compatible with Amazon EC2. Thus the cloud computing
applications can initially be developed in private clouds and can
later be scaled to the public clouds. This is of great help for the
research and academic communities, as the initial expenses of
experiments can be reduced by a great extent. With this primary
goal we have set up SciCloud on a cluster consisting of 8 nodes of
SUN FireServer Blade system with 2-core AMD Opteron Processors,
using Eucalyptus technology. The cluster was later extended by 2
nodes with double quad-core processors and 32 GB memory per
node, plus 4 more nodes with a single quad-core processor and
8 GB of memory each.

While several applications are obvious from such a private
cloud setup, we have used it in solving some of our research
problems in distributed computing and mobile web services
domains [2]. In the mobile web services domain, we scaled our
Mobile Enterprise [11] to the loads possible in cellular networks.
A Mobile Enterprise can be established in a cellular network by
participating Mobile Hosts, which act as web service providers
from smart phones, and their clients. Mobile Hosts enable seamless
integration of user-specific services to the enterprise, by following
web service standards [12], also on the radio link and via resource
constrained smart phones. Several applications were developed
and demonstrated with the Mobile Host in health care systems,
collaborative m-learning, social networks and multimedia services
domains [11]. We shifted some of the components and load
balancers of Mobile Enterprise to the SciCloud and proved that the
Mobile Web Services Mediation Framework [13] and components
are horizontally scalable. More details of the analysis are available
at [14]. Apart from helping us in our research, SciCloud also has
several images supporting in data mining and bio-informatics
domains.

3. SciCloud Hadoop framework

With the intent of having a setup for experimenting with
MapReduce based applications, we have set up a dynamically
configurable SciCloud Hadoop framework. We used the Hadoop
cluster to reduce some of the scientific computing problems like CG
to MapReduce algorithms. The details are addressed in this section.

MapReduce is a programming model and a distributed comput-
ing framework. It was first developed by Google to process very
large amounts of raw data that it has to deal with on a daily ba-
sis, like indexed Internet documents and web requests logs, which
grows every day. Google uses MapReduce to process data across
hundreds or thousands of commodity computers. MapReduce ap-
plications get a list of key-value pairs as an input and consist of two
main methods, Map and Reduce. The Map method processes each
key-value pair in the input list separately, and outputs one or more
key-value pairs as a result.

map(key, value) = [(key, value)].

The Reduce method aggregates the output of the Map method. It
gets a key and a list of all values assigned to this key as an input,
performs user defined aggregation on it and outputs one or more
key-value pairs.

reduce(key, [value]) = [(key, value)].
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Users only have to produce these two methods to define a MapRe-
duce application; the framework takes care of everything else,
including data distribution, communication, synchronization and
fault tolerance. This makes writing distributed applications with
MapReduce much easier, as the framework allows the user to con-
centrate on the algorithm and is able to handle almost everything
else. Parallelization in the MapReduce framework is achieved by
executing multiple Map and Reduce tasks concurrently on differ-
ent machines in the cluster.

However, Google implementation of MapReduce is proprietary.
Apache Hadoop [4] is an open source implementation of MapRe-
duce written in Java. Apart from MapReduce, Hadoop also provides
the Hadoop Distributed File System [15] (HDFS) to reliably store
data across hundreds of computers. HDFS is based on, and thus con-
ceptually similar, to the Google File System (GFS) [5]. The Hadoop
MapReduce framework uses HDFS to store both the input and out-
put of MapReduce applications in a distributed fashion. A simple
Hadoop cluster consists of n > 1 machines running the Hadoop
software. The cluster is a single master cluster with a varying num-
ber of slave nodes. Slave nodes can act as both the computing nodes
for the MapReduce and as data nodes for the HDFS. Apache Hadoop
is in active development and is used both commercially and for
research.

To analyze the performance of MapReduce for scientific com-
puting, we set up a small Hadoop cluster in the SciCloud. The clus-
ter is composed of one master and sixteen slave nodes. Only the
slaves act as MapReduce task nodes, resulting in 16 parallel work-
ers where the MapReduce tasks can be executed. Each node is a vir-
tual machine with 2.2 GHz CPU, 500 MB RAM and 10 GB disk space
allocated for the HDFS, making the total size of the HDFS 160 GB.
More nodes can be added to the cluster dynamically, when needed.
We have scripts that can add more slaves to the framework and
can configure to the Master. We also have support for Auto scal-
ing, which starts more slave nodes based on the observed loads of
individual instances. The details will be addressed by our future
publications.

