
Energy efficient mobile M2M communications

Andrius Aucinas and Jon Crowcroft
University of Cambridge

Cambridge, UK
{Firstname.Lastname}@cl.cam.ac.uk

Pan Hui
Deutsche Telekom Labs

Berlin, Germany
pan.hui@telekom.de

ABSTRACT
Energy efficient communications are extremely important
in challenging environments, where access to mains power
is difficult and sporadic. We propose a new approach of
Machine-to-Machine (M2M) communication: augmenting the
traditional model with cloud computing capabilities in the
communication network to save energy and improve system
availability. We propose that clones of the physical machines
should be put on the network to create the Clone-to-Clone
(C2C) communication and computation model. C2C has the
potential to reduce traffic between end-points, reduce de-
vice power consumption and improve network performance.
In the paper we present the architecture, focusing on per-
formance improvement of a highly heterogeneous network,
analyse the benefits and discuss potential drawbacks.

1. INTRODUCTION
A challenging environment is not necessarily distant or

without cellular network coverage. It might simply mean
that access to mains power is difficult and sporadic, requiring
to save power. It could also mean that the environment is
highly dynamic, with thousands of nodes potentially joining
or leaving a network at any time. Or we might simply care
about better node availability when connectivity is poor.

The current trends of computing are becoming inherently
mobile - portable computers, smartphones, sensor and ve-
hicular networks, etc. Furthermore, increasingly more of the
systems are backed by large datacenters, such as Amazon’s
EC2, Google services or even Amazon’s Silk browser, where
browser’s operations are offloaded to the cloud. LTE net-
works enable real-time machine-to-machine communication
networks to be created [9], making cellular network based
solutions more attractive.

To keep going in this direction, we need to find solutions
to the limitations inherent in large-scale mobile computing:
energy consumption, very limited battery power, relatively
little computing resources and the load of the existing com-
munication networks. Bi-directional communication is of-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ExtremeCom ’12, March 10-14, 2012, Zürich, Switzerland.
Copyright 2012 ACM 978-1-4503-1264-6/12/03 ...$10.00.

ten made difficult by NATs and firewalls and information
exchange needs to be done via central, globally accessible
servers.

A straightforward example of a system we are concerned
with is multiple mobile sensor systems that happen to be
co-located and hence sensing and processing the same data
(e.g. detecting speakers in the same room) while they could
instead coordinate their efforts: total amount of data trans-
mitted is smaller if the nodes are aware that there is some-
body else already doing what they need and total amount of
computation is reduced by not repeating redundant actions,
reducing power consumption.

We augment the communication network with cloud com-
puting capabilities to place virtual clones of the machines
within the network, forming the Clone-to-Clone (C2C) model.
In the C2C method communication between machines is
replaced with communication between their clones within
the network, wherever possible. It is achieved by using the
clones to do all functions that do not require immediate in-
teraction with the physical world as well as filtering and
aggregating. The model uses computation offloading from
the physical devices to augment their capabilities and reduce
the amount of traffic between the network and the central
data analysis nodes.

There are essentially only 3 basic ways of doing offload-
ing. Moving all or most of an application to the cloud and
accessing it using a thin client requires little CPU power on
the device, but needs a lot of network resources. Dimor-
phic computing [5] is one such system, which dynamically
switches between thin and thick client modes.

Moving most of an application to the mobile device and
only synchronising occasionally, e.g. when the device is con-
nected to mains power, is extremely light on the network,
but has little effect on reducing CPU or storage require-
ments of a mobile device. The simplest example is the
iPhone synchronising music library when connected to a
computer or downloading large applications only when con-
nected to a WiFi network. Another example is the Para-
noid Android [10] smartphone vulnerability protection sys-
tem, which records and replays system processes on a device
clone. The synchronisation can be extremely lose, only syn-
chronising when the device is recharging.

