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Abstract

We introduce the concept of “socially mobile collaborative sensing” (SMOCS), a collabo-
rative process in which devices owned by different users gather and share contextual data
and derive inferences. People are increasingly gathering contextual data (e.g. location
[38]) for their own use and are beginning to share it through systems such as Twitter and
Google Latitude. These systems are domain specific (they are designed for a single data
type) and require all users to gather their context themselves; users must install software
on a device capable of gathering rich contextual data (e.g. a smartphone). The SMOCS
architecture enables users with less-capable devices to offload contextual sensing and re-
porting to physically proximate more-capable devices; in this way, SMOCS defines a truly
viral architecture.

Using collaboration among devices that are found in the neighborhood of a mobile
user to gather contextual data is now practical. The density of reachable devices in any
particular person’s neighborhood is growing with time. SMOCS is motivated by the need
to structure such collaborations to support viral growth and evolution of applications that
exploit such sensing.

In this thesis we define SMOCS and present an architecture and an implementation,
called ContInt (Context Interleaving). The ContInt implementation is composed of two
components: Ego, a distributed social network in which users maintain personally-owned
“agents”, and the ContInt plugin for Ego. The proposed SMOCS architecture enables the
collection and distribution of contextual data and provides extensible interfaces to allow
inference-deriving “plugins.”

We evaluate ContInt in terms of a) scalability and performance, b) architectural exten-
sibility and c) argue that its privacy model enables users to control their data. We conclude
by proposing future work and our expectations of how SMOCS might evolve.

Thesis Supervisor: David P. Reed
Title: Adjunct Professor
MIT Media Lab
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Chapter 1

Introduction

The diverse electronic devices we use daily are increasingly being put to the task of sensing

the physical world around us. Modern technologies enable mobile devices, such as cellular

telephones, to sense acceleration, to calculate latitude and longitude to within 10 meters,

and to scan multiple radio networks (802.11, Bluetooth) for device and service discovery.

Statically-deployed infrastructure devices are even more powerful - they draw electricity

from the grid, need not be portable, and are wired into reliable networks; they can support

many power-hungry sensors (e.g. video, audio.) The output of these sensors is contextual

data: it describes the context in which the sensor operates.

Both mobile and infrastructure devices are becoming more prevalent and more power-

ful. It is probable that mobile devices will become increasingly powerful and thus support

sensors capable of gathering more contextual data; the growth of smartphone market share

supports this [52]. In parallel, infrastructure-hosted sensors will increase in prevalence:

the British government has already deployed 4.5 million CCTV cameras in the UK with

more planned [39], and research groups at the MIT Media Lab have wired the entire lab

with sensors capable of recording audio, video and Bluetooth device presence. The perva-

siveness of mobile and infrastructure devices and their sensors suggests the potential for

context-driven applications that can scale.

Context-driven applications are applications that perform actions in response to changes

in a person’s contextual environment. An example application is one that emails a re-

minder to complete a task on a person’s to-do list as soon as the person comes into range

of a place where that task can be accomplished. Not all applications need react in real-
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time; some can mine historical contextual data to draw inferences. An example of such an

application is one that learns the social interaction patterns of you and your friends. The

application could determine if you are neglecting a friend and alert you. Another class

of applications are community-wide applications: users share subsets of gathered context

with community aggregators in order to act as a grassroots, participatory sensing platform

[5]. For instance, users could share their current health with the local government in order

to track flu outbreaks.

More and more individuals are gathering contextual data in order to use such appli-

cations. Currently, location information is the primary form of contextual data gathered

because of the vast potential seen for location-aware applications. Yahoo!’s Fire Eagle [31]

allows users to run software on their cell phone that gathers location data and reports it

back to their Fire Eagle account. Google’s Latitude [23] software performs a similar task.

Both systems enable users to share their location with their friends and publicize it to the

world.

Twitter [58] takes sharing one step further, by allowing users to post short (140 charac-

ter) status updates containing arbitrary data. Users can subscribe to their friend’s “tweets.”

This is a simple publish-subscribe model: users publish (“tweet”) to their subscribers (“fol-

lowers”). An inadvertent byproduct of this architecture is its possible use as a centralized

announcement mechanism for any information that can be encoded into a 140 character

string. Twitter is increasingly used to publish rich contextual information (such as latitude,

longitude, images of surroundings and mood). This publicly accessible tweet information

is mined by third-party applications and used in “mashups” - generally, an application

formed by the cross-pollination of two distinct datasets. Examples of popular mashups in-

clude Twopular.com [12], a website that aggregates current trends on Twitter based upon

what people are tweeting, and Portwiture.com [55] which chooses photographs from Flickr

[32] that match the content of posted status updates. The wide variety of mashups and the

simplicity of the system has driven Twitter’s success and fuelled its rapid growth to over

5 million users [45] in under three years. Mashups are particularly interesting: they hint at

the possibility of community-wide aggregation and data mining systems.

Twitter, Fire Eagle and Latitude serve as prototypical demonstrations of people’s inter-

est in gathering contextual data and sharing it. However, they fail to meet the requirements

of a context-gathering system that could have massive adoption:
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1. Privacy - Privacy is handled by all of these systems, but in an arcane manner. The

approach is “all-or-nothing” - data describing a user is either available only to that

user or all of it is available to specified peers. This has worked so far because each

person has their own view of what privacy should entail. Some take pride in pub-

licizing images of themselves engaging in crude behavior; others are conscious of

the consequences ([42] and [7] are examples of employees being fired for their be-

havior outside work) and restrict sharing to a subset of trusted peers. The privacy

models of Twitter, Fire Eagle and Latitude are designed with these desires in mind

and apparently satisfy users. However, this all-or-nothing approach means that as

soon as data is placed on to the network it can never be removed, leaving users out

of control of their data. Our privacy model puts control first: if users feel in control

of not only who can access their data but how it is stored, they will be likely to trust

the system more. Control is increasingly important as more real-time context-driven

applications are developed; such systems could be compromised and their data used

to cause harm. Stalking is a legitimate fear in location-aware applications.

2. Exploit virality - A viral system is one that can grow and evolve quickly in a market

oriented economy and a decentralized democratic culture [37]. Some properties of

viral systems include:

(a) A low barrier to entry.

(b) The utility of the system growing proportionally with the number of users of

the system.

(c) Utility from the outset: otherwise, attracting users to the system will be impos-

sible.

Points b) and c) are generally true of existing social networking websites (e.g. Face-

book, MySpace) in which users form friendships, send each other messages, post

images, etc. Point a) is not true of the existing services in terms of context gathering:

users have to run specialized software on their mobile device in order to gather and

report contextual data.

We argue that existing architectures for contextual data gathering and sharing do not

exploit virality, nor do they offer appropriate privacy models. This is no surprise, as the

13



context-gathering components of Twitter have been added post-inception, and Latitude

and Fire Eagle are location-centric and fueled by the desire to collect user locations for

corporate data-mining purposes. This leads us to define an architecture that does satisfy

the two requirements.

Our architecture is based on our concept of “socially mobile collaborative sensing”

(SMOCS). SMOCS defines protocols for gathering, storing and sharing of contextual data.

In particular, SMOCS defines how a mobile device can interact with others in its neighbor-

hood in order to gather richer contextual data than it could on its own. This means that

users with less-capable devices are able to gather data that they otherwise could not have;

a user without GPS could approximate their location through a nearby device with a GPS

sensor. This architecture leads to a truly viral system as many users have the opportunity

to get involved.

We use the idea of “collaborative sensing” (proximate devices sharing sensing capabil-

ities) to derive SMOCS. The “social” aspect of SMOCS is introduced by our requirement

that the system be as viral as possible: we assume some devices in the system cannot run

any specialized software whatsoever. Instead, users run a “dumb” device that can merely

broadcast a presence identifier. Identifiers are shared through relationships formed be-

tween users of the system. We present the mechanism of SMOCS in the next chapter.

The future of contextual data gathering and sharing is a system that is both privacy-

centric and truly viral. The SMOCS architecture satisfies these requirements: privacy is

ensured by strict access controls and data ownership, while virality is exploited by allow-

ing offloading of sensing to trusted peers.

In this thesis we define SMOCS, derive the SMOCS architecture and present our im-

plementation of the architecture, ContInt (Context Interleaving). ContInt enables users to

gather contextual data with the sensors in their personal device, store this data in a privacy-

centric manner, and subsequently share subsets of data with trusted users through high

granularity access-control mechanisms. We evaluate ContInt’s scalability and performance

properties, its architectural extensibility and argue that its privacy model is adequate and

puts the user in control of their own data.