4. Algorithm classes

We have devised a set of classes for scientific algorithms based
on how difficult it is to adapt them to the MapReduce model and
what steps are required. The algorithms are divided into different
classes as follows:

e Algorithms that can be adapted as a single execution of a
MapReduce model.

e Algorithms that can be adapted as a sequential execution of a
constant number of MapReduce models.

e Algorithms where the content of one iteration is represented as
an execution of a single MapReduce model.

e Algorithms where the content of one iteration is represented as
an execution of multiple MapReduce models.

First class can be considered to represent embarrassingly
parallel algorithms and the second class easily parallelizable
algorithms. Third and fourth represent iterative algorithms, where
some type of synchronization must be performed between each
iteration; for example to check the ending condition or to
aggregate and broadcast the result of the previous iteration.
Algorithms belonging to the fourth class are considered to be more
complex iterative algorithms where only some operations in each
iteration can be parallelized completely. Algorithms belonging
to class 4 are generally difficult to parallelize efficiently, which
is even more difficult to achieve when adapting them to the
MapReduce model. To study how belonging to a specific class
affects the efficiency and scalability of an algorithm, we adapted

algorithms from each class to MapReduce and analyzed the results.
The algorithms we chose are described in the following chapter.

Apart from belonging to the specific class, the parallel efficiency
and scalability is also affected by the individual characteristics
of the algorithm. For example, it depends on how large part of
the computation stays outside of the MapReduce model. Checking
the ending condition in an iterative algorithm or aggregating
and processing the final result, when it cannot be done in the
reducer method in MapReduce, means that most often some part
of the iterative algorithm must be executed outside parallelism,
which decreases the parallel efficiency of the whole algorithm.
Also, algorithms that belong to the second class can become less
efficient if the number of sequential MapReduce model executions
is large. Switching between different MapReduce models acts
as a synchronization step and the input data for each different
MapReduce execution must be processed again, meaning there
might be no practical difference between the second and third
classes when the number of steps in the second is comparable to
the number of iterations in the third.

Furthermore, the parallel efficiency does not only depend on
how the algorithm was adapted to the MapReduce model or on
the inherit characteristics of the algorithm itself, but also on the
environment it is executed in. Executing MapReduce applications
on different MapReduce frameworks can have a significant impact
on the running time of the application, also depending on which
class the algorithms used in this application belong to.

5. Reducing iterative algorithms to MapReduce

We chose one algorithm from each of the algorithm classes
outlined in Section 3 to illustrate the different design choices
and problems that can arise when adapting scientific computing
problems to the Hadoop MapReduce framework. These algorithms
are:

e Conjugate Gradient (CG).

e Two different k-medoid clustering algorithms:
- Partitioning Around Medoids (PAM).
- Clustering Large Application (CLARA).

e Factoring integers.

CG belongs to class 4, PAM to class 3, CLARA to class 2, and factor-
ing integers is an example of class 1 and embarrassingly parallel
algorithms. For each of these algorithms we provide a short de-
scription, reasoning why they belong to the given class, the steps
taken to adapt them to the MapReduce model and the results of
our experiments.

5.1. Conjugate Gradient

Conjugate Gradient [16] (CG) is an iterative algorithm for solv-
ing systems of linear equations in matrix form:

Ax=1>b

where the A is a known matrix, b is a known vector and x is the
solution vector of this linear system. The general idea of CG is to
perform an initial inaccurate guess of the solution x and then im-
prove its accuracy at every following iteration.

CG is arelatively complex algorithm, it is not possible to directly
adapt the whole algorithm to the MapReduce model. Instead,
the matrix and vector operations used by CG at each iterations
are reduced to the MapReduce model. Because of this it directly
belongs to the fourth algorithm class. Matrix and vector operations
that need to be adapted to the MapReduce model separately are:

Matrix-vector multiplication.
Dot product.

