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Abstract—In nowadays computing clouds, it is of the cloud
providers’ economic interests to correctly consolidate the work-
load of the virtual machines (VMs) into the suitable physical
servers in the cloud data center in order to minimize the total
maintenance cost. However, during the consolidation process,
sufficient protection should be provided to the service level
agreement (SLA) of the VMs. In this paper, the VM consoli-
dation problem for MapReduce enabled computing clouds has
been investigated. In the MapReduce enabled computing clouds,
MapReduce jobs are carried out by homogeneous MapReduce
VM instances that have identical hardware resource. Two re-
source allocation schemes with corresponding SLA constraints
for the MapReduce VMs and the non-MapReduce VMs are
proposed. Based on these schemes, the VM consolidation problem
is modeled as an integer nonlinear optimization problem and an
efficient algorithm has been proposed to locate its solutions. The
results show that better VM consolidation performance can be
achieved by colocating MapReduce instances together with non-
MapReduce instances in the same set of physical servers.

I. INTRODUCTION

The MapReduce framework [1] popularized by Google is
emerging as one of the most powerful distributed data analysis
tools that enable users to process a huge amount of data within
a relatively short time period. The parallel computing structure
of the MapReduce framework is able to significantly reduce
the total runtime of the data analysis process when a large
number of MapReduce nodes are used. Nowadays, computing
clouds often offer users pay-as-you-go virtual machines (VMs)
leasing schemes that allow users to easily rent out a large
number of VMs with minimal cost. This makes a large scale
computing cloud like Amazon EC2 [2] a perfect candidate
for hosting the MapReduce applications. Several MapReduce
frameworks specifically designed for cloud computing plat-
forms have already been proposed [3] [4] [5].

In a MapReduce enabled computing cloud, a MapReduce
cluster is set up using various VMs hosted in the cloud data
center. We refer to the VMs that host the MapReduce nodes as
the MapReduce instances and the VMs that host other cloud
applications as the non-MapReduce instances. To minimize the
maintenance cost of the cloud data center, VMs’ workload is
consolidated by correctly grouping compatible VMs together
and assigning them to the suitable physical servers. However,
consolidating the VM workload will heat up the competition
for hardware resource among VMs. As pointed out in [6]
and [4], the parallel computing nature of the MapReduce
framework dictates that the performance of the MapReduce

applications depends on the slowest MapReduce instances in
the cloud data center and it is also very sensitive to the I/O
bandwidth1 (e.g., disk I/O, network bandwidth) competition
among other colocated non-MapReduce instances. As a result,
MapReduce instances should be hosted by homogeneous and
isolated VMs that have dedicated I/O bandwidth reserved
separately from other non-MapReduce VMs. However, it may
not be beneficial for the cloud providers to create such isolated
VMs since the reserved I/O bandwidth cannot be shared a-
mong other VMs. A new VM consolidation scheme specifical-
ly designed for MapReduce enabled computing clouds which
consolidates VMs based on the characteristics of MapReduce
framework is required.

In this paper, the VM consolidation problem for MapReduce
enabled computing clouds is investigated. Resource allocation
schemes and service level agreement (SLA) models special-
ly designed for MapReduce instances and non-MapReduce
instances are introduced. The SLA model for MapReduce
instances reserve I/O bandwidth from physical servers and
distribute it evenly among all the MapReduce instances. The
servers’ remaining I/O bandwidth will be shared among the
non-MapReduce instances in a statically multiplexing manner.
Based on the proposed SLA models, the VM consolidation
problem for MapReduce enabled computing clouds is modeled
as an integer nonlinear optimization problem. An efficient
algorithm is proposed to obtain practical VM consolidation
solutions in a prompt manner. The results presented in this
paper demonstrate that significant improvement of the VM
consolidation performance can be achieved by carefully con-
figuring the MapReduce instances and colocating them with
the non-MapReduce instances. The numerical results suggest
that the proposed VM consolidation algorithm can achieve
suboptimal VM consolidation performance with minimal al-
gorithm complexity.

The rest of the paper is organized as follows. Section
II describes the background and the requirements of the
MapReduce framework for a scientific computing cloud. In
Section III, SLA models for MapReduce and non-MapReduce
instances and the VM consolidation framework are introduced.
Section IV presents the numerical results for the proposed

1Although in this paper our discussion focuses on the I/O bandwidth of the
physical servers, the proposed models and algorithm are generic and can be
applied to any type of hardware resource such as CPU and memory resource
in the physical servers.
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solution. Finally, we conclude the paper in Section V.