The third way, the one that has recently received a lot of
interest, is distributing the application into local and remote
parts in a smart way, so that offloading decision is optimally
made based on network characteristics, power and energy
consumption. Example of such systems include MAUI [2],
which enables energy-aware offload of mobile code to in-

frastructure by comparing energy consumed by transmitting
data and executing code locally, CloneCloud [1], performing
thread migration between the device and it’s clone. The cost
in this case is more complexity in the management of these
devices. Furthermore, due to relatively high energy cost of
sending data, these approaches are useful for CPU-bound
tasks and has limited benefits for data-intensive ones.

C2C can do all of these: it dynamically decides when it
is worth to offload computation to the clones in the cloud,
but has most of the application running in the cloud and
works by synchronising computational state or data during
execution as needed. However, to make C2C more suitable
for data-intensive tasks than its predecessors, most of the
data is contained in the clones and transmission to physical
devices is minimised. It happens through only transmitting
data that is necessary for the physical device at that time
and sending higher-level information rather than raw data
that has been processed within the clone network. In some
sense, it could be viewed as reverse offloading: most oper-
ations happen in the clones and state is only synchronised
with the mobile devices occasionally, as necessary.

Overlaying all communications onto the cloud would be
a big performance hit when direct communication is possi-
ble between colocated devices, for example through ad-hoc
WiFi or ZigBee networks. However, in many cases such close
proximity communication is not possible, requiring complex
solutions to circumvent NATs and firewalls. In the C2C net-
work each node has a corresponding accessible virtual node,
which then is able to communicate with all others directly,
avoiding the problems of scaling a central server or requiring
to trust an entity to store all network data. In an extreme
case, for very low latency networking, clones of devices could
be located on each other, rather than the cloud, so that most
communication between devices never uses a radio interface.
It is, however, CPU and storage intensive and energy sav-
ing provided would be very limited. Therefore, we do not
analyse it further.

Importantly, the node owner gets to choose what cloud
computing platform it uses to run its clones on. It means
that the owner can maximize his own utility for his crite-
ria, whether it is speed, reliability, cost or anything else.
Running clones in the communication network allows using
dynamic resource scaling when performing computations on
behalf of the physical machines, virtually unlimited energy
supply and significantly more efficient connectivity among
the clones while still keeping all entities logically separate
and ensuring data protection.

In this paper we take a deeper look at a few applications
of a C2C network and present it’s architecture, focusing on
the challenging parts of making it universal for different plat-
forms and automatic management of the network. We eval-
uate it using randomized traffic patterns, which shows the
potential for more efficient energy consumption, especially
when more application-level information can be known.

2. MOTIVATION
The core idea is depicted in Fig. 1, illustrating the main

difference between a traditional cellular M2M network and
the C2C network, where clones of devices reside within the
communication network.

To justify the increased complexity of the communication
network and the additional cost of computational resources
it is necessary to first understand what benefits the system

brings. Since our primary focus is on mobile devices, we also
analyze the benefits most relevant to the system. Goals of
our system include:
• Optimized wireless device communications - C2C is capa-

ble of changing the communication model from many-to-
many to one-to-one from the device point of view. It re-
places the radio many-to-many communication with com-
munication between clones.

• Improved battery life of mobile devices - through reducing
amount of communication between physical devices and
the amount of computing they do.

• Increased computational power of participating devices -
through offloading some of the computations to the net-
work.

• Simpler overall system management - through abstracting
away from the physical platforms via virtualization.

• Improved privacy control - through decentralized data
storage and management.

• Improved system reliability - through fault tolerance within
the C2C network.

To demonstrate in what cases and how it is possible to
achieve the above goals, we present two scenarios in detail.
We believe that these scenarios are representative of the use
cases of M2M networks and therefore shows the potential of
our C2C architecture well.

Intelligent Transport System . The scenario includes
real-time traffic management and possibly vehicle collision
detection and avoidance. It is based on devices equipped
with sensors embedded in cars and surrounding environment
and used in traffic light scheduling or automatic driving
systems. The M2M devices (cars, highway cameras, traf-
fic lights, inductive-loop detectors, etc.) communicate with
each other to track traffic information. The receiving de-
vices then take actions based on the collected data. For
example, collision avoidance system can take control of the
car to activate brakes, change driving direction, alert passen-
gers, etc. Intelligent traffic lights, on the other hand, could
adjust their cycles based on traffic flows in the entire city
or switch to green light for approaching emergency vehicles
or for individual cars when there are no other cars (e.g. in
suburbs at night) to help save fuel.