The key contributions of this thesis are the definition of SMOCS, the SMOCS archi-

tecture and its implementation, ContInt. The thesis is organized as follows: in chapter 2

we present the motivation behind SMOCS and its definition, as well as an overview of
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related work; in chapter 3 we discuss the architecture of SMOCS, and refer the reader to

appropriate appendices for implementation details; chapter 4 evaluates our implementa-

tion; chapter 5 concludes with a discussion of future work in this area, and how ContInt

could complement and enable this work.
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Chapter 2

Socially Mobile Collaborative

Sensing

In this chapter we discuss the term “socially mobile collaborative sensing” (SMOCS). We

begin by defining collaborative sensing and use its shortcomings to derive and motivate

our definition of SMOCS. We then present the motivation behind the concept and show

cases where a SMOCS architecture would be useful. Finally, related work, particularly in

the field of ubiquitous computing and participatory sensing, is discussed.

2.1 Definition: Collaborative Sensing

In collaborative sensing, devices with distinct sensing capabilities collaborate to provide

each other with rich contextual data that each device alone could not otherwise sense. For

example, if Alice’s device has a GPS receiver it advertises this capability over Bluetooth’s

Service Discovery Protocol (SDP) [53]. Bluetooth is range-limited, with the most common

(class 2) transmitters reaching ranges of up to 10m [60], so only neighboring devices will

hear Alice’s advertisement and be able to connect to her device to query its GPS receiver

for coordinates. Figure 2-1 illustrates this example: Bob’s less-capable device can query

Alice’s more-capable device for contextual data.

This concept works especially well for contextual data, because two physically proxi-

mate devices are likely to exist in a similar context. If Bob is within a few meters of Alice,

Bob’s less-capable device can outsource sensing to Alice’s more-capable device. Bluetooth
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Figure 2-1: Collaborative sensing. Alice’s device advertises its sensing capabilities. Neigh-
boring devices can connect to her device and query its GPS sensor for their location.

is used for hyper-local peer and service discovery; its short-range nature enables collabo-

rative sensing.

Collaborative sensing is presented under the assumption that all users in the system

must have smart devices that are programmable and can communicate with each other in

order to share sensing capabilities. Though cellular telephones (the most prevalent mo-

bile sensing platform) are becoming increasingly heterogeneous in capability (smarter, not

dumber), we assert from past experience that there will always be devices of varying ca-

pabilities. Historically, this has been due either to network operators willing to cripple

device capabilities (such as Verizon’s move to disable file sharing over Bluetooth in the

Motorola RAZR V3 [36]) or device manufacturers failing to provide openly programmable

frameworks. The iPhone is an excellent example of a crippled programming platform: the

device itself has Bluetooth, 802.11, GPS and WPS (WiFi positioning provided by Skyhook

[54]). Unfortunately, no Bluetooth API is provided, so Bluetooth applications cannot be de-
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veloped using the standard development frameworks. Because of competing systems and

proprietary hardware and software, the capabilities and programmability of smart devices

cannot be relied upon if we wish to create a truly viral architecture.

2.2 Definition: Socially Mobile Collaborative Sensing

SMOCS improves upon collaborative sensing by removing the requirement that devices be

smart and programmable. There are two requirements of collaborative sensing that must

be removed in order for “dumb” devices to take part in the system:

1. Gathering - Dumb devices cannot gather contextual data, so they must outsource

this gathering to smart devices.

2. Reporting - We assume that dumb devices cannot actively communicate with the

outside world, so they cannot report their context to any external web services (e.g.

Yahoo Fire Eagle), nor can they proactively ask smart devices around them to per-

form this task for them.

SMOCS removes these requirements with a simple observation: most dumb devices

have Bluetooth chips and can be discoverable; that is, they can broadcast their globally

unique MAC address. If a person with a dumb device is willing to make their device dis-

coverable, they can share their device’s identifying MAC with other trusted smart devices.

The smart devices gather context on behalf of their user anyway; if they identify a known

MAC address they can automatically share their gathered context with the identified user.

As we argued when describing collaborative sensing, this gathered context is a good ap-

proximation of the actual context of the user, as the detecting and detected devices are

necessarily within approximately 10 meters of each other.

Note that, since dumb devices cannot have context reported directly to them from

smart devices, an extra piece of infrastructure is required for smart devices to report con-

textual data to. We call this infrastructure an “agent”. An agent serves as the context-

reporting endpoint for a particular user. There is a one-to-one relationship between users

and agents: an agent represents a user in SMOCS. We assume that agents are hosted some-

where on the Internet and, for simplicity, are always connected. Agents are identified by

URLs. Further details are given in the next chapter.
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Figure 2-2: Socially mobile collaborative sensing. Bob has shared his MAC address with
Alice. Alice’s device detects the presence of Bob’s device in its contextual environment,
and reports its contextual data to Bob’s agent over the network.

Consider again Alice and Bob, but now in the example of SMOCS. Alice has a smart

device with a number of sensors (temperature, location, audio, video). Bob has a dumb

device. Bob puts his device in Bluetooth discoverable mode and shares his device’s MAC

address and the URL of his agent with Alice. When Alice’s device detects Bob’s device,

Alice’s device infers that Bob is physically present. Alice’s device sends the gathered con-

textual data to Bob’s agent. Figure 2-2 illustrates this example.

To participate in a SMOCS system, users with dumb devices must share personally

identifying data (their personal device’s MAC address) with other users who own smart

devices. The smart devices gather contextual data on behalf of the dumb devices and send

it to the agent of the device’s owner. Because the MAC address of a device does not typi-

cally change over its lifetime, it is likely that a user will share their MAC only with people

they trust - that is, people with whom they have a pre-established social relationship. This

is where the “social” in SMOCS comes from: we assume that only close friends or other-
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wise trusted entities (people, organizations) will be given this privileged data.

Note that an inference is made when Alice detects Bob’s device that Bob is physically

present. We assume that users of a SMOCS system only share identifiers of devices they

are likely to be carrying. It is possible to dictate to one’s agent the current device being

carried so as to filter out contextual reports of devices not applicable to oneself.

2.3 Motivation

The motivation for SMOCS can be distilled into two separate sets of motivation: 1) the

motivation for personal sensing systems in general and 2) the motivation for collaborating

with others to enrich each other’s gathered contextual data.

2.3.1 Personal sensing systems

There are a number of motivations for the creation and use of personal sensing systems:

1. Personal intelligence - We are increasingly able to gather data about our lives that

can be used for personal understanding. For example, if Alice comes down with a

serious illness her past contextual patterns can be mined to determine what might

have caused it. This could help researchers understand the the impact of patterns of

exposure to certain environments. Another example would be correlation between

productivity and location: Bob could make a judgment about whether working in a

library enabled greater productivity.

2. Group intelligence - Personal data can be shared amongst a group of users to enable

group intelligence applications. For example, an application could aggregate loca-

tion information from users in a community to create a map displaying which parts

of a city are busy at different times of a day. Friends could share their historical shop-

ping bills to compare how much they spend on groceries. Group-wide applications

can target groups on different scales, from the global scale to the community scale

and down to the social network scale.

3. Ubiquitous computing-style interactions - Users of a SMOCS system could share

their real-time location information with an application that allowed them to interact

with digitized resources in the world around them; for instance, one could project
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personal data on a publicly available computer screen by virtue of being near it if the

screen has been allowed to access that data.

2.3.2 Collaborative sensing systems

Collaborative sensing systems are motivated by the observation that many devices with

diverse capabilities are reachable via short-range radios at any given time; the number is

only expected to increase. If two smart devices can communicate, they should be allowed

to collaborate in order to gather rich contextual data.

The motivation for SMOCS is to remove from collaborative sensing the requirement

that all devices be smart. We remove this requirement so as to build a viral architecture ca-

pable of supporting many users with devices of diverse capabilities. SMOCS enables users

with dumb devices to collect contextual data in return for sharing identifying information

with trusted peers. Smart devices can also benefit: sensing capabilities are heterogeneous

across devices, so two smart devices could have different capabilities. By working together,

devices can gather richer contextual data.