II. BACKGROUND

Among all the cloud based MapReduce frameworks,
Hadoop [7] stands out distinctively as one of the most wide-
ly deployed MapReduce frameworks. Mainly developed by
Yahoo, Hadoop is quickly adopted by Facebook and eventu-
ally used by Amazon to implement its own version of the
MapReduce enabled computing cloud called ElasticMapRe-
duce (EMR) [8]. In this paper, we focus our discussion on the
MapReduce frameworks similar to Hadoop.

One of the most attractive features of the MapReduce
framework is its capability of processing large amount of data
in a rapid and parallel manner. The MapReduce framework
divides a computational task into multiple mapping and re-
ducing subtasks which are assigned to the mapper nodes and
the reducer nodes in the MapReduce cluster individually. The
MapReduce operation is terminated when all the subtasks are
finished. As a result, the runtime of a MapReduce job greatly
depends on the slowest bottleneck MapReduce instances which
are sometimes referred to as stragglers. Several speculative
execution strategies [6] have been proposed to minimize the
performance impacts of the straggler problem.

In the design of the parallel computing structure of the
MapReduce framework, the MapReduce task scheduler im-
plicitly assumes that MapReduce nodes are homogeneous so
that they receive the same amount of hardware resource. It is
also assumed that roughly the same amount of computational
workload is assigned to the mapper nodes and the reducer
nodes. With these assumptions, the MapReduce subtasks pro-
cessed by different MapReduce instances progress at roughly
the same speed so that all the MapReduce instances finish
their works at roughly the same time [6]. It has been pointed
out that the performance of the MapReduce operation can be
degraded significantly if the above homogeneous assumptions
are violated [6]. These homogeneous assumptions can be
very fragile for public computing clouds in which hardware
resources are shared among colocated VMs. Competition for
I/O bandwidth among VMs will cause performance fluctuation
for the MapReduce instances.

Since the mapper and the reducer nodes in Hadoop use
Hadoop distributed file system (HDFS) for data storage and
exchange, the I/O bandwidth consumption of the MapReduce
instances will remain at a constant level when they are busy.
It is more preferable to reserve I/O bandwidth for these
MapReduce instances in order to fulfill the homogeneous
assumptions. Nowadays hardware virtualization technologies
allow flexible resource allocation among VMs so that a portion
of the hardware resources in a server (e.g., CPU cycles,
memory and I/O bandwidth) can be reserved for different VMs
[9] [10]. It is assumed that each physical servers in the cloud
data center will reserve a portion of its I/O bandwidth for the
MapReduce instances it hosts. The reserved I/O bandwidth is
divided and assigned to these MapReduce instances evenly.
The reserved I/O bandwidth will not be shared among any
VM (not even among the MapReduce instances). The SLA of

the MapReduce instances is considered to be well protected
when all the MapReduce instances receive an I/O bandwidth
reservation larger than a threshold so that the MapReduce job
can be finished within the expected time period. The rest of
the physical servers’ I/O bandwidth will be shared among
the non-MapReduce instances in a statistical multiplexing
manner. The SLA of the non-MapReduce instances is said to
be well protected if the resource outage probability (i.e., the
probability that any non-MapReduce instance fails to obtain
I/O channel because of I/O bandwidth outage) is smaller than
a threshold. Similar SLA model has also been adopted in
previous works [11].

Given the above SLA models for the MapReduce and the
non-MapReduce instances, the VM consolidation problem is
equivalent to the problem of minimizing the total maintenance
cost of the cloud data center while hosting a given number of
non-MapReduce instances and carrying out MapReduce jobs
without violating their corresponding SLA constraints.

III. VM WORKLOAD CONSOLIDATION

A. Resource Allocation for MapReduce Instances

Due to the facts that non-MapReduce VM instances are
heterogeneous and their workload cannot be adjusted by the
cloud data center, a VM consolidation scheme that pure-
ly focuses on non-MapReduce VM instances may suffer
from severe resource wastage. Such wastage happens when
a server’s hardware resource is under-utilized but no extra
non-MapReduce instance can be further assigned to this
server without violating the corresponding SLA constraints.
Compared with non-MapReduce VM instances, MapReduce
instances present several attractive properties like static I/O
bandwidth consumption and fine granular scalability (i.e., the
MapReduce jobs can be divided and carried out by arbitrary
number of MapReduce VM instances.). As a result, a VM con-
solidation scheme which colocates MapReduce instances with
non-MapReduce instances can effectively reduce the resource
waste and hence improve the servers’ hardware utilization rate
and reduce the maintenance cost of the cloud data center.