Two vector addition.

Vector and scalar multiplication.
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Table 1
Run times for the CG implementation in MapReduce under varying cluster size.

Unknowns 24 500 1000 2000 4000 6000 8000

1 node 259 261 327 687 1938 3810 7619
2 nodes 255 259 298 507 1268 2495 4185
4 nodes 255 236 281 360 721 1374 2193
8 nodes 251 251 291 397 563 824 1246
16 nodes 236 240 278 297 338 511 809
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Fig. 1. Speedup for Conjugate Gradient algorithm with different number of nodes.

Every time one of these operation is used in the CG, a new
MapReduce job is executed. As a result, multiple MapReduce jobs
are executed at every iteration. This is not the most efficient way
as it takes time for the Hadoop framework to schedule, start up
and finish MapReduce jobs. It can be viewed as MapReduce job
latency and executing multiple jobs at each iteration adds up to
a significant overhead.

Additionally, in Hadoop, the matrix A is stored on the HDFS and
is used as an input for the matrix-vector multiplication operation
at every iteration. In the Hadoop MapReduce framework it is
not possible to cache the input between different executions of
MapReduce jobs, so every time this operation is executed, the input
must be read again from the file system. As the matrix A values
never change between iterations, the exact same work is repeated
at every iteration. This adds up to a significant additional overhead.

Experiments were run with different numbers of parallel nodes
to be able to calculate parallel speedup. Parallel speedup measures
how many times the parallel execution is faster than running the
same MapReduce algorithm on a single node. If it is larger than 1, it
means there is at least some gain from doing the work in parallel.
Speedup which is equal to the number of nodes is considered ideal
and means that the algorithm has a perfect scalability. Run times
for the CG algorithm are shown on Table 1 and calculated speedup
is shown on Fig. 1.

It took 220 s to solve a system with only 24 unknowns in
a 16 node cluster, which is definitely very slow for solving a
linear system with such a small number of calculations needed.
Unfortunately, the tests solving larger systems also showed that
the CG MapReduce algorithm does not improve as the size of the
data increases. For example, a linear system with 8000 unknowns
took almost 2 h to solve using the MapReduce algorithm. These
results indicate that most of the time in the MapReduce CG is spent
on the background tasks and not on the actual calculations.

5.2. Partitioning Around Medoids

Partitioning Around Medoids [17] (PAM) is an iterative k-
medoid clustering algorithm, that has significant value in the
datamining domain. The general idea of a k-medoid clustering is
that each cluster is represented by its most central element, the
medoid, and all comparisons between objects and clusters are
reduced into comparisons between objects and the medoids of the
clusters.

To cluster a set of objects into k different clusters, the PAM
algorithm first chooses k random objects as the initial medoids. As
a second step, for each object in the dataset, the distances from
each of the k medoids is calculated and the object is assigned to
the cluster with the closest medoid. As a result, the dataset is
divided into k different clusters. At the next step the PAM algorithm
recalculates the medoid positions for each of the clusters, choosing
the most central object as the new medoid. This process of dividing
the objects into clusters and recalculating the cluster medoid
positions is repeated, until there is no change from the previous
iteration, meaning the clusters have become stable.

Similar to CG, PAM makes an initial guess of the solution, in
this case the clustering, and at each following iteration it improves
the accuracy of the solution. Also, as with CG, it is not possible to
reduce the whole algorithm to the MapReduce model. However,
the content of a whole iteration can be reduced to the MapReduce
model, showing that PAM belongs to the third algorithm class. The
resulting MapReduce job can be expressed as:

e Map:

- Find the closest medoid and assign the object to its cluster.

- Input: (cluster id, object).

- Output: (new cluster id, object).

e Reduce:

- Find which object is the most central and assign it as a new

medoid to the cluster.

- Input: (cluster id, (list of all objects in the cluster)).

- Output: (cluster id, new medoid).

The Map method recalculates to which cluster each object belongs
to, and the Reduce method finds a new center for each of the
resulting clusters. This MapReduce job is repeated until medoid
positions of the clusters no longer change.