Of course, there is an inherent trade-off between identity privacy and contextual data

richness. If a user chooses to share their identifiers with everyone they will receive high

quality collaboratively sensed context. Conversely, if a user with a dumb device chooses

not to share their identifiers with smart devices or chooses not to leave their device in

discoverable mode, the user will collect no sensed contextual data.

2.4 Foundations

In this section we overview the foundations upon which SMOCS is built. Some are merely

related, others are built upon directly. We present several fields of research that investigate

similar concepts and discuss some solutions that exist in those fields.

2.4.1 Ubiquitous computing

Ubiquitous computing is a model of human-computer interaction that assumes integration

of information processing into everyday objects. Passive objects, such as TVs, are trans-

formed into active objects that a passerby can use. For instance, a computer-equipped TV

might be able to sense the presence of a passerby and display content from the passerby’s
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device on the TV screen. Most ubiquitous computing systems require digitization of con-

textual information - in particular, physical presence - in order for interactions to occur.

Privacy is a great concern in ubiquitous computing applications. Users must advertise

their identity in a way which allows them to interact with their digitized environment

whilst maintaining privacy. Many different architectural solutions have been proposed to

deal with the problem of securely identifying oneself to resources in one’s surroundings

[28, 64, 41, 48, 51, 35]. SMOCS works equally well if identifiers are secure or unsecure, so

adopting one of the above solutions would be possible, but would currently require extra

software running on personal devices. We want the system to be as viral as possible, so our

current implementation simply relies upon unsecure Bluetooth MAC addresses to serve as

personal identifiers.

A novel system design in this field is Confab[28]. In Confab, users report their context

information to a personal “infospace.” The infospace is akin to our concept of an “agent”.

Infospaces manage context for a user and broker queries from other users. Confab assumes

context is gathered by, and reported from, the personal device of a user to their personal

infospace; thus privacy is maintained.

Confab does not allow a situation that is key for creating a viral context gathering sys-

tem: users must report their own sensed context. They cannot delegate this task to trusted

third parties, such as their close friends or sensor networks run by a trusted institution

or group. There is also limited opportunity in Confab to use historical context in order to

participate in third party applications. Furthermore, group-wide intelligence applications

are not part of the architecture.

PlaceLab [51, 35] is a marginally related project, in which devices localize themselves

using radio beacons from known coordinates. This relates to our work in that collabora-

tion that takes place to localize oneself by using intelligent devices in one’s surroundings.

Location is just one type of contextual data that SMOCS gathers. We can learn from Place-

Lab’s results if we are interested in deploying fine-grained localization indoors, but we

can also assume that location can be determined increasingly easily using WiFi localiza-

tion techniques such as those provided by SkyHook [54].
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2.4.2 Participatory sensing

Participatory sensing is a relatively new field related to sensor networks. A participatory

sensor network is one in which users collaborate in order to sense their environment. In [5],

Burke et al. note that the increasing abilities and ubiquity of cellular telephones makes the

platform perfect for participatory sensing networks. They give numerous examples, one

of which is public health; a population voluntarily providing current medical symptoms

through a small application running on their cell phone could allow authorities to rapidly

identify and handle environment-specific health issues.

Another interesting example of participatory sensing is “hitchhiking,” as described in

[57]. In hitchhiking, users report to a central server the number of other people they detect

in certain locations. The reports are anonymized so the exact locations of reporters are not

disclosed. Applications built on top of this concept include one to determine seating space

in local coffee shops.

Participatory sensing is a foundation of our work. As noted, SMOCS enables sharing

of personally gathered contextual data, thus conceptually allowing aggregation across a

number of users. SMOCS could be used as a participatory sensing platform.

2.4.3 Physical presence detection

The virality of a SMOCS architecture depends upon users with less capable devices be-

ing able to share personally identifying pieces of data with others so that their physical

presence can be detected and contextual data shared with them. One of the fundamental

challenges is to determine the presence of neighboring devices and the identities of their

owners.

Presence is a crucial problem to solve in the world of ad-hoc distributed systems. These

systems have no centralized control; devices making up the system must be able to dis-

cover each other’s presence so that they can collaborate to form a network. Many dis-

tributed systems have their own protocols for presence because each has slightly different

requirements. Some protocols build hyper-local networks between one-hop neighbors.

Others create multi-hop networks that span ranges greater than any single device’s radio

range alone.

In our research group, we have developed three separate protocols solving three slightly
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different presence-related problems. The most widely used of these is Cerebro [63], a

lightweight, scalable protocol that enables devices in the same network subnet to discover

each other’s physical presence.

Cerebro is a relatively mature protocol in use by the One Laptop Per Child (OLPC)

[8] initiative. It provides local-area collaborative applications with the digital presence re-

quired to operate. Cerebro was designed for efficient device discovery in ad-hoc networks

but can run on infrastructure-based networks too, with the caveat that only devices in the

same subnet can discover each other.

Cerebro works by having all devices emit beacons. Beacons are small packets contain-

ing the ID of the device emitting the beacon and the IDs of all of the other devices the

emitter senses. Over time, all reachable devices running the protocol learn of each other.

Once every device knows of each other, devices can send point-to-point queries for more

detailed identity information.

Cerebro is too advanced for our needs. SMOCS can use it, but would under-utilize

it; SMOCS merely needs information on 1-hop neighbors. The same information can be

gathered using Bluetooth device scans, with the added advantage that most cell phones

can enter Bluetooth discoverable mode whereas most cannot run Cerebro.

2.4.4 Information accountability

Information accountability, a term coined by Weitzner et al. in [59], notes the emerging

realization that existing information usage policies are flawed. In traditional systems, data

security is maintained by strict access control policies. Once compromised, private data

may be made freely available to everyone. (Consider the Windows 2000 source code leak

[10].) Weitzner et al. argue that this “hide it or lose it” approach is wrong, and that tech-

nology should be augmented to support information accountability and appropriate use,

rather than information security and access restriction. The idea is that owners of data

will be able to know when the data is viewed and determine whether such viewing was

appropriate; if not, they will be able to hold the viewer accountable.

This concept should be (but is currently not) applied readily to a SMOCS-implementing

system; in SMOCS there is a key privacy hole: the sharing of identifiers. Once an identifier

is shared with a friend, there is nothing stopping that “friend” from giving away that

identifier for whatever reason (personal gain, retribution, etc.) Thus, it is important that
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users be able to track the movement of their personal data through the network as much

as possible. We have not implemented this functionality in ContInt, but note that it can be

developed.

2.4.5 Personal sensing

Personal Sensing is the body of work related to gathering personal contextual data and

building applications that use it. Personal Sensing systems have been mostly built around

the cell phone as it is indeed a sensing platform that tends to be carried by its owner and

can be used to gather personal context.

CenceMe [41] is a concrete implementation of a cell phone based sensing system.

CenceMe aims to infer high-level contextual information based on raw senor data gathered

by phone-based sensors. Using learning algorithms, CenceMe’s authors show that it is

possible to infer activity, location, conversation state, etc. CenceMe has been released as

an application for the iPhone.

CenceMe might appear to do many of the things we propose to do, but it does not.

CenceMe is entirely about human context and has no interest in the architectural chal-

lenges of designing for ubiquitous computing environments. Furthermore, CenceMe does

not allow users to collaborate to gather contextual data. In [41], the authors ask users with-

out accelerometers in their devices to carry around a custom built Bluetooth accelerometer.

This is a hint that a design decision should be made; asking users to carry extra peripherals

to augment their sensing capabilities does not scale.

2.4.6 Personal collective intelligence

Personal Collective Intelligence is an idea that has been fostered in parallel to our work

on SMOCS. In SMOCS, we examine the possibility of collecting personal data and then

sharing this information to create a group-wide intelligence dataset. Personal Collective

Intelligence (PCI) is essentially the same idea. (If anything, SMOCS is a PCI-compatible

architecture.) The work is currently in early stages of research by Dr. Luis Sarmenta in the

MIT Media Lab. At the time of writing of this thesis, collaboration between PCI and the

work that is presented in this thesis is in its early stages.
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Chapter 3

Architecture

In this chapter we present our proposed SMOCS architecture. Beginning with a high-level

overview, we describe the requirements, our design principles and how they led to the

architecture. We then define the elements that make up the architecture and conclude with

a schematic figure. Where necessary, implementation details are set out in appendix A.