To consolidate VMs optimally, resource allocation scheme
for both MapReduce instances and non-MapReduce instances
should be thoroughly studied. For a MapReduce job submitted
to the computing cloud, the total I/O bandwidth requirement
can be estimated as the total volume of the data generated
during the job divided by the expected running time of
the job. Let T denote this estimated total I/O bandwidth
requirement. When L number of MapReduce instances are
created to carry out the MapReduce job, each MapReduce
instance is required to have T/L+θ amount of I/O bandwidth
where θ is a constant level of I/O overhead introduced by
the operational system (OS) running in the virtual machines.
We refer to θ as the OS overhead. By changing L, one
can adjust the minimum I/O bandwidth requirement of the
MapReduce instances. Denote Sm to be the set of physical
servers in a cloud data center that are turned on. To simplify
the presentation, let N = |Sm|. For each server i, let ui

represent its available I/O bandwidth. Because MapReduce
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instances are colocated with the non-MapReduce instances, the
I/O bandwidth of server i is partitioned into two parts with a
partition coefficient πi where 0 ≤ πi ≤ 1. πiui is the amount
of I/O bandwidth reserved for MapReduce instances. Denote
mi to be the number of MapReduce instances hosted by
server i. For the homogeneous MapReduce instances hosted by
server i, the πiui amount of reserved I/O bandwidth is evenly
distributed to these mi number of MapReduce instances. Given
the I/O bandwidth partition vector Π = (π1, ..., πN ) and the
number of MapReduce instances L, the resource allocation
problem for the MapReduce instances can be modeled as a
max-min programming problem as follows.

max
mi,i∈Sm

min(
π1u1

m1
, ...,

πNuN

mN
)

s.t.
∑
i∈Sm

mi = L

mi ∈ Z+ ∪ {0}, ∀i ∈ Sm.

Z+ in the above programming problem denotes the positive
integer set. The optimal value returned by the above pro-
gramming problem represents the minimum amount of I/O
bandwidth that can be guaranteed for all the MapReduce
instances. We refer to this optimal value as the effective I/O
bandwidth. As a result, the SLA constraint for the MapReduce
instances can be mathematically modeled as the condition that
the effective I/O bandwidth must be larger than T/L+θ. In the
VM consolidation process, it is impractical to rely on solving
the above nonlinear integer programming problem to obtain
the effective I/O bandwidth. Defining the SLA constraint using
a tight lower bound of the effective I/O bandwidth which can
be obtained within O(1) complexity can greatly simplify the
later VM consolidation process. Denote r∗ to be the effective
I/O bandwidth, the following lemma and theorem provide such
a bound.

Lemma 1. There exists an optimal solution vector M∗ =
(m∗

1, ...,m
∗
N ) of the MapReduce instances resource allocation

problem so that r∗ ≥ πiui −m∗
i r

∗, ∀i ∈ Sm.

Proof: Let M ′ = (m′
1, ...,m

′
N ) be one of the optimal so-

lution vectors of the MapReduce instances resource allocation
problem. Define S1 = {∀i ∈ Sm|πiui −m′

ir
∗ = 0} and S2 =

{∀i ∈ Sm|πiui−m′
ir

∗ ≥ r∗}. Consider the modified solution
vectors (m′

1, ...,m
′
i−1, ...,m′

j+1, ...,m′
N ), ∀i ∈ S1, ∀j ∈ S2.

Because r∗ is the optimal value, the corresponding objective
values achieved by these modified solution vectors are always
smaller or equal to r∗. From the definition of S2, it is
easy to show that (πjuj)/(m

′
j + 1) ≥ r∗, ∀j ∈ S2. It

shows that (πjuj)/(m
′
j + 1) is not the minimum among

other (πiui)/(m
′
i), ∀i ∈ Sm. Such modification for j ∈

S2 does not alter the objective value achieved. Meanwhile,
(πiui)/(m

′
i − 1) > (πiui)/(m

′
i) ≥ r∗, ∀i ∈ S1. It shows that

the objective value achieved by the modified solution vectors
remains r∗ and the modified solution vectors are again optimal
solution vectors. By repeating this solution vector modification
procedure, one can remove elements in S2 one by one and

create an optimal solution vector M∗ = (m∗
1, ...,m

∗
N ) so that

r∗ ≥ πiui −m∗
i r

∗, ∀i ∈ Sm.