Similar to CG, PAM also has issues with job lag and rereading
the input from the file system at every iteration, because a new
MapReduce job is executed at each time.

5.3. Clustering Large Applications

Clustering Large Applications [17] (CLARA) is also an iterative
k-medoid clustering algorithm, but in contrast to PAM, it only
clusters small random subsets of the dataset to find candidate
medoids for the whole dataset. This process is repeated multiple
times and the best set of candidate medoids is chosen as the final
result. Differently from the PAM, the results of the iterations are
independent of each other and do not have to be executed in a
sequence.

As aresult, it is possible to execute the content of the iterations
concurrently in separate tasks and remove the iterative structure
of the algorithm. Everything can be reduced into two different
MapReduce jobs, both executing different tasks. The first job
chooses a number of random subsets from the input data sets,
clusters each of them concurrently using PAM, and outputs the
results. The second MapReduce job calculates the quality measure
for each of the results of the first job, by checking them on the
whole data set concurrently inside one MapReduce job. As a result
of having only two MapReduce jobs, the job latency stays minimal
and the input data set is only read twice. These two MapReduce
jobs are outlined as follows:

First CLARA MapReduce job:
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Table 2
Run times for the PAM algorithm.
Objects 10000 25000 50000 75000 100000
1 node 1389 1347 2014 3620 6959
2 nodes 1133 1697 1826 2011 6130
4 nodes 803 782 1156 2562 2563
8 nodes 635 627 1513 1084 1851
16 nodes 297 497 432 761 1029
Table 3
Run times for the CLARA algorithm.
Objects 25 50 100 500 1000 5000 10000
(thousands)
1 node 117 118 125 183 261 819 1517
2 nodes 79 84 89 150 215 476 832
4 nodes 61 66 72 120 127 316 486
8 nodes 52 56 61 114 124 218 320
16 nodes 44 50 58 99 98 104 156
e Map:

- Assign a random key to each object.

- Input: (key, object).

- Output: (random key, object).

e Reduce:

- Read first n objects, which are sorted in the ascending order of
the keys. Because the keys were assigned randomly, the order
of the objects is random after sorting. Perform PAM clustering
on the n objects to find k different candidate medoids.

- Input: (key, list of objects).

- Output: (key, list of k medoids).

Second CLARA MapReduce job:

e Map:

- For each object, find the closest medoid and calculate the
distance from it. For each object, this is done as many times
as there were candidate sets of medoids, and one output is
generated for each.

- Input: (cluster, object).

- Output: (candidate set id, distance from the closest medoid)
[One output for each candidate set].

e Reduce:

- Sum the distances with the same candidate set id.

- Input: (candidate set id, list of distances).

- Output: (candidate set id, sum(list of distances)).

The result of the second job is a list of calculated sums, each
representing the total sum of distances from all objects and their
closest medoids, one for each candidate set. The candidate set
of medoids with the smallest sum of distances between objects
and their closest medoids is chosen as the best clustering. As the
number of different MapReduce jobs executed is always two, this
algorithm belongs to the second class.

From the experiment results (Tables 2, 3 and Figs. 2, 3) it is
possible to see that the CLARA MapReduce algorithm works much
faster than PAM, especially when the number of objects in the
dataset increases. PAM was not able to handle datasets larger than
100 000 objects while CLARA could cluster datasets consisting
of millions or even tens of millions of objects. It should also be
noted that the time to cluster the smallest dataset is quite large
for both CLARA and PAM. This is because the background tasks
of the MapReduce framework are relatively slow to start, so each
separate MapReduce job that is started slows down the algorithm.
This affects PAM more greatly than CLARA because PAM consists
of many MapReduce job iterations while CLARA only uses two
MapReduce jobs.
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Fig. 3. Parallel speedup for the CLARA algorithm with different number of nodes.

5.4. Factoring integers

Factoring integers is a method for dividing an integer into a set
of prime numbers that make up the original number by multiplying
them all. For example the factors of a number 21 are 3 and 7.
Factoring integers is used for example to break RSA cryptosystem.

In this case we chose the most basic method of factoring
integers, the trial division. This method is not used in practice, as
it is relatively slow and there exist much faster methods like the
general number field sieve [ 18]. But we chose this method purely to
illustrate adapting an embarrassingly parallel problem, belonging
to the first class, to the MapReduce model as comparison to the
other three algorithms.