3.1 Overview

The primary goal of the SMOCS architecture is to enable users with smart devices to run

software on these devices that can gather and report contextual data back to the user’s

agent. Users with dumb devices, or those with smart devices wanting richer contextual

data, can delegate the task of gathering and reporting data to the smart devices of other

trusted users. These smart devices can be mobile devices or infrastructure (static) devices.

A smart device reports to the agent of a dumb device if the smart device detects the dumb

device and knows how to reach the agent of the owner of the dumb device. Figure 2-2

showed this workflow.

The SMOCS architecture defines a distributed network of user-controlled “agents” that

interact with each other in order to share contextual data, and gather it on each other’s

behalf. The resulting network resembles a peer-to-peer file sharing network, as shown in

Figure 3-1.

In the following sections we justify the architecture of the system and detail the respon-

sibilities of agents, the meaning of relationships, and how contextual data can be gathered

and shared between agents.
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Figure 3-1: High-level conceptual diagram showing the SMOCS architecture.

3.2 Design principles

The following design principles were adhered to when developing the system architecture:

• Privacy - The contextual data gathered can be private and sensitive. Some users

might not want this data stored in servers owned by others for fear of it leaking

or being misused, so it must be possible for users to run their own agents for the

storage, retrieval and mining of gathered contextual data. For those uninterested in

running an agent themselves, it must be possible to delegate hosting of an agent to a

third-party service (much like one would delegate hosting of a website.)

• Contextual extensibility - The system must allow future, unforeseen sources of con-

text to be gathered, reported and shared.

• Architectural extensibility - The system must provide clear, robust APIs that can

support development of future context-driven applications. The system should al-

low developers to build “pluggable” components rapidly.

• Virality - Most importantly, the system must exploit virality. (If it did not, it would
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not be a SMOCS system.) It must have a minimal barrier to entry to encourage adop-

tion, and it must add value as more users adopt it so as to be constantly attractive.

These principles lead to the following requirements:

• Agent locations - Agents could theoretically be built into the devices people carry;

however, this would defeat the system since it would no longer be viral, as personal

devices would have to be able to run agents. Since smart devices must report context

to the agents of dumb devices, we assume that agents must be reachable by a net-

work. The obvious network of choice is the Internet; thus, agents should be reachable

by a URL on the Internet.

• Network structure - Agents need to communicate with each other in order to share

device identifiers, report contextual data and (if the agent’s owner desires) share

contextual data with friends. Furthermore, privacy requires that it be possible for

a user to run their own agent, thus the system cannot be centralized. Given these

requirements, we immediately see that agents must be implemented so as to form a

distributed network amongst themselves.

These requirements dictate a certain amount of the SMOCS architecture. The resulting

architecture must take the form of a distributed system, and the network powering the

system should be the Internet.

3.3 Architectural elements

In this section we describe the abstract architectural elements that make up the SMOCS

architecture.

3.3.1 Entity

All of the examples we have presented to this point have involved human users interact-

ing with SMOCS systems. We have stated that agents represent a human user, and that

humans own the devices that gather and report contextual data. We now expand our defi-

nition of a user to include inanimate entities: a building, for example, could be represented

by an agent and have a set of devices with sensors under its control. People, buildings and

other inanimate entities are referred to with the umbrella term “entities” for simplicity.
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3.3.2 Agent

An agent is the representative of an entity in the SMOCS network. An agent could repre-

sent a person called Alice; it could also represent an inanimate object, such as a public TV

screen or a more abstract entity such as a group (e.g. a sports team could have an agent).

Alice stores personal data in her agent (e.g. her to-do lists, historical location data and

contact details) and this data is provided to context-driven applications that she chooses

to install and run on her agent. Alice’s agent can communicate with other agents and vice

versa by forming agreed relationships with others; contextual data can be reported to her

agent and shared with the agents of her friends.

Arbitrary data can be stored in an agent. The agent maintains all data stored in it,

the relationships that it is participating in and the access rules to the data that it stores.

Agents can proactively perform tasks, such as maintenance on the dataset of the user they

represent, or mining of that dataset. Agents can be interacted with only by their owner:

Bob can only view Alice’s exposed data through the interface of his own agent.

3.3.3 Relationship

A relationship is formed between two agents when the owners of the agents choose to

share data with each other. A relationship can represent a real-life relationship between

two humans, or a more abstract notion of a “relationship” between a human and a static

entity. For instance, Bob might form a relationship with a sports team if he wished to

be notified when the team has extra tickets for sale for an upcoming event. This is not a

relationship in the sense of friendship, but rather an agreement with the team that states

that Bob should be alerted of changes to information. For simplicity we refer to two agents

in a relationship as “friends.”

Relationships are directional and have a source and a destination. The direction rep-

resents the flow of data: if Alice becomes friends with Bob, Alice is “opening up” to Bob,

so Alice is a “source” of data to Bob (the “destination” of the information.) Figure 3-2

demonstrates this concept.
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Figure 3-2: Directionality of relationships. Sources provide data, and destinations receive
data.

3.3.4 Aggregator

An aggregator is a service that periodically collects data from a set of participating agents

and mines this data to extract higher-level meaning than could be gathered from the data

set of any single agent. Aggregators enable group-wide intelligence. An aggregator per-

forms the same core functionality as an agent, and could be implemented as an extension

to an agent; it is introduced as an architectural element because of its conceptual impor-

tance. We discuss its implementation in appendix A.

An entity makes their agent participate in an aggregator if the aggregator provides a

valuable service. This value could be a “cool” factor (e.g. the aggregator creates interesting

visualizations of a dataset) or could be actual value (e.g. the aggregator provides some

group-wide intelligence that could otherwise not be gained.)

3.3.5 Identifier

An identifier is a piece of data that, when sensed, indicates that an entity is physically

present. For instance, the MAC address of a Bluetooth device is globally unique and can
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be sensed with a Bluetooth radio. If a MAC is sensed and the owner of the MAC address is

known, it can be determined that a device of the owner is physically present. If the device

is known to be carried by the entity, it can be inferred that the entity itself is present. Com-

mon identifiers include Bluetooth MAC addresses, a set of photographs used for facial

recognition, or a unique ID in an ad-hoc distributed network such as Cerebro [63]. Identi-

fiers are generally tuples of the form <identification pattern, network, owning agent identity>.

For instance, <AA:BB:CC:DD:EE:FF, Bluetooth, Alice’s agent>.

3.3.6 Sensor

A sensor is an electronic device that can measure a physical quantity within its environ-

ment and report this quantity as a digital value. The output of a sensor is contextual data

that describes the contextual environment of the sensor. Typical sensors include Bluetooth

and 802.11 radios, GPS receivers, temperature sensors, cameras and microphones. These

sensors gather different types of contextual data: for instance, Bluetooth can report the

MAC addresses of all discoverable devices within its environment; GPS receivers can re-

port high-granularity location information.

All sensors can gather contextual data but only a subset of sensors can identify entities

from this data. Bluetooth devices can detect MAC address identifiers on the Bluetooth net-

work; if the sensing device has an identifier for the discovered MAC, an identification can

be made. GPS sensors and temperature sensors cannot make identifications. In general,

short range radios, video and audio sensors can make identifications.

SMOCS relies upon both sensors that can identify and those that cannot. Sensors that

can identify drive socially mobile collaboration; those that cannot provide additional con-

textual data.

3.3.7 Device

A device refers to a smart device controlled by an entity (we assume its owner): it is a

device that can run sensor code to gather contextual data about its environment. Dumb

devices cannot gather contextual data, so are not instances of our architectural “device”

element. Examples of devices include a smartphone or a desktop computer. Some devices

are mobile and some are not.
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Figure 3-3: Workflow of raw contextual data being transformed into reports and shared
with other agents.

Devices can have multiple different sensors. Devices poll their sensors periodically for

contextual data and report it to their owning agent over the Internet. If the device is mobile

and carried, the sensed contextual data constantly updates the current context of its agent;

if not (e.g. a desktop computer) the sensed contextual data is stored but not applied to the

user’s current context. (After all, the user might not be anywhere near the environment

that the desktop is reporting the context of.)

Once sent to the agent, raw contextual data is scoured for identifiers. If another agent

has shared their identifier with the agent processing the contextual data, and that agent

is identified, a report is created and passed to the identified agent. The report contains

information such as the agent that made the identification, which identifier was used and,

most importantly, the context of the environment in which the identification was made.

This is the key part of a SMOCS system. The workflow is shown in Figure 3-3.

3.4 Architectural schematics

We now present a number of schematics showing how each of the architectural elements

interact at different granularities. The structure of agents, relationships and aggregators is

shown in Figure 3-4.