Theorem 2. The effective I/O bandwidth is lower bounded by
( L
L+N )(

∑
i∈Sm

πiui

L ).

Proof: Let M∗ = (m∗
1, ...,m

∗
N ) denote the optimal

solution vector in Lemma 1 with r∗ ≥ πiui −m∗
i r

∗, ∀i ∈ Sm

and
∑

i∈Sm
m∗

i = L. It can be shown that

∑
i∈Sm

πiui

L
− r∗ =

∑
i∈Sm

πiui

L
− r∗L

L

=

∑
i∈Sm

(πiui −m∗
i r

∗)

L

≤ Nr∗

L
.

The above inequality produces a lower bound of r∗ to be
( L
L+N )(

∑
i∈Sm

πiui

L ).
Based on Theorem 2, a simplified SLA constraint for

MapReduce instances can be proposed as

(
L

L+N
)(

∑
i∈Sm

πiui

L
) ≥ T

L
+ θ. (1)

The above SLA constraint implicitly represents a physical con-
dition that the total I/O bandwidth required by all the MapRe-
duce instances (i.e., T ) must be less than the total amount
of I/O bandwidth reserved for all the MapReduce instance
(i.e.,

∑
i∈Sm

πiui) deflated by a coefficient of L/(L + N)
minus Lθ amount of OS overhead consumed by the L number
of MapReduce instances. The deflation can be explained by
the quantization error between the aggregated I/O bandwidth
requirement of the MapReduce instances and the amount of
I/O bandwidth reserved by the host servers. Since MapReduce
instance workload is added to each physical server in a discrete
manner, it is unavoidable that a small portion of the servers’
I/O bandwidth cannot be utilized because no MapReduce
instance has an I/O bandwidth requirement small enough to fit
in the gap. The altered SLA constraint in 1 also represents the
relationship between the aggregated I/O bandwidth required
by the MapReduce instances and the I/O bandwidth reserved
by the servers as a function of L. When L is large, VMs’
OS overhead dominates and hardware resource utilization rate
becomes low. When L becomes smaller, each MapReduce
instance requires a larger amount of I/O bandwidth which
makes the quantization error larger. The hardware resource
utilization rate becomes low again. To balance the tradeoff
between the OS overhead and the quantization error, the
number of MapReduce instances created should be optimally
determined so that the MapReduce instances can be maximally
consolidated (i.e., achieving the highest hardware resource
utilization rate).

B. Resource Multiplexing among Non-MapReduce Instances

Since the I/O bandwidth consumption behavior of the
heterogeneous non-MapReduce instances is not static or syn-
chronized, consolidation of non-MapReduce instances can
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be achieved by allowing the non-MapReduce instances to
consume I/O bandwidth in a statistical multiplexing manner. It
is assumed that the heterogeneous non-MapReduce instances
hosted by server i consume I/O bandwidth from (1 − πi)ui

amount of I/O bandwidth according to arbitrary independent
random distributions. Since nowadays the virtualization plat-
forms in the computing clouds limit the maximum amount of
hardware resource that can be accessed by each VM [9] [10],
it can be assumed that the random I/O bandwidth consumption
of the non-MapReduce instances is uniformly upper bounded
and fulfills the Lindeberg’s condition [12]. As a result, when a
physical server is powerful and able to host a reasonably large
number of non-MapReduce instances, the random distribution
of the aggregated I/O bandwidth consumption from all the
non-MapReduce instances hosted by this server approaches to
a Gaussian distribution according to the central limit theorem.
The experiments conducted in [13] demonstrate that a reason-
ably large number of VMs can be hosted simultaneously by a
moderate server without severe performance impacts.

Because non-MapReduce instances share I/O bandwidth in
a statistical multiplexing manner, the SLA constraint of the
non-MapReduce instances requires that the probability of the
non-MapReduce instances failing to acquire any I/O channel
must be smaller than a threshold. We refer to this probability
as the resource outage probability and we refer to the threshold
as the maximum resource outage probability. The resource
outage probability can be modeled as the tail probability of
a standard normal distribution. Denote Zi to be the set of
non-MapReduce instances that physical server i hosts. Let µj

and σ2
j be the mean and the corresponding variance of the

I/O bandwidth consumption of non-MapReduce instance j.
Let ∆ be the maximum resource outage probability. The non-
MapReduce instance SLA constraint for server i ∈ Sm can be
modeled as the following Q-function inequality.