Let’s take the traffic light scheduling as a sub-system and
understand it’s requirements and characteristics. Traffic
light scheduling is important both for congestion control
and for improving vehicle fuel efficiency [4]. Making local
decisions based only on an estimated number of cars going
in a particular direction might lead to sub-optimal schedule
due to possible congestion further on a route. Furthermore,
adjusting schedule for different types of approaching traf-
fic (higher priority for public transport and top priority for
emergency vehicles) requires vehicle identification using ra-
dio communication. Communication between cars and traf-
fic light schedulers as well as other cars can also help drivers
and in-car systems1 to be more fuel-efficient by helping to
predict traffic flow in the near future.

The important properties of this scenario are:
• Bi-directional communication is needed between various

entities to get updates and push their own information.

• Information from a single node has little meaning without
others - nodes would therefore collect and process relevant

1For example, BMW’s Start-Stop function, which stops en-
gine when it’s idle

Figure 1: Difference between a cellular M2M and a C2C network

data in the cloud, disseminating the results to listeners
from there.

• There is a large volume of communications. C2C helps
to reduce them through the overlay network as well as by
processing as much as possible within the network.

• Data obtained from vehicles (position, destination, driv-
ing habits) is important for the overall performance, but
also highly privacy-sensitive - only a small, context-related
subset of it would be exchanged at any point.

• Traffic load is highly dynamic throughout the day, making
dynamic, commodity-like priced resource scaling a desir-
able feature.

• Environment is highly heterogeneous, with devices rang-
ing from embedded controllers in traffic lights to almost
full-fledged in-car computers.

• There is a large number of institutions and individuals
managing a number of nodes in the network, willing to
have control over them and the data collected. It makes
C2C a much more feasible alternative to the centralized
services.

The C2C platform therefore provides scalable computa-
tion and communication resources, serves as a set of private
data containers for privacy-sensitive data and permits low-
latency communication between nodes using different traffic
priorities. Although M2M communications over a cellular
network increase the network’s load, handling large propor-
tion of data within the C2C network reduces the effect. In-
tegrating C2C closely with the cellular network by putting
computing resources close to end-users [12] could allow to
further mediate transmissions according to local network
loads.

It may seem like the scenario needs real-time network and
overlaying communications to the cloud unnecessarily adds
latency. Nevertheless, direct radio communication even over
moderately large distance is impractical. It requires multi-
hop transmission or a fixed infrastructure, adding to the
overall latency anyway. Furthermore, as we show later, com-
munication latency within the cloud can be made very low
compared to the other components. Although latency could
be reduced by placing computing resources close to users,
extremely low latency is not always necessary. Assuming
that a car moves on average at 10km/h in heavy traffic (opti-
mistic) and that we want an update from it every 10 meters,
we need a signal every 3.6 seconds. Even if we consider a car
moving at 50km/h, it would probably need to signal a traf-

fic light from a 100 meters distance (unlikely there are other
cars in such fast urban traffic), leaving 7.2 seconds before
it reaches it. Both of these are easily achievable in today’s
Internet, hence the extra latency does not cause problems.

This scenario illustrates usefulness of a C2C network very
well, as it is easy to change it to e.g. Smart Home, do-
ing tasks such as helping with housekeeping (turning on a
robotic vacuum cleaner when there is nobody in the house,
etc.) or aiding disabled people - detecting if a person has
fallen down and informing a care institution or taking snap-
shots of the daily life of a person suffering from Alzheimer’s
for later review as well as tracking his location in case she
gets lost. There is always a large number of sensors and ac-
tuators tightly interconnected. Mobile phones or notebooks
can further integrate with the environment by using it as
a storage vault for daily events, or connecting to the home
entertainment system.