Figure 3-5 shows the following visually: an entity is represented by an an agent. An

entity has many devices - some may be mobile, others static - and the entity manages these

devices from their agent. Each device has many sensors. The sensors sense contextual
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Figure 3-4: Interaction between agents and aggregators through relationships.

data about the environment that they are in. The device periodically polls its sensors, ag-

gregates their readings and reports this data back to its owning agent. Figure 3-3 showed

how the agent scours this report for known identifiers. If an identifier is found, the con-

textual data that was sensed is forwarded on to the identified agent.

3.5 Architectural subsystems

SMOCS makes use of many subsystems in order to fulfill its architectural requirements.

These include support for distributed eventing between agents in a publish/subscribe

model, interoperability with other social networks, a plugin framework that allows de-

velopers the power to extend SMOCS however they desire, and the all-important privacy

control subsystem. In this section we briefly overview these subsystems and their archi-

tectural properties.
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Figure 3-5: Figure detailing the relationship between agents, identifiers, sensors and de-
vices.

3.5.1 Distributed eventing

The architecture of the distributed eventing subsystem follows a simple publish/subscribe

model. Users subscribe their agents to particular events on the agents of their friends.

When an event is raised on an agent, the agent notifies all subscribers to this event by

publishing data to each subscriber’s agent. Figure 3-6 gives a conceptual diagram.

Publish/subscribe architectures enable efficient information delivery from creators of

data to those interested in the data. SMOCS uses this pattern to enable context-driven

applications shared between friends. For instance, Alice’s agent could subscribe to Bob’s

agent to be notified when Bob arrives at work. Alice’s agent could react to the publishing

of this event by sending Alice an email alert.

The specifications and implementation of the distributed eventing architecture are dis-

cussed in detail in appendix A.7.

3.5.2 Network interoperability

To be truly viral, SMOCS is designed to be interoperable with existing social networks.

Interoperability allows users to share data with friends using a different social networking

platform without requiring those friends to adopt SMOCS. When non-SMOCS users see

the value SMOCS provides they may choose to create an agent and join the network. In-
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Figure 3-6: Distributed eventing architecture. Alice subscribes to Bob’s “context changed”
event and is notified when the event is raised.

teroperability thus increases the likelihood of adoption and also increases the immediate

value given to users: from the outset, users of the SMOCS architecture can gather their

own contextual data and share it with non-SMOCS network users before they are part of a

SMOCS network.

Inter-operating with external networks requires well-defined abstractions around the

interfaces between SMOCS and the external networks. Each external network has different

capabilities and a different implementation is required for each <network, capability> pair.

We abstract around this implementation variance through the architectural element “net-

work”. A network exposes a set of functionalities: each individual network (Facebook,

Twitter, etc.) subclasses a common network object and implements each functionality in

its own way.

3.5.3 Plugin framework

SMOCS enables contextual data collection and sharing at a large scale. It is impossible for a

single implementer to foresee every possible use of this data, thus it is crucial that SMOCS

define a clear and flexible plugin framework that can be used by software developers to
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extend the functionality of a SMOCS implementation.

A plugin is a small application built on top of SMOCS that adds new functionality for

data collection, or that manipulates data stored in an agent in some way. Our architecture

calls for sandboxed plugins; that is, plugins should have limited access to data stored on

the agent. This is due to privacy concerns: if a plugin can manipulate private data, it is

logical to restrict the access of the plugin to a subset of data.

The plugin framework and its API are described in appendix A.8. Example plugins are

given to demonstrate architectural extensibility in the next chapter.

3.5.4 Privacy controls

Privacy in SMOCS is defined in terms of data ownership. Ownership comprises physical

control over one’s data and where it is stored, and the ability to define who has access to

it. The distributed agent-based architecture of SMOCS enables control over where data is

stored. Access controls on a per-user per-data type basis are provided in order to control

access.

Per-user access is relatively straightforward, as the public key infrastructure (PKI) re-

quired for authentication and encryption (details in section 3.6.1) means that any agent

requesting data from another agent can be authenticated. For instance, if Alice requests

data from Bob, Bob is able to authenticate that it really is Alice who is requesting this data.

If Bob does not want Alice to have access to his current location, his agent can return an

empty response when Alice requests it. This system allows agents to respond differently

to requests from different users for the same data.

3.6 Protocols and API

In this section we describe the core protocols and APIs required by the SMOCS architec-

ture.

3.6.1 Protocols

Agents are assumed to be connected via the Internet, and are designed to follow HTTP

RESTful design practices. (For a description of REST and our arguments for choosing it as

the basis of our protocols, see appendix A.2.) The system provides two sets of protocols:
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1. Entity-Agent protocols - A RESTful protocol that exposes object-oriented data stored

in an agent to client applications (e.g. user interfaces) that the owner of the agent

controls. The protocols are the basis for the web-based user interface discussed in

appendix A.6.

2. Inter-Agent protocols - A non-RESTful protocol for interaction between two agents.

This set of Inter-Agent (IA) protocols defines how two agents communicate with each

other. It is not purely RESTful due to security issues with standard REST. Details can

be found in appendix A.3.

The IA protocols describe the core functionality of the agents, and the EA protocols

describe how an owner of an agent can interact with that agent to change settings and

manipulate data stored in it.

The decision to make the IA protocols not entirely RESTful was driven by a technical

difficulty with security in REST. The IA protocols have two requirements:

1. Authentication and encryption - Requests between agents have to be authenticated

and encrypted, as different data can be returned depending on the identity of the

agent making the request. If a friend of an agent asks for that agent’s profile, different

data will be returned than that returned to a stranger. This is a relatively simple

problem to solve in a centralized website where identity can be verified by the central

server, but in a distributed network the problem is more difficult.

2. Be built on HTTP - We want any HTTP speaking device to be able to act as an agent

so that our architecture survives into the future when devices are smarter, and could

even be run on a smart mobile device.

In centralized servers, HTTPS [50] is often used to encrypt client-server communica-

tion. HTTPS supports encryption over TLS. Authentication is supported by HTTP/1.0

(basic user name, password authentication) and more complex digest-authentication is

supported by HTTP/1.1 [20]. However, both authentication schemes require the user to

have an account on the server that they are requesting data from. This is acceptable for our

REST APIs, but not acceptable for our IA APIs: for every agent to have an account on their

friend’s agents would introduce n2 worth of unnecessary storage overhead in the system.
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A public key infrastructure is needed to enable authentication and encryption. In

SMOCS, we assume that agents can generate (or provide) their own RSA key pair. Then,

requests can be encrypted and authenticated as necessary. For full details of our IA secu-

rity protocol, see appendix A.3.

3.6.2 API

The IA functions required by agents in the SMOCS architecture are:

• give - Gives an identifier from one agent to another. For example, Bob could give

the identifier <AA:BB:CC:DD:EE:FF, Bluetooth, Bob> to Alice if Bob wants to be

detected by Alice’s sensors, and Bob knows that Alice has a Bluetooth sensor.

• report - Reports sensed contextual data to the agent. As an example, assume Bob has

shared his identifier with Alice as above. When one of Alice’s devices sends her agent

sensed contextual data and Bob’s identifier is found in this data, Alice’s agent calls

Bob’s agent’s report function, passing along the contextual data her device gathered.

This, along with give, is the backbone of SMOCS.

• sensors - Lists the sensing capabilities of the agent. This function enables friends

to decide whom to share their identifiers with; one might choose only close friends

with rich sensing capabilities.

• raw - Allows friends to query the agent for raw contextual data stored in it.

• publish - Allows friends to publish arbitrary events to the agent. Used for dis-

tributed eventing.

• subscribe - Allows friends to subscribe to events raised on the agent. When an event

is raised, the agent will publish to all of its subscribers. For example, Alice could

subscribe to Bob’s “arrived at work” event. When this event is raised, Alice will be

notified; Bob’s agent calls publish on Alice’s agent to notify her.

• context - Gets a distilled view of the agent owner’s latest context. For instance, this

could distill a set of recently reported locations into a single latest location.

• key - Gets the public key of the agent. Necessary for the public key infrastructure.
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• profile - Gets the profile of the entity that owns the agent.

• friends - Lists the friends of the agent.

Aggregators require additional functionality:

• join - Allows an agent to participate in the aggregator service.

• leave - Allows an agent to leave the aggregator.