To factor a number using trial division, all possible factors of
the number are checked to see if they divide the number evenly. If
one of them does, then it is a factor. This can be adopted to the
MapReduce model, by dividing all possible factors into multiple
subgroups and checking each of them in a separate Map or Reduce
task concurrently:

e Map:
- Gets anumber to be factored as an input, finds the square root
of the number and divides the range from 2 to ~/number into
n smaller ranges, and outputs each of them.
- Input: (key, number).
- Output: (id, (start, end, number)) [one output for each range,
n total].
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Table 4
Run times for the integer factorization with different numbers of nodes.
Digits 17 18 19 20 21
1 node 51 142 361 2058 6767
2 nodes 37 67 188 1117 3271
4 nodes 30 50 120 512 1622
8 nodes 27 36 70 299 887
16 nodes 27 38 59 215 566
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Fig. 4. Parallel speedup for the integer factorization with different numbers of
nodes.

e Reduce:

- Gets a number and a range, in where to check for factors, as
an input and finds if any of the numbers in this range divide
the number evenly.

- Input: (id, (start, end, number)).

- Output: (id, factor).

As aresult, in contrast to the previous algorithms, this algorithm is
reduced to a single MapReduce job, meaning there is no overhead
from executing multiple jobs in sequence and why this algorithm
belongs to the first algorithm class.

The run times for the integer factorization are given on the
Table 4 and speedup is shown on Fig. 4. From the Fig. 4 it is
possible to see that when the factored number is small, there is
only a small advantage in using multiple workers in parallel. The
speedup is slightly above 1 for 2 node cluster and only reaches
2.22 in 16 node cluster. This is because the number of calculations
done was relatively small compared to the background tasks of
the framework. However, with the increase of the size of the input
number, the speedup started to grow significantly. With the input
size of 21 digits, the speedup for two and four node executions
was 2.07 and 4.17, showing that there is an ideal gain from using
multiple nodes to find the factors when the size of the input is large
enough. With a larger number of nodes the speedup does not reach
the number of nodes, indicating that calculations were not long
enough to get the full benefit from using 16 nodes. The calculated
speedup numbers suggest that this algorithm has a good scalability
and that algorithms belonging to the first class can be very suitable
for the Hadoop MapReduce framework.

5.5. Summary of the analysis

From the results of our experiments we observed that Hadoop
MapReduce has several problems with iterative algorithms.
Complex iterative algorithms of the class 4 may require one or
more MapReduce jobs to be executed at every iteration. However,
if the number of iterations is large, then executing that many

Nodes

‘B RSA “*'PAM “¥“CLARA "#CG

Fig. 5. Achieved speedup comparison of the four algorithms.

MapReduce jobs in a sequence lowers the efficiency of the result
because of the job latency. Job latency is the time it takes for the
MapReduce framework to schedule, start and finish a MapReduce
job, excluding the time spent on doing the actual calculations.

Additionally, input to Hadoop MapReduce jobs is stored on the
HDFS, where the data is saved in a distributed fashion. This input
needs to be read again every time a MapReduce job is executed,
even if a large portion of the input does not change between the
job executions, as it is not possible to cache it in the Hadoop
MapReduce framework. For algorithms like CG and PAM, where the
bulk of the input data stays the same, it means reading the same
input data from the file system many times, doing duplicate work
at every iteration and lowering the efficiency of the result.

For algorithm classes 3 and 4, where one or more MapReduce
jobs are executed at every iteration, job latency and also the in-
ability to cache MapReduce application input can add up to a sig-
nificant overhead. This means that a significant amount of time
is spent on background tasks managed by the MapReduce frame-
work, and less time is spent on performing the actual calculations.
This greatly affects the iterative algorithms which have a large
number of iterations.