Q(
(1− πi)ui −

∑
j∈Zi

µj√∑
j∈Zi

σ2
j

) ≤ ∆. (2)

The above SLA constraint model becomes less accurate when
the physical servers are not powerful enough to host enough
number of non-MapReduce instances. In this case, a non-
parametric kernel density estimation model that estimates the
resource outage probability based on the past history data of
I/O bandwidth consumption is more preferable. However, a
non-parametric kernel density estimation model will signifi-
cantly complicate the problem and extra workload will be in-
troduced to all the non-MapReduce instances since each of the
instances needs to report its past I/O bandwidth consumption
history to the kernel density estimator.

C. VM Consolidation

The VM consolidation process optimally consolidates
MapReduce and non-MapReduce VM instances into a group
of physical servers with minimum maintenance cost given
the condition that the SLA constraints are not violated. The
process mainly consists of three major tasks:

1) selecting appropriated physical servers
2) grouping and assigning non-MapReduce instances
3) determining the appropriated number of MapReduce

instances and assigning them to the physical servers.

To minimize the maintenance cost of the cloud data center,
servers that have high performance and low cost are pre-
ferred. To protect the SLA constraints, VM instances must
be grouped compactly so that the aggregated I/O bandwidth
consumption does not exceed the total I/O bandwidth provid-
ed by the physical servers. Since non-MapReduce instances
are heterogeneous and consume I/O bandwidth in a statisti-
cal multiplexing manner, grouping non-MapReduce instances
according to the concordance of the resource consumption
behavior can effectively reduce the aggregated I/O bandwidth
consumption. However, homogeneous MapReduce instances
consume I/O bandwidth in a static manner. Grouping the
MapReduce instances according to the concordance of the
resource consumption behavior does not affect the aggregated
I/O bandwidth consumption at any time. The consolidation
process for the MapReduce instances is achieved by fine
tuning the number of MapReduce instances created in order
to find a good balance between the OS overhead (i.e., θ) and
the quantization error so that the aggregated I/O bandwidth
required is minimized.

Denote Z to be the set that contains all the non-MapReduce
instances. Define S to be the server set which includes all the
physical servers in the resource pool of the cloud data center.
Denote ci to be the maintenance cost of server i. Let di be
the binary server selection variable where di = 1 indicates
that physical server i is turned on to host VM instances. Note
that the number of server used to host VMs can be calculated
as

∑
i∈S di. Let eij be the binary VM assignment variable

where eij = 1 represents that non-MapReduce instance j is
hosted by server i. By modifying the SLA constraints using
the binary variables, the VM consolidation problem can be
modeled as

min
L,πi,di,eij ,∀i,j

∑
i∈S

cidi

s.t. (
L

L+
∑

i∈S di
)(

∑
i∈S πiuidi

L
) ≥ T

L
+ θ

Q(
(1− πi)uidi −

∑
j∈Z µjeij√∑

j∈Z σ2
j eij

) ≤ ∆,∀i ∈ S

di ∈ {0, 1},∀i ∈ S
eij ∈ {0, 1},∀i ∈ S, ∀j ∈ Z∑

i∈S
eij = 1, ∀j ∈ Z

0 ≤ πi ≤ 1, ∀i ∈ S.

The above mixed Integer nonlinear programming problem
is among the class of theoretically difficult problems (NP-
complete). Obtaining the exact optimal solutions is not prac-
tical for a moderate size problem. Alternatively, heuristic
algorithm that can achieve suboptimal performance in a short
time is more preferable.
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By analyzing the optimal solutions’ structure, one can
learn that the servers selected in the optimal solution mainly
consist of a group of servers with low marginal cost (i.e.,
maintenance cost divided by the available I/O bandwidth,
ci/ui, ∀i ∈ S). Occasionally, a small number of servers
with low I/O bandwidth and low maintenance cost are also
selected. This happens when the majority of the VMs have
already been maximally consolidated into servers with low
marginal cost and the remanding VMs can fit into servers
with low I/O bandwidth. Although utilizing servers with low
I/O bandwidth and low maintenance cost can reduce the
total maintenance cost of the cloud data center marginally, it
also limits the possibility of further consolidating more VMs
without switching to a new set of servers. As a result, an easier
and more flexible server selection strategy focuses on selecting
those servers with low marginal cost only.