• participants - Lists all the participants in the aggregator.

• info - Returns a set of information about the aggregator.

These functions define the core functionality necessary for the SMOCS architecture.

3.7 Object models

In this section we present the objects required by the SMOCS architecture given the archi-

tectural elements, properties and functionality being implemented. Some implementation

details are given where necessary; generally, details are provided in the appendices. In the

following text, object models are named in bold and begin with capitals, e.g. Agent. This

is to distinguish object models from architectural elements and make clear the relationship

between the models.

3.7.1 Agent

Models a known agent. Agents are uniquely specified by their URL.

Name Type Description

url string The URL of the agent.

3.7.2 User

Models the owning entity of an agent. The User is the sole user account on the agent

and is required by the RESTful APIs for authentication, as well as to support remote login

functionality.
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Name Type Description

first name string The first name of the agent’s owner.

last name string The last name of the agent’s owner.

username string The username of this owner when accessing the agent.

password string Encrypted password of the owner.

Profile

Models the profile of an agent. Profiles are extensible through ProfileItems.

Name Type Description

user User User containing first, last names; user name, etc.

my agent Agent The Agent that owns this profile.

ProfileItem

A ProfileItem enables users to store arbitrary key-value pairs in their Profile. This feature

is included for extensibility; plugins built on the SMOCS architecture can define their own

ProfileItems and perform actions based upon the ProfileItems of friends. ProfileItems can

store private or public information.

Name Type Description

profile Profile The Profile that this ProfileItem belongs to.

key string A unique key for this type of ProfileItem.

value string A value for this type of ProfileItem.

private boolean Whether this ProfileItem should be shared with others.

Relationship

Models a relationship between two agents. Relationships are directional, as described in

section 3.3.3.

Name Type Description

source Agent The source of the friendship.

destination Agent The destination of the friendship.

pub date datetime When the friendship was created.
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Key

A Key is a 1024-bit RSA key-pair. E and N are the public component; D, P and Q are the

private components, as defined in the RSA specification [61]. A Key is associated with an

Agent and is used for authentication and encryption.

Name Type Description

e long The public key exponent.

n long The multiple of p and q.

d long The private key exponent.

p long One of the two primes of the private key.

q long The second prime of the private key.

owner Agent The owner of this key.

3.7.3 Subscription

Models the “subscribe” portion of a publish/subscribe relationship.

Name Type Description

event type string The type of the event that is subscribed to.

publisher Agent The Agent who is publishing the event.

subscriber Agent The Agent who is subscribed to the event.

3.7.4 Aggregator

Models an agent’s participation in a third-party aggregator service.

Name Type Description

host Agent The Agent that hosts the aggregator.

type string The type of aggregator (e.g. “tracker” or “visualizer”, etc.)

joined datetime The datetime that the aggregator was joined.

3.7.5 Device

Models a smart device controlled by the owner of an agent. The use of private device id

is explained in appendix A.9.

42



Name Type Description

name string A friendly name assigned to the device.

type string The type of this device (e.g. ”laptop computer”)

is mobile boolean Whether the device is mobile or static.

private device id boolean Secret device id; hash of above fields.

3.7.6 FixedMeta

FixedMeta models fixed contextual data (commonly referred to as “metadata”) to include

in all contextual sensing reports made by a device. This is used by static devices to report

unchanging contextual metadata, for example the device’s location. Devices in the MIT

Media Lab, for instance, could be associated with FixedMeta that adds “Location: MIT

Media Lab” to all of their reports.

Name Type Description

device Device The device that this FixedMeta is associated with.

key string The type of contextual metadata.

value string The value of the contextual metadata.

3.7.7 DeviceOption

A device-specific runtime option. For example, the period to wait between scanning for

new contextual data. DeviceOptions are commonly used by devices with WiFi positioning

capabilities to set the Ethernet interface to scan for wireless base station MAC addresses.

DeviceOptions, like FixedMetas, are simple key-value pairs; this allows maximum exten-

sibility.

Name Type Description

device Device The device that this DeviceOption is associated with.

key string The key of the device option to set.

value string The value of the device option.

3.7.8 Sensor

A sensor on a device.
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Name Type Description

type string The type of this sensor, e.g. ”bluetooth” or ”location”.

identifies boolean Whether this sensor can identify agents from an identifier.

gathers context boolean Whether this sensor can gather context.

device Device The device that this sensor is connected to.

3.7.9 Identifier

An identifier that maps a sensed pattern to a known agent. Recall that identifiers are tuples

of the form <pattern, sensor type, agent>; this model encapsulates this structure.

Name Type Description

pattern string The pattern that identifies this agent (e.g. a BT MAC address.)

sensor type string The type of sensor to use to detect this agent.

agent Agent The agent that this identifier identifies.

3.7.10 Sensing

A Sensing is a raw reading made by a sensor on a device. Sensings are created by Sensors

that “can identify”.

Name Type Description

agent Agent The agent whose Sensor made this Sensing.

meta many SensingMetadata A collection of key-value pairs that describe the

context in which this Sensing was made.

reading string The raw reading that was made, e.g. ”AABBC-

CDDEEFF” in the case of a Bluetooth MAC.

sensor Sensor The Sensor that made this Sensing.

timestamp datetime The timestamp that this Sensing was made.

3.7.11 SensingMetadata

Contextual metadata associated with a particular sensing. Each Sensing has many Sens-

ingMetadata that describe the context in which the Sensing was made.

44



Name Type Description

sensing Sensing The Sensing that this SensingMetadata describes.

key string A key for this type of contextual metadata.

value string The value of the contextual metadata.

3.7.12 Report

A Report is generated when a known agent is discovered from a raw Sensing by using an

Identifier. The Report models the agent that was observed, the agent that made the obser-

vation (the observer), the identifier that was used when making the observation, and the

contextual data (metadata) associated with the report. This metadata is a copy of the Sens-

ingMetadata that was associated with the original Sensing that was transformed into a

Report. Reports are the core of SMOCS. Through reports, agents are alerted that they have

been identified by other agents with whom they shared their identifier, and subsequently

gather contextual data about the environment in which they were identified.

Alternatively, a Report is made when a mobile Device that is carried by the user sends

the agent contextual data. This contextual data updates the latest context of the agent, and

a Report is made and stored by the agent.

Name Type Description

observer Agent The Agent that made the Sensing that was trans-

formed into this Report.

observed Agent The Agent whose Identifier was observed.

identifier Identifier The Identifier used to transform a Sensing into

this Report.

timestamp datetime The timestamp that this Report was made.

meta many ReportMetadata A collection of key-value pairs that describe the

context in which this Report was made.

sensing Sensing The Sensing that this Report was created from.

Can be None.

3.7.13 ReportMetadata

Contextual metadata associated with a particular Report. Each Report has many Report-

Metadata that describe the context in which the Report was made.
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Name Type Description

report Report The Report that this ReportMetadata describes the context of.

key string A key for this type of contextual metadata.

value string The value of the contextual metadata.

3.8 Implementation

The SMOCS architecture is implemented as two separate components:

• Ego - Ego [3] is a distributed social networking platform in which user-owned and

controlled agents collaborate to form a communication network. The resulting ar-

chitecture is graph-based, with nodes representing agents and edges representing

the relationships between agents. Data flows across relationships. Ego implements

the distributed, agent-based social network required by SMOCS. Ego also provides a

plugin framework, allowing development of arbitrary plugins, the distributed event-

ing subsystem and the framework required for network interoperability. Ego has

been developed jointly with Polychronis Ypodimatopoulos.

• ContInt - ContInt is composed of two parts:

1. Tentacle. A small application that gathers contextual data from a device’s sen-

sors and reports this back to the owning agent.

2. ContInt. A plugin for Ego that implements the mechanisms for receiving con-

textual data and storing it in the owner’s agent. The ContInt plugin handles the

sharing of identifiers with friends, the visualization of historical context, and

introduces event types that can be used to create other context-driven applica-

tions.

Details of these implementations can be found in appendix A.
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Chapter 4

Evaluation

In this chapter we evaluate ContInt, the implementation of our SMOCS architecture. We

evaluate the agent-based backend implemented by Ego and the ContInt plugin that runs

on Ego. The implementation details are described in appendix A. The implementation is

evaluated along three dimensions: scalability and performance, architectural extensibility,

and privacy.