Regardless of the problems encountered, all implemented algo-
rithms were able to achieve speedup from using multiple nodes,
as shown in the illustration 5, with RSA having the best and PAM
the worst speedup in our tests. However, it is hard to adequately
compare the speedup figures between different algorithms, as they
strongly depend on the algorithm characteristics, input size, time
spent on calculations and the background tasks etc. For iterative
MapReduce algorithms, which require significantly more back-
ground tasks, achieving an ideal speedup is more difficult. While
increasing the problem size, and thus the time spent on the ac-
tual calculation, often improves the result, it also increases the time
spent on the background tasks, as increasing the input size means
that more time must be spent on reading the input data from the
file system at every iteration.

6. Twister MapReduce framework

After identifying the problems Hadoop has with each of the
algorithm classes, we were also very interested in comparing
the results to other MapReduce frameworks to be able to judge
which of the framework’s problems are inherent to the Hadoop
framework itself and which are inherent to the MapReduce model
in general and additionally, to see what effect the choice of the
MapReduce framework implementation has on the efficiency and
scalability of the algorithms in each algorithm class.
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Table 5
Run times for the CG implementation in Twister.

S.N. Srirama et al. / Future Generation Computer Systems 28 (2012) 184-192

Unknowns 500 1000 2000

4000

6000 8000 10000 20000

3.19 3.40 3.00
3.33 3.40 2.82
3.27 3.29 276
3.38 3.30 2.81
3.40 3.42 275

1 node

2 nodes
4 nodes
8 nodes
16 nodes

4.96
3.99
3.54
3.56
3.50

7.69
572
4.03
3.79
3.56

11.27
6.98
5.29
476
4.11

16.22
9.51
6.54
5.44
4.86

56.01
28.15
16.33
14.75
10.05

Table 6
Run times for the PAM algorithm in Twister.

Objects 10000 25000 50000

75000 100000 200000 300000

5.45
293
391
4.04
4.25

20.55
10.06
7.99
493
6.63

25.00
22.85
14.63
15.11
11.55

1 node

2 nodes
4 nodes
8 nodes
16 nodes

96.61
51.19
15.51
31.84
22.26

204.55
93.06
91.78
38.13
24.87

638.56
359.88
197.15
131.41

85.76

1888.71
808.96
343.64
355.77
237.43

We chose Twister [19] as the alternative MapReduce framework
because it is advertised as an iterative MapReduce framework
and thus should provide a very good comparison to Hadoop for
algorithm classes 3 and 4, which Hadoop has been shown to have
troubles with. The Twister MapReduce framework distinguishes
between static data that does not change in the course of the
iterations and normal data which may change at every iteration.
It also provides long running Map and Reduce tasks which do
not have to be terminated between iterations of MapReduce
executions as is required in Hadoop. These two are the main
characteristics which separate Twister from Hadoop and provide
better support for iterative algorithms. Jaliya Ekanayake et al. [20]
compared Hadoop MapReduce, Twister and MPI for different data
and computing intensive applications. Their results show that
Twister can greatly reduce the overhead of iterative MapReduce
applications.

We decided to test the Twister MapReduce framework for
classes 3 and 4 to see if and how much faster Twister can manage
iterative algorithms. We set up a small Twister cluster in the
SciCloud. The cluster is kept very similar to the Hadoop cluster
for more accurate comparison. It is composed of one master
and fifteen slave nodes. Both the master and the slaves act as
MapReduce task nodes, resulting in 16 parallel workers where the
MapReduce tasks can be executed. Each node is a virtual machine
with 2.2 GHz CPU, 500 MB RAM. Twister has no distributed file
system, and all input files are simply distributed to the local drives
of the nodes.

The algorithms we implemented in Twister are CG and PAM,
representing classes 3 and 4. Tables 5 and 6 show the run times for
these experiments and Figs. 6 and 7 show the calculated speedup.

Comparing the Twister and Hadoop (Tables 1 and 2) run times
for these algorithms clearly shows that Twister is much more
efficient for classes 3 and 4. Twister can solve larger problems
in less time and for the same size problems it is 50-100 times
faster than Hadoop, when running on 16 nodes. The way the
algorithm structure is adapted to the MapReduce model stays
exactly the same in both Twister and Hadoop, yet Twister is
much more efficient in handling background tasks for iterative
MapReduce applications. In Hadoop the job lag was around 19-20s
per iteration, while in Twister it is below 3 s regardless of the
number of iterations. Twister also stores the bulk of the input to the
memory and does not need to read it again from the file system at
every iteration. In CG, it means being able to store the whole matrix
into the collective memory of the cluster and in PAM it means being
able to store all the clustered objects.