Grouping and assigning VM instances depend on the cor-
responding SLA constraints of the VMs. For non-MapReduce
instances hosted by server i, the corresponding SLA constraint
can be rewritten as

(1− πi)uidi ≥
∑

j∈Z
µjeij +Q−1(∆)

√∑
j∈Z

eijσ2
j (3)

where Q−1(x) is the inverse Q-function. By summating up
the above inequality for all the servers in S, a relationship
between the aggregated I/O bandwidth requirement of the non-
MapReduce instances and the VMs’ I/O bandwidth consump-
tion behavior can be expressed as follows.∑

i∈S

(1− πi)uidi ≥

∑
i∈S

∑
j∈Z

µjeij +Q−1(∆)
∑
i∈S

√∑
j∈Z

σ2
j eij . (4)

The aggregated I/O bandwidth required by all the non-
MapReduce instances can be minimized if the right hand side
of (4) is minimized. Note that

∑
i∈S

∑
j∈Z µjeij =

∑
j∈Z µj

because of the
∑

i∈S eij = 1 constraint in the VM con-

solidation problem. Also note that
∑

i∈S

√∑
j∈Z σ2

j eij is
simply a sum of l2-norms. Since the summation of l2-norms
is a Schur-convex function [14], the right hand side of (4) is
minimized when the non-MapReduce instances are grouped
so that

∑
j∈Z σ2

j eij approaches to the same level for all the
server i ∈ Sm.

For the MapReduce instances, the corresponding SLA con-
straint can be rewritten as∑

i∈S

πiuidi ≥
L+

∑
i∈S di

L
T + (L+

∑
i∈S

di)θ. (5)

Given the server selection variables {di,∀i ∈ S}, the right
hand side of the above inequality represents the minimum
aggregated I/O bandwidth required by the L number of
MapReduce instances. To consolidate the workload of the
MapReduce instances, L is carefully calculated so that the
right hand side of the above inequality is minimized. The
optimal value of L can be easily located using a simply

numerical search algorithm in one dimension (e.g., linear
search).

Based on the above observations, we propose an efficient
VM consolidation algorithm as follows. First, the algorithm
sorts the servers in S according to their marginal cost in
an ascending order. The non-MapReduce instances in Z are
also sorted according to their variance in an ascending order.
Without loss of generality, it is assumed that i < j indicates
σ2
i ≤ σ2

j and ci/ui ≤ cj/uj . In each iteration of the VM
consolidation algorithm, the first server in the current S is
selected. The VM consolidation algorithm then repeatedly
assigns a pair of non-MapReduce instances that are selected
from the head and the tail of current Z (i.e., the non-
MapReduce instances in the current Z that have the largest
and the smallest variance values) to the selected server until
the server cannot afford to host any more non-MapReduce
instances. Whenever a pair of non-MapReduce instances are
assigned to the server, they are removed from Z . If the selected
server does not have enough I/O bandwidth to support both
non-MapReduce instances in the selected pair, only the non-
MapReduce instance with larger variance is assigned to the
server. If no more non-MapReduce instance can be hosted by
the selected server, the server will be removed from S and
a new server with the minimum marginal cost in the current
S will be selected. Note that the remaining I/O bandwidth
of the removed server can still be used to host MapReduce
instances. The above process is able to effectively even out
the value of

∑
j∈Z σ2

j eij among all the active servers so
that the aggregated I/O bandwidth consumption of the non-
MapReduce instances is minimized. Recall that Zi is the set
of non-MapReduce instances that physical server i hosts and
j ∈ Zi if and only if eij = 1. Also recall that Sm is the
server set that contains all the servers used to host VMs. After
all the non-MapReduce instances are successfully assigned to
their corresponding servers, Sm contains all the servers that
are used to host the non-MapReduce instances. The residual
bandwidth for server i ∈ Sm is calculated as

vi = ui −
∑

j∈Zi

µj +Q−1(∆)

√∑
j∈Zi

σ2
j . (6)

At this point, a one dimensional linear search algorithm is
carried out to determine the integer L value that minimize

L+ |Sm|
L

T + (L+ |Sm|)θ. (7)

If the minimum value of (7) is larger than
∑

i∈Sm
vi, an empty

server j with lowest marginal cost in the current S is added
to Sm. The corresponding residual bandwidth of the newly
added server is set to uj . The algorithm repeatedly adds new
servers into Sm until the corresponding minimum value of (7)
is smaller than

∑
i∈Sm

vi. Denote L∗ to be the integer value
that minimizes (7) when the minimum value of (7) is smaller
than

∑
i∈Sm

vi for the first time. The minimum I/O bandwidth
that each MapReduce instance require can be calculated as
T/L∗ + θ. As a result, each server i in Sm will be assigned
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with
⌊ vi
T/L∗ + θ

⌋ (8)

number of MapReduce instances.
The proposed VM consolidation algorithm can be described

using the following pseudocode.