4.1 Scalability and performance

ContInt is required to be lightweight for it to maintain virality; one of the requirements of

the system is the ability for a user to run an agent on their own machine. In this section we

evaluate the processor, memory, storage and network usage of an Ego agent running the

ContInt plugin under heavy load.

4.1.1 Metrics

Three metrics are involved:

• Storage - It is important that agents store as little data as necessary (whilst keeping

the data as rich as possible) so that they can be hosted on less-capable machines. The

agent of a user running a sensing device receives a lot of data; assuming the device

reports its context every 30 seconds, 2880 reports are gathered per day. Achieving

O(n) scalability in the number of contextual data reports stored is trivial - one report

is stored for each report sent from a device - but minimizing the bytes that each report
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requires is more difficult. The SMOCS architecture calls for each Sensing object to be

associated with a set of SensingMetadata objects; see section 3.7.11 for details. Much

of this metadata is the same; for example, if a sensing device is stationary, the latitude

and longitude will be the same between reports. The ContInt implementation min-

imizes the number of bytes stored by allowing reuse of existing SensingMetadata.

This increases processor and disk usage when storing a report, but means that fewer

bytes are stored. Our goal is to measure the number of bytes stored on average per

day, and extrapolate this figure to estimate a year’s worth of data.

• Network overhead - The distributed nature of Ego and the manner in which context

is gathered, reported and shared means that network overhead should be minimized

in order to maximize performance. We do not expect overhead to be massive, but we

aim to measure overhead to estimate the order of magnitude of data transfer between

devices, agents and the friends of agents in a typical scenario.

• Processor and memory usage - To be run on servers of differing capabilities, we have

designed our code to have a lightweight processor and memory usage footprint. We

measure each of these resources over time.

All tests were conducted on a commodity machine (dual core 2.2 GHz Intel processor,

6 GB RAM, 200 GB available storage) running Ubuntu 9.04 x64. Agents were hosted by

apache2 and requests were handled with the mod wsgi handler, as mentioned in appendix

A.1.

4.1.2 Scenarios

We tested two scenarios:

• Single agent - In the single agent scenario, a simulated device reports contextual

data to an agent every 30 seconds while metrics are collected. This scenario allows

us to measure the system properties in the base case of a single user.

• Multi-agent - To simulate a server hosting multiple agents and to understand the

scalability properties of inter-agent communication better, 50 agents were run on a

single machine. Each agent had a single simulated device that reported to it every
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30 seconds. Agents participated in bi-directional relationships; these were generated

randomly, with each agent having 0-10 relationships.

The simulated devices in both scenarios were the same. They reported location data,

Bluetooth neighbors and temperature data. The location data and Bluetooth neighbors

were gathered by extending the ONE delay-tolerant network simulator [34]. ONE, de-

signed as a test-bed for delay-tolerant networking algorithms, provides a number of move-

ment models that can be used to simulate human movement. Each node (person) in the

simulation was extended to carry a device that reported the person’s location in the simu-

lation. In the multi-agent scenario, Bluetooth neighbors were simulated by assigning each

node a random identifier at startup and assuming that neighbors within 10 meters of a

node were detectable with Bluetooth. In the single agent scenario, Bluetooth neighbors

were randomly generated. Temperature was a random number between 0 and 30 (Cel-

sius). Both experiments were run over a one hour period. The user interface of the ONE

simulator can be seen in Figure 4-1.

Figure 4-1: The ONE simulator. Simulated people are seen. Each person carries a simu-
lated device that periodically reports location, Bluetooth neighbors and temperature to the
ContInt plugin running on an Ego agent.
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4.1.3 Results: Single agent

Figures 4-2, 4-3, 4-4, and 4-5 show the disk, network, processor and memory usage ob-

served under the single agent scenario. All readings were gathered by polling the appro-

priate resource every second over the course of an hour. Further details, where necessary,

are given as each result is discussed.

In Figure 4-2 we observe the size of the database of contextual data over time. As we

expect, the database grows linearly with the number of contextual data reports made by

the agent’s device. The final size of the database is 0.5625 MB after one hour; the initial

size was 0.1660 MB, so we conclude that 0.3965 MB of contextual data is added per hour.

A day worth of data scales this number to approximately 9.516 MB, assuming contextual

environment richness stays approximately the same. 10 MB a day translates to 3.65 GB per

year per agent - not an unreasonable number considering the capacity and probable future

increase of capacity of modern hard disk drives.

Figure 4-2: Graph showing size of the agent’s database over time in the single agent sce-
nario.

Figure 4-3 shows the aggregate network usage of all agents and simulated devices in

the system. The y-axis value at any time is the number of bytes transmitted since the

previous point. The way that we poll the network means that we observe periods with
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no transmission followed by periods with high transmission. Transmissions tend to be

in bursts with the most common transmissions being between 1500 and 4000 bytes long.

We observe a small overhead; over the course of the hour-long experiment, just 438340

bytes (or 428 KB) are transmitted. This number is not too high for modern smart devices

communicating with an agent: GPRS or 3G easily could handle such traffic easily.

Figure 4-3: Graph showing network usage of all agents and devices in the system in the
single agent scenario.

Figures 4-4 and 4-5 show the machine’s processor and memory usage over time. Nei-

ther of these graphs are particularly telling as the machine used for testing ran a number

of background processes and the action of polling and recording the metrics might have

incurred additional processor and memory usage.

From the processor usage shown in Figure 4-4 we see a base usage of approximately

8% that can immediately be discounted. The nature of the graph shows moments of peak

usage; however, these peaks are infrequent enough and significantly large enough that we

attribute them to background work on the machine. In this case, a steady processor usage

of between 9 and 35% is observed; or 1% and 27%, discounting the base 8%.

The graph shown in Figure 4-5 shows a constant memory usage of around 1130 MB.

The scale on the graph shows that the base 1.129× 103 is given, and subsequent variation
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Figure 4-4: Graph showing processor usage of machine hosting single agent scenario.

Figure 4-5: Graph showing memory usage of apache2 instances on machine hosting single
agent scenario.
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is between 1 and 3; essentially, memory usage stays constant. We believe that the memory

usage by apache2 is independent of the light load we are putting on it: with 6 GB of RAM

available, the server happily takes up 1 GB for its uses. Figure 4-9 is more instructive; it

shows the memory usage of apache2 under the multi-agent test.

4.1.4 Results: Multi-agent

Figures 4-6, 4-7, 4-8, and 4-9 show the measured disk, network, processor and memory

usage observed under the multi-agent scenario. As in the single agent scenario, all read-

ings were gathered by polling the appropriate resource every second over the course of an

hour.

In Figure 4-6 we observe the aggregate size of all agent databases of contextual data

over time. Again we observe O(n) growth in the number of reports stored. This is impor-

tant, because we might expect O(n2) growth given the sharing of contextual data between

users who identify each other and are friends, and in the multi-agent scenario agents have

between 0-10 friends. Our explanation is that the O(n2) factor gets masked by the over-

whelming amount of data stored at each individual agent; contextual data is only shared

between two friends when their devices meet and this happens relatively rarely. The extra

contextual reports being stored by each agent are visible in the final aggregate database

size, however: we observe a starting size of 8.3984 MB and a finishing size of 35.3486 MB,

for a total of 26.9502 MB of data stored during the test run. 26.9502 is more than fifty times

the 0.3965 MB of data collected by in the single agent test; it averages 0.5318 MB per hour.

This is what we would expect: agents sharing contextual data gather at least as much con-

textual data as agents not sharing contextual data. Extrapolating the hourly figure for a

day’s worth of data we arrive at a figure of 12.76 MB of data per agent per day, or 4.658 GB

per year - still a reasonable amount for modern machines.

Figure 4-7 shows the aggregate network usage of all agents and simulated devices in

the system. In the single agent scenario we observed 438340 bytes transmitted over the

hour; in the multi-agent scenario this number rises dramatically to 369114533 bytes per

hour; or approximately 352 MB. The amount of data transferred from each sensing device

to its agent is approximately the same as before (31 MB was observed); the rise in network

usage is due to the agents sharing contextual data with the agents of other users they

identify. 321 MB of network overhead between 50 agents connected by the Internet is not
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Figure 4-6: Graph showing aggregate size of all agent databases over time in the multi-
agent scenario.

a large amount; an average of 7 MB per hour per agent is manageable. Our simulation

measured data movement between a clique of friends, so we expect that the 7 MB per

hour per agent will not rise significantly in a real-world deployment.