However, Twister also has certain limitations for distributed
applications. The significant advantage in using Twister comes
from its ability to keep static input data in memory across
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Fig. 6. Parallel speedup for CG in Twister.
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Fig. 7. Parallel speedup for PAM in Twister.

iterations. But it means that this static data must fit into the
collective memory of the machines Twister is configured on. For
dataintensive tasks this may be quite an unreasonable demand. For
example, processing 1 TB of data with Twister would require more
than 128 machines with 8 GB of memory each just to store the data
into the memory, not to mention the memory needed for the rest
of the application, the framework itself and the operating system
it runs in. Twister also does not have a proper fault tolerance when
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compared to the fault tolerance provided by Hadoop, which can
be a very serious problem when running twister on a public cloud
where machines are prone to relatively frequent failures.

Comparing Twister and Hadoop for algorithms belonging to
the third and fourth class has shown that Twister is much more
suitable for these classes. At the same time, Hadoop is more
suitable for the first class of algorithms, thanks to the fault
tolerance it provides, and also for data intensive algorithms in
general, as Twister has problems fitting the data into the memory.
For less data intensive algorithms belonging to the second class the
results are not so clear. When the number of different MapReduce
executions is not large, Hadoop can perform well and given
the fault tolerance, it should be considered to be more suitable.
But because of the short running tasks in Hadoop, which are
terminated each time one MapReduce cycle is over, Hadoop loses
its efficiency as the number of MapReduce executions increase
and Twister should be preferred instead. Thus, the choice of the
framework for the second class of algorithms strongly depends on
the number of MapReduce steps needed and on how data intensive
the task is.

7. Related work

Apart from Hadoop and Twister there are multiple imple-
mentations of distributed computing frameworks based on the
MapReduce model. Yingyi Bu et al. presented HaLoop [21], which
extends the Hadoop MapReduce framework by supporting itera-
tive MapReduce applications, adding various data caching mech-
anisms and making the task scheduler loop-aware. They separate
themselves from Twister by claiming that HaLoop is more suited
for iterative algorithms because using the memory cache and long
running MapReduce tasks makes Twister less suitable for com-
modity hardware and more prone to failures.

Matei Zaharia et al. [22] propose Spark, a framework that
supports iterative applications, yet retains the scalability and
fault tolerance of MapReduce. Spark focuses on caching the data
between different MapReduce-like task executions by introducing
resilient distributed datasets (RDDs) that can be explicitly kept
in memory across the machines in the cluster. However, Spark
does not support group reduction operation and only uses one task
to collect the results, which can seriously affect the scalability of
algorithms that would benefit from concurrent Reduce tasks, each
task processing a different subgroup of the data [22].

The Google solution for the MapReduce problems with iterative
graph algorithms is Pregel [23]. Grzegorz Malewicz et al. introduce
Pregel as a scalable and fault-tolerant platform for iterative graph
algorithms. Compared to previous related work, Pregel is not based
on the MapReduce model but rather on the Bulk Synchronous
Parallel model [24]. In Pregel the computations consist of super-
steps, where user defined methods are invoked on each graph
vertex concurrently. Each vertex has a state and is able to receive
messages sent to it from the other vertexes in the previous
super-step. While the vertex central approach is similar to the
MapReduce map operation which is performed on each item
locally, the ability to preserve the state of each vertex between the
super-steps provides the support for iterative algorithms.

Similarly, Phoenix [25] implements MapReduce for shared-
memory systems. Its goal is to support efficient execution
on multiple cores without burdening the programmer with
concurrency management. Because it is used on shared-memory
systems it is less prone to the problems we encountered with
iterative algorithms as long as the data can fit into the memory.
The idea is interesting, but a shared memory model cannot be
considered a solution for the SciCloud project, as we are more
interested in using existing university resources and commodity
hardware.