Algorithm 1 VM Consolidation Algorithm
Sort servers according to ci/ui in an ascending order
Sort VMs in according to σ2

j in an ascending order
Select the first server with smallest ci/ui, index it to be i
while |Z| ̸= 0 do

Calculate k = argmax(g :
∑g

j=1(µj + µ|Z|+1−j) +

Q−1(∆)(
∑g

j=1(σ
2
j + σ2

|Z|+1−j))
1
2 ≤ ui)

if
∑k+1

j=1 µj +Q−1(∆)(
∑k+1

j=1 σ
2
j )

1
2 +

∑|Z|
j=|Z|+1−k µj +

Q−1(∆)(
∑|Z|

j=|Z|+1−k σ
2
j )

1
2 ≤ ui) then

Insert the first k + 1 and the last k non-MapReduce
instances in the current Z to Zi

Remove these instances from Z
else

Insert the first and the last k non-MapReduce instances
in the current Z to Zi

Remove these instances from Z
end if
Insert server i into Sm

Remove server i from S
Select the first server in the current S, index it as i again

end while
Update vi,∀i ∈ Sm according to (6)
Search for L that minimizes (7)
while The minimum value of (7) is larger than

∑
i∈Sm

vi
do

Insert the first server in S into Sm, index it as i
Set vi = ui for the newly added server
Search for L that minimizes (7) again

end while
Set L∗ to be the last L that minimizes (7)
Assign ⌊ vi

T/L∗+θ ⌋ number of MapReduce instances to server
i ∈ Sm

IV. NUMERICAL ANALYSIS

In the following experiments, the available I/O bandwidth
for the heterogeneous physical servers and their corresponding
maintenance cost are randomly selected from a uniform dis-
tribution over [50, 250]. The heterogeneous non-MapReduce
instances are assigned with µj , ∀j ∈ Z randomly selected
from a uniform distribution over [0, 30] and corresponding
σ2
j , ∀j ∈ Z randomly selected from a uniform distribution

over [0, 10]. ∆ is set to 0.1 and θ is set to 2.
In the first experiment, the VM consolidation performance

of the proposed algorithm is examined. To provide a perfor-
mance benchmark, the VM consolidation problem presented in
Section III-C is solved optimally using a commercial problem
solver named Lingo. Due to Lingo’s limited capability to solve

large scale integer nonlinear programming problems, 15 trials
of small scale problems that consist of 10 physical servers, 50
non-MapReduce instances are examined. It is assumed that a
MapReduce job is submitted to the computing cloud and it
requires in total 150 unit of I/O bandwidth (i.e., T = 150).
Figure 1 shows the relative increase of the total maintenance
cost obtained by our proposed algorithm compared with the
total maintenance cost achieved by Lingo’s solutions. On
average, the total maintenance cost of the servers obtained
by Lingo is 1.42% smaller than that obtained by the proposed
VM consolidation algorithm. The results demonstrate that the
proposed algorithm can achieve a VM consolidation perfor-
mance very close to the optimal cases.
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Fig. 1. Relative increase of the total maintenance cost