Mobile Mutiplayer Online games are highly interac-
tive and require crisp response from both application server
and other players, otherwise leading to glitches and frus-
tration. A broad genre of such games is MMORPG2. We
will take virtual bike race as an example - race using real
bicycles, where the opponents are possibly on different loca-
tions and race along corresponding tracks and sensor data
is exchanged to track each other’s progress.

Characteristics of this scenario include:

• Very low communication latency between players.

• Possibly large number of players, requiring scalable pro-
cessing and communication.

• Limited battery power of mobile devices - sensor data pro-
cessing, graphics and communications drain the battery.

• Traffic pattern is periodic and relatively high frequency,
depending on the environment, number of players and
their interaction patterns.

• It is important not to miss users’ actions and to recover
from glitches quickly to avoid state inconsistencies.

• Privacy can be important - in a pseudonym-based game it
might be less crucial, but e.g. disclosing physical location
of users causes more problems.

Latency can be an issue in this case and we are currently
looking into ways of reducing it. Nevertheless, users in geo-
graphically distant locations will not feel a significant differ-
ence because the C2C network itself adds very little latency,

2Massively multiplayer online role-playing games

Figure 2: The C2C architecture - physical device, its clone
and the cloud management entities

as we show later.
Like above, when there is a large number of simultaneous

players, communication scalability issues arise: sending ev-
ery GPS update to each of the other participants (tens or
hundreds for large games) needs a lot of bandwidth and low
delays between each participant. With C2C, instead of a
participant sending the data to all other nodes, they would
just send it to the virtual clone which would overlay it onto
the virtual track and send it to other virtual nodes, mak-
ing the radio transmission more energy-efficient and updates
faster to propagate to all nodes.

Many games have another important characteristic: play-
ers’ actions require computationally expensive computations.
It includes complex AI engines (non-human players), com-
puter graphics, physics engines, changing world state, etc.
Therefore, it may be beneficial to use C2C computational
capacity to do some of these operations to vastly improve
user experience.

3. SYSTEM ARCHITECTURE
To accomplish the outlined goals it is necessary to cre-

ate an efficient architecture for the C2C model. Below we
present the core components of such network, making clear
how C2C approach is superior to traditional M2M networks.
The architecture is depicted in Fig. 2, which we describe in
this section: we discuss where the C2C network is actually
located, how we deal with heterogeneity of general M2M
networks and how we improve their efficiency.

3.1 Building network
Network is crucial for an M2M application and its perfor-

mance can often be the limiting factor of what is achievable.
Communication network in C2C has two parts: the cellular
data network and the inter-cloud network. The former is
responsible for communication between the physical devices
and the C2C cloud and the latter - for providing the direct
clone-to-clone communication.

The main mechanism of improving mobile devices’ bat-
tery life and improving network’s scalability is through vir-
tualizing them on a cloud computing facility. Since we rely
on improving this part of the M2M communication path, it
is crucial to make the cloud network efficient - latency has

Data path Latency (µs) Bandwidth
(Mbps)

Inter Machine 101 941
Intra Machine (Xen Net-
front/Netback)

140 2656

Intra Machine (XenLoop) 28 4143
Inter Device (4G)3 20000 300

Table 1: Average latency and bandwidth comparison

significant effect on applications, but can be reduced [11].
The clones form the C2C network with vastly higher com-
putational capabilities, higher bandwidth and significantly
lower achievable latencies, especially when using advanced
techniques such as XenLoop (Table 1) and a thinner soft-
ware stack. For this reason we have the Node Controller and
separate out communication of colocated and non-colocated
clone VMs into separate cases (Fig. 2).

Seeing that inter-VM communication overheads are al-
most negligible compared to cellular network latencies, it
is obvious how C2C can improve performance of many-to-
many communication model of M2M even when all mes-
sages are delivered immediately to recipient physical nodes.
Instead of each node talking to every other node it wants
to send data to, it just sends it to its virtual counterpart,
data is distributed in the virtual network and the recipient
virtual nodes forward the data to recipient physical nodes.
From the physical nodes’ point of view and network laten-
cies it essentially becomes one-to-one communication with
two RTTs (one to send the message to the cloud and the
second for it to forward it to the relevant physical node)
and amount of data for one message only.