Saurabh Sehgal et al. [26] implement the MapReduce model
using SAGA (Simple API for Grid Applications) — an API that sup-
ports platform independent distributed programming - with the
aim to provide interoperability for distributed scientific applica-
tions. They argue that the MapReduce model suits well for im-
plementing application interoperability and demonstrate three
different levels of interoperability for distributed applications.
First, where the application can use different distributed plat-
forms without changes to the application. Second, where the ap-
plication can seamlessly switch between different programming
models. Third, where multiple programming models can be used
concurrently to solve a single task. They conclude that the impact
of application level interoperability is an important step towards
understanding general-purpose programming models.

8. Conclusions and future research directions

Cloud computing, with its promise of virtually infinite re-
sources, seems to suit well in solving resource greedy scientific
computing problems. The work presented in the paper studies
adapting scientific computing problems to the MapReduce model.
The study has formulated 4 different classes for algorithms and has
divided scientific algorithms among these classes as follows: em-
barrassingly parallel algorithms, easily parallelizable algorithms,
iterative algorithms and complex iterative algorithms. The paper
investigates what affects the parallel efficiency and scalability of
algorithms in each of these classes by adapting them to the Hadoop
MapReduce framework and analyzing the results.

From this analysis, it can be observed that the Hadoop MapRe-
duce framework has several problems with iterative algorithms,
where one or more MapReduce jobs need to be executed at each
iteration. For each MapReduce job that is executed, some time is
spent on background tasks, regardless of the input size, which can
be viewed as MapReduce job latency. If the number of iterations is
large, then this latency adds up to a significant overhead in Hadoop
and lowers the efficiency of such algorithms. Moreover, the input
to a Hadoop MapReduce job is stored on the HDFS. If a Hadoop
MapReduce job is executed more than once, it means that the in-
put has to be read again from the HDFS every time, regardless of
how much of the input has changed from the previous iterations.
For algorithms like CG and PAM, where most of the input does
not change between the iterations and the number of iterations is
large, this is a serious problem.

The study later tried to implement algorithms from the last two
iterative classes to an alternative MapReduce framework called
Twister, to be able to judge which problems we encountered
are specific to the Hadoop framework and which are inherent
from the MapReduce model itself. The results of the experiments
show that Twister performs much better for iterative algorithms
belonging to classes 3 and 4, showing run times incomparable to
Hadoop. However, Twister is not without faults. Because the main
advantage of Twister comes from its ability to store input data
into memory between iterations, it also requires this data to fit
into the collective memory of the cluster in order to be effective.
This is unfeasible for tasks that are required to process hundreds of
Terabytes of data. Another disadvantage of Twister is its weak fault
tolerance compared to Hadoop. Fault tolerance is of significant
importance for long iterative tasks running on cloud computing
platforms which are generally prone to hardware and network
failures.

For these reasons we conclude that the Hadoop MapReduce
framework is more suited for data intensive algorithms belonging
to the first and the second class, which consist of embarrassingly
parallel and easily parallelizable algorithms. However, when
a large number of MapReduce jobs must be executed in an
algorithm belonging to the second class, then Hadoop will lose
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its efficiency and Twister should be considered instead. For
third and fourth classes, which consist of iterative and complex
iterative algorithms, Twister has proven to be much more efficient
than Hadoop. The results show us that MapReduce can be
used successfully for solving scientific computing problems as
long as the algorithm characteristics are properly considered
and a suitable MapReduce framework is chosen based on those
characteristics.

Apart from Hadoop and Twister, we are also considering
other frameworks for utilizing cloud computing resources to
solve scientific computing problems. As such, future work will
include study into other iterative MapReduce frameworks like
Spark or HaLoop and alternative distributed computing models
like Bulk Synchronous Parallel. Apart from evaluating existing
cloud computing solutions, we are also interested in designing
an original distributed cloud computing framework for scientific
computing which would cater for our needs, providing automatic
parallelism, fault tolerance and would be suitable for all of the
algorithm classes described in this article. Because it is clear
that the Hadoop MapReduce framework is very well suited for
embarrassingly parallel algorithms, our future work will also
include implementing other embarrassingly parallel scientific
computing algorithms on the Hadoop MapReduce framework, for
example algorithms based on the Monte Carlo method [27,28].
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