To demonstrate how colocating MapReduce instances with
non-MapReduce instances together improves the VM consoli-
dation performance, two naive VM consolidation schemes are
implemented. In both naive schemes, MapReduce instances
and non-MapReduce instances are hosted separately using
different servers. Moreover, non-MapReduce instances are
randomly grouped together. The first scheme allocates VM
instances to servers with high I/O bandwidth in order to
minimize the total number of physical servers used. We refer to
this scheme as the resource-first scheme. The second scheme
assigns VM instances to low marginal cost servers to reduce
the total maintenance cost. We refer to this scheme as the
marginal-cost-first scheme. To illustrate that the scale of the
computing clouds also has great impacts to the VM con-
solidation performance, several experiments with computing
clouds that have different scale are performed. To simply the
presentation, a scale coefficient η is introduced to represent
that there are in total 30η physical servers and 100η non-
MapReduce instances in the computing clouds. It is assumed
that the MapReduce job requires in total 500η amount of I/O
bandwidth. The value of η is varied in the range of [1, 10]. For
each η value, the experiment is repeated for 1000 times and
the average total maintenance cost of the cloud data center is
reported. Figure 2 and Figure 3 show the relative decrease of
the total maintenance cost obtained by the proposed algorithm
compared with the total maintenance cost achieved by the
naive schemes. On average 29% of the total maintenance
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cost can be saved using our proposed algorithm compared
with the resource-first scheme and on average 7% of the total
maintenance cost can be saved compared with the marginal-
cost-first scheme. The noticeable VM consolidation perfor-
mance improvement is expected because the proposed VM
consolidation algorithm colocates the MapReduce instances
with the non-MapReduce instances. The MapReduce instances
work as gap fillers so that any improper consolidation decision
for non-MapReduce instances (e.g., imbalanced VMs grouping
and assignment) can be mended by correctly configuring and
consolidating the MapReduce instances. Note that in both
cases, the percentage of the improvement drops when the scale
of the computing clouds becomes larger. This result can be
explained by the fact that grouping a large number of VM
instances randomly can already achieve acceptable resource
multiplexing gain when the scale of the computing cloud is
large.
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Fig. 2. Relative performance improvement compared to the resource-first
scheme
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Fig. 3. Relative performance improvement compared to the marginal-cost-
first scheme

The next experiment quantitatively examines the MapRe-
duce instances’ ability of improving the VM consolidation per-
formance. It is assumed that 1000 non-MapReduce instances
will be hosted by a cloud data center that consists of 300
physical servers with heterogeneous I/O bandwidth. The OS
overhead value, θ, is varied in the range of [1, 10]. Meanwhile

the total I/O bandwidth required by the MapReduce job, T , is
varied from 5000 to 500 accordingly so that the total amount
of I/O bandwidth consumed by all the MapReduce instances
remains in a constant level. The experiments also include a
non-colocated VM consolidation scheme. The non-colocated
VM consolidation scheme follows the same VM consolidation
procedure as presented in Algorithm 1 except that the MapRe-
duce instances and the non-MapReduce instances are hosted
by different servers (e.g., new empty servers are selected to
host MapReduce instances.). Figure 4 shows the average total
maintenance cost achieved for different θ values. As indicated
in the figure, the total maintenance cost remains at a constant
level when the MapReduce instances are separately hosted.
However, a noticeable reduction of the total maintenance cost
can be obtained when colocation of MapReduce instances
is allowed. This result proves that colocating MapReduce
instances can be very effective in improving the utilization
of the I/O bandwidth for the physical servers in the cloud
data center. It can also be observed that when θ increases,
colocating MapReduce instances is less effective in reducing
the total maintenance cost for the cloud data center. It is
mainly because when the OS overhead increases, the proposed
algorithm tends to reduce the number of MapReduce instances
created (i.e., L becomes smaller in the process of minimizing
(7)). In this case, each MapReduce instance requires a higher
amount of I/O bandwidth and becomes more difficulty to be
consolidated because of the larger quantization error.
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Fig. 4. Total maintenance cost of the cloud data center for different θ values

V. CONCLUSION AND FUTURE WORKS

In this paper, the VM consolidation problem for MapReduce
enabled computing clouds is investigated. The VM consolida-
tion problem tries to assign virtual machines including both
MapReduce instances and non-MapReduce instances generat-
ed by other cloud applications to the correct set of physical
servers in the cloud data center in order to minimize the cloud
data center maintenance cost. The VM consolidation problem
is modeled as an integer nonlinear optimization problem. An
efficient algorithm is proposed to obtain the corresponding
solutions. The numerical results show that the VM assignment
solutions obtained by the proposed algorithm can efficiently
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reduce the total maintenance cost of the cloud data center. The
solutions obtained by the proposed algorithm also suggest that
allowing MapReduce instances and non-MapReduce instances
to be collocated on the same physical servers is economically
beneficial to the cloud providers.

It is of our interest to apply the proposed models and
algorithm to a scientific computing cloud in order to perform
empirical studies that examine how well the proposed algo-
rithm can consolidate VM workload in reality. In the future,
we plan to construct a small scale private computing cloud
that implements our proposed VM consolidation algorithm.
Extensive empirical experiments will be carried out with
different system parameters.
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