Finally, C2C architecture automatically allows for better
data traffic control. Since all communications in C2C have
associated tolerance to delays and delivery requirements, it
is possible to schedule traffic in the cellular network to re-
duce peak load by smoothening traffic and not hurt perfor-
mance at the same time by providing extra information to
the communication scheduler (Fig. 2) of a clone. As it has
been pointed out, networks are often suffering from the sig-
naling traffic more than the actual bandwidth problems and
it may soon become the main bottleneck [6]. Integrating
C2C closely with the cellular network is a difficult problem,
and we do not analyze it further in this work.

3.2 Managing heterogeneity
In M2M networks it is often desirable to have sensors at

one end of the communication channel, transmitting any
recorded data to the other end (telemetry). This, however,
can turn out to be rather wasteful in terms of bandwidth
consumed and not at all necessary. An important observa-
tion here is that very often it is not the low-level sensor data
that is required, but higher-level information extracted from
the raw data. Processing the data, however, costs resources
- CPU power, energy, etc. and it may be worthwhile to of-
fload such computations from the devices [3], even though
radio transmission also uses a significant amount of data.

Many of the devices might be connected to an M2M net-
work using proprietary protocols, or have very different in-
terfaces. This complicates matters. In a traditional network
it would be necessary to either modify software of the de-
vices or have some centralized service for data exchange that
is able to deal with the heterogeneity of the network.

C2C approach, allows to provide homogeneous interfaces
between all devices by abstracting the physical nodes through

(a) Energy consumption when doing message aggregation and pos-
sibly processing part of them, using different methods

(b) Energy consumption using the same method but dif-
ferent delay bounds

Figure 3: Energy consumption of device-to-clone communication

virtualization: since the clone of a device is only loosely
equivalent to the device itself (i.e. capable of locally per-
forming the same functions as the physical one, as long as
they do not require interaction with the physical world) it
can have one interface for communicating with the physical
device, and another, standardized, to communicate with the
rest of the network, as depicted in Fig. 2 by the two com-
munication interfaces in a clone. This characteristic requires
our clones to be only loosely related to the physical devices.
Nevertheless, they remain equivalent in terms of functions
they perform, only the communication interfaces differ.

Current commercial virtualization solutions such as Ama-
zon’s “Elastic Computing” are not suitable in this environ-
ment either as the software running on many of the devices
that would use M2M communication are neither running
Linux, nor Windows and the standard software stack is sim-
ply too thick for virtualizing embedded systems. Further-
more, virtualization normally encapsulates an entire oper-
ating system and emulates it in a virtual environment, in-
troducing yet another layer to the already bloated modern
software stack, leading to an efficiency disaster [7].

We therefore turn to more specialized architectures, such
as Mirage [8]. The key principle behind Mirage is to treat
cloud virtual hardware as a compiler target, and convert
high-level language source code directly into kernels that
run on it. Such lightweight architecture gives many advan-
tages - ability to instantiate and destroy Virtual Machines
with low latency, reduce overheads and significantly reduce
image sizes (e.g. the authors report 600KB image size for
the Mirage images used for testing, compared to Linux dis-
tributions that are difficult to squeeze below 16MB).

Virtualization by itself also helps with the other goals of
the system. It helps to manage the whole network by ab-
stracting away from the hardware the virtual machines are
running on and allowing dynamic relocation in the case of
failures or when vertical scaling of a single clone is required.
In addition to that, provided that the cloud hosting envi-
ronment itself is considered trusted, virtualization provides
isolation between VMs and therefore offers better security
and data privacy guarantees.

Overall, with recent advances in cloud computing soft-
ware, we see great opportunities in using the cloud efficiently
for really scalable M2M communication, connecting any type
of device together.

3.3 Managing C2C network
There is a number of interesting aspects of managing the

C2C network that we still have not discussed. These in-
clude scheduling operations between physical devices and
their clones and controlling communications. The main com-
ponents supporting the network on the physical device are
as shown in Fig. 2:
• Execution scheduler - deciding whether operations should

be executed locally or on the cloud.

• Communication scheduler - filtering, aggregating and de-
livering messages between devices and clones.

As all the recent works related to mobile code offload-
ing have shown, not all computations are worth perform-
ing remotely, since communication costs energy and causes
delays. Therefore, for C2C applications it is crucial to de-
vise efficient mechanisms to make the decisions of when it
is worthwhile to offload certain operations. Multiple works
have already addressed the task [2, 1], however there is a
big difference between them and C2C: instead of sending
all related data and computation requests and receiving re-
sults for every operation considered for offloading, we avoid
transferring the control back to the physical device once of-
floading is done.

As part of our effort, we have implemented ThinkAir [3].
The system currently does code offloading code from mo-
bile Android devices to the cloud. It chooses which pieces
of program code should be executed remotely, optimizing
execution time and energy consumption. It deals with re-
source allocation and parallel code execution on the cloud,
and does so by dynamically creating and scaling clones of
mobile devices that execute the offloaded code. However,
extending it further to allow communication between these
devices gives combined benefits of faster computations, op-
timized communications and distributed knowledge in the
network.

Clones do not only act as servers for the devices operating
in thin client mode, however, but rather are part of the com-
munication network, therefore receiving data and requests
from the other nodes and adjusting their behaviour based
on them. Furthermore, as we have pointed out earlier, not
every message sent between two machines necessarily has
to reach the other end-point as soon as possible and dealing
with them in the clones (aggregating received data, perform-
ing requests whenever physical environment is not involved,
bundling messages for later delivery) saves traffic between
the physical devices and allows to save energy and improve
performance.

Tasks such as message aggregation and filtering should
be done at application layer, as their timing guarantees are

application-specific and rules for data aggregation are spe-
cific to an application as well as current working conditions.
For example, as shown in the scenarios above, most messages
under normal network working conditions are simply peri-
odic messages with minimal need to be delivered immedi-
ately, however there are cases when they must be forwarded
to the end-point immediately, with minimal interaction with
the C2C network to minimise overheads (e.g. warnings in
collision-avoidance systems).

We demonstrate the potential benefits of message filter-
ing/aggregation in figure 3. In the tests, we sent 1000 1KB
messages, varying their average transmission interval from
1s to 35s (from Poisson distribution) and used energy con-
sumption model based on PowerTutor [14]. We compared 4
ways of sending messages: a) sending them as they are gen-
erated, without b) delaying the first message in the queue
for its maximum delay, while accumulating others in the
meanwhile and sending the whole batch together, emptying
the queue c) same as b, however if a message arrives into
an empty queue while the radio is still in high power state
(CELL DCH), send immediately d) same as c, but randomly
choosing a percentage of messages to be filtered/processed
in the clone and therefore not sent at all.

Simply delaying message transmission is neither sufficient,
neither is our goal. Application layer information is neces-
sary for good results, but even in the simple experiment we
can see huge gains: for average message inter-arrival time
of 5s and up to 5s delay when aggregating messages or pro-
cessing data into higher-level information, the savings are
around 22.2% and if we increase the maximum delay to 11s
it increases to 41.5% and goes as high as 47.3% if message
inter-arrival time increases. C2C does not commit to always
using higher delay traffic for an application though - applica-
tion itself can decide whether it needs near real-time action
or needs to focus more on energy savings.

In the case of a large clone network performance and en-
ergy savings are even more obvious: when no aggregation
is done, instead of having total transmission time propor-
tional to the number of nodes (i.e. at least n RTTs for n
nodes) it only takes 2 RTTs (to reach the C2C network and
to send message from a clone to the recipient). For example,
if the data transmitted is sensor readings, further gains are
achieved in C2C by processing the data in the clone and only
sending higher level information (e.g. text instead of voice
recording), further saving bandwidth and overall computing
power required.

A difficulty is, with current virtualization technology tim-
ing guarantees cannot be meaningfully provided for interac-
tions between co-located VMs, as the hypervisor (e.g. Xen)
lacks knowledge of timing requirements of applications within
each VM [13]. The problem can be partially solved by reduc-
ing latency of communication between co-located VMs, but
to assure timely execution for real-time processes within a
VM, the hypervisor’s CPU scheduler needs to communicate
with the VM’s CPU scheduler to communicate the real-time
requirements. We have yet to address this issue in future
work.

In summary, communication scheduling as well as reduc-
ing the amount of it between the physical devices therefore
plays an important role in improving performance of the
network and reducing the devices’ power consumption, but
has more potential when combined with other performance-
improving techniques, such as code offloading.

4. CONCLUSION
In conclusion, C2C is a new approach of building more

powerful and efficient M2M communication networks for a
wide range of applications that can be adapted similarly to
the ones presented. It aims at saving mobile device battery
power through reducing their radio traffic, but without sac-
rificing system’s responsiveness. Furthermore, it allows to
use more powerful end terminals without increasing power
consumption or using more sophisticated (and expensive)
hardware.

C2C is not a way to replace telemetry applications. In-
stead, we feel that M2M communication is much more pow-
erful than that, and C2C is an approach helping to solve
the issues hindering development of the next-generation net-
worked applications.

5. REFERENCES
[1] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti.

Clonecloud: elastic execution between mobile device and
cloud. In EuroSys, pages 301–314, 2011.

[2] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman,
S. Saroiu, R. Chandra, and P. Bahl. Maui: making
smartphones last longer with code offload. MobiSys ’10,
pages 49–62, New York, NY, USA, 2010. ACM.

[3] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang.
Thinkair: Dynamic resource allocation and parallel
execution in cloud for mobile code offloading. In
INFOCOM, 2012 Proceedings IEEE, march 2012.

[4] E. Koukoumidis, L.-S. Peh, and M. R. Martonosi.
Signalguru: leveraging mobile phones for collaborative
traffic signal schedule advisory. MobiSys ’11, pages
127–140, New York, NY, USA, 2011. ACM.

[5] H. A. Lagar-Cavilla, N. Tolia, R. Balan, E. de Lara,
M. Satyanarayanan, and et al. Dimorphic computing.
Technical report, 2006.

[6] H. A. Lagar-Cavilla, N. Tolia, R. Balan, E. de Lara,
M. Satyanarayanan, and et al. Smartphones and a 3g
network. Technical report, Signals Research Group, May
2010.

[7] A. Madhavapeddy, R. Mortier, J. Crowcroft, and S. Hand.
Multiscale not multicore: efficient heterogeneous cloud
computing. ACM-BCS ’10, pages 6:1–6:12, Swinton, UK,
UK, 2010. British Computer Society.

[8] A. Madhavapeddy, R. Mortier, R. Sohan, T. Gazagnaire,
S. H, T. Deegan, D. Mcauley, and J. Crowcroft. Turning
down the lamp: Software specialisation for the cloud.

[9] N. Nikaein and S. Krea. Latency for real-time
machine-to-machine communication in lte-based system
architecture. Wireless Conference 2011 - Sustainable
Wireless Technologies (European Wireless), 11th European,
pages 1 –6, april 2011.

[10] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos.
Paranoid android: versatile protection for smartphones.
ACSAC ’10, pages 347–356, New York, NY, USA, 2010.
ACM.

[11] S. M. Rumble, D. Ongaro, R. Stutsman, M. Rosenblum,
and J. K. Ousterhout. It’s time for low latency. HotOS’13,
pages 11–11, Berkeley, CA, USA, 2011. USENIX
Association.

[12] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies.
The case for vm-based cloudlets in mobile computing.
Pervasive Computing, IEEE, 8(4):14 –23, oct.-dec. 2009.

[13] J. Wang. Survey of state-of-the-art in inter-vm
communication mechanisms, 2009.

[14] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M.
Mao, and L. Yang. Accurate online power estimation and
automatic battery behavior based power model generation
for smartphones. CODES/ISSS ’10, pages 105–114, New
York, NY, USA, 2010. ACM.