Figures 4-8 and 4-9 show the machine processor and memory usage of the server over

time. The processor usage is significantly higher than in the single agent case, with the

bulk of the measurements in the region of 30 to 70% and consistently occurring peaks of

nearly 100%. The memory usage of the apache2 server rises from a base of 4 GB to 4.4 GB

by the end of the test. Again, we attribute the base of 4 GB to apache2’s willingness to

gather whatever resources it can in order to respond rapidly to requests.

These results are not necessarily indicitative of the actual processor usage or memory

footprint of the agent: both metrics are bound to increase as more agents are simulated.

Regardless, the results show that a commodity machine can host at least 50 active agents

with ease whilst maintaining high availability.
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Figure 4-7: Graph showing network usage of all agents and devices in the system in the
multi-agent scenario.

Figure 4-8: Graph showing processor usage of machine hosting multi-agent scenario.

55



Figure 4-9: Graph showing memory usage of apache2 instances on machine hosting multi-
agent scenario.

4.1.5 Discussion

The results presented show the scalability properties of ContInt allow the system to be de-

ployed on commodity hardware with ease. However, various optimizations exist that can

be implemented to reduce storage usage and network overhead, and possibly processor

and memory usage:

• Compression - All contextual data gathered by a smart device is sent to its owning

agent uncompressed. The data is then stored on the agent and shared with other

agents uncompressed. Compression requires extra processing during compression

and extraction (storage and retrieval) but can reduce storage usage. A decision

would have to be made as to whether compression is ultimately beneficial, given

the increasing size of storage devices compared with the relatively modest increases

in processor and memory speeds. Furthermore, uncompressed contextual data is

human-readable which makes developing (and debugging) applications that use this

data easier. If implemented, this optimization would reduce storage usage and net-

work overhead.
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• Data archiving - Old contextual data, or data that is of no use, can be archived or

deleted. For instance, contextual data reported from a static device owned by Bob

that did not describe Bob’s context (he was not near the device when the data was

gathered) could be deleted. This would reduce storage requirements and, by virtue

of removing entries from the database, reduce processor and memory usage during

data lookups.

• Contextual deltas - In the current implementation, a smart device sends its agent

its complete context in every report. If instead the device sent only changes (deltas)

that occurred since the last report, network overhead could be significantly reduced.

Through use of the system we have observed that contextual data reported by a

particular device tends to vary little over time; after all, most devices are carried by

people and these people tend to travel from home to work daily. A device carried by

a person thus reports the most changes in context when the person moves; the same

is true of statically-deployed devices - they observe the most contextual changes as

their neighbors change, and this happens when people broadcasting their identifiers

move around.

Reporting only deltas is the optimal way in which to report contextual data if the

goal is to reduce network overhead. Consider an 8 hour work day for a user, Bob,

carrying a smart device running the Tentacle software. Bob arrives at work, and

from then on his device reports that he is at work and the MAC addresses of users

broadcasting identifiers around him. In our current implementation, this contextual

data is encoded into JavaScript Object Notation (JSON) by the Tentacle software and

sent to Bob’s agent. A typical example is:

{

"device_id" : 1,

"sensors" : {

2 : [ {"reading":"001122334455", "ts":1234567.8},

...

{"reading":"AABBCCDDEEFF", "ts":1234568.9} ],

},

"meta" : {

"common.location.lat": "42.361210",

"common.location.lng": "-71.087337",

},

}
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Assuming that Bob’s device detects an average of 20 neighboring Bluetooth devices,

the JSON string (encoded as ASCII with all whitespace removed) takes up 953 bytes;

twenty 42-byte readings (including braces) and 113 bytes for the remainder of the

data. If the device reports every 30 seconds, Bob’s agent will receive 914,880 bytes

of sensor data most of which is redundant. Worse, the contextual data will take up

more than 1 MB on Bob’s agent; the agent timestamps every report and associates it

with the device that made the report.

If instead only deltas were reported by the Tentacle code, the JSON structure would

be of the following form:

{

"device_id" : 1,

"sensors" : {

2 : [ {"reading":"001122334455", "ts":1234567.8, "type":"start"},

{"reading":"AABBCCDDEEFF", "ts":1234567.8, "type":"end"}]

},

"meta" : {},

}

The above example shows how readings could “start” or “end”. Any started reading

without a corresponding ending is current. Bob’s device will make the initial report

(now 1253 bytes rather than 953 bytes due to each reading having the added “type”

field of size 15 bytes). Assuming that his neighbors do not change until the end of

the day, he will send 960 reports (2 reports a minute for 8 hours) with the “sensor”

and the “meta” sections reporting no additional data; note the agent requires some

sort of periodic heartbeat from the device, else it will assume the device has failed

and be wary of using the latest reported context for any context-driven applications

(this context could be old). These reports will be 43 bytes; much less than the 953

bytes sent in the current implementation. Assuming that he leaves the office between

reports and all readings “end” simultaneously, one final report of 1143 bytes will be

sent. The total bytes sent over the course of the work day is then 43,676; over 20

times less data than sent in the current implementation. Some of our assumptions are

strong - it is unlikely that there will be no changes in context during Bob’s work day

- but the figure highlights the order of magnitude difference between the optimality

of the current implementation and one that uses deltas.
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Such optimizations come at a price, however:

– Complexity - Deltas add complexity because the current contextual state of an

agent can only be obtained by processing all previous states. Checkpoints can

be used to improve the situation: every n reports, an agent could store a check-

point of its contextual state and subsequently process only reports from this

checkpoint onward when determining its current contextual state.

Another issue is introduced by the need to share reports between agents - that

is, the core of SMOCS. When an agent scours reported context for known iden-

tifiers and finds one, the agent must share the latest context of the device that

made the report with the agent of the identified user. Deltas cannot be shared

between agents; the recipient agent does not have the set of prior deltas required

to reconstruct the current context. Thus, reports must be constructed with the

complete current context of the reporting device. This might be computation-

ally expensive, and means that no network overhead is saved in data transfer

between agents - our solution to this problem is thus optimal (aside from possi-

ble compression).

– Processor and memory usage - Querying an agent for its current state is now

more computationally expensive because, as stated in the previous point, agents

need to process a set of deltas to construct their current state.

It is not clear that the extra cost of delta processing leads to a net improved perfor-

mance, though the network overhead between a Tentacle and its owning agent is

significantly reduced. This may reduce energy consumption on devices running the

software because fewer bytes need to be sent over the network.

The optimizations outlined show how small changes could result in performance im-

provements. Distributed systems tend to suffer from poor scalability properties due to the

overhead required to maintain the network and share data amongst peers. In this section

we have shown that ContInt can successfully be deployed on commodity hardware and,

whilst certain optimizations could be made to improve its scalability characteristics, the

current implementation is efficient along most dimensions. Any optimizations come at a

price, and determining whether this price is worth paying is left as future work.
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4.2 Architectural extensibility

The extensibility properties of a particular architecture cannot be measured empirically,

but they can be asserted through observation of pieces of software built on top of it. In

this section we present five diverse applications built on top of the Ego and ContInt im-

plementations and argue that their diverse requirements sufficiently flex the extensibility

properties of the architecture. Some of the applications are aggregators built on agents,

others are plugins built for agents, and still others are stand-alone applications.

4.2.1 LabTracker

LabTracker is an aggregator that monitors when members of the Viral Communications

group at the MIT Media Lab enter and leave the lab. The aggregator allows members of

the lab to see when their colleagues were last in the lab or how long they have been there.

Historical data is also available; users can see the patterns of their work colleagues. A

screenshot of LabTracker can be seen in Figure 4-10.

Figure 4-10: LabTracker user interface, showing when members of the Viral Communica-
tions group were last in the lab area.

When a member of Viral Communications makes their agent join LabTracker, they

agree to notify the aggregator each time they enter or leave the lab region. This region

is specified by the LabTracker; by participating in the aggregator, users agree to install this

region on their agent.

LabTracker demonstrates extensibility of:

• Aggregator requirements - All aggregators have requirements of some form. Some

require certain types of data to be opened up, others require a plugin to be installed
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on the agent to expand its functionality. The LabTracker requires that agents create

and maintain a geographical region defined by the tracker. Furthermore, the agents

are required to report the arrival and departures from this region.

• Database models - The aggregator maintains a record of every user’s arrival to and

departure from a region. This is not bundled functionality, so a new database model

must be defined to persist this data. Most aggregators and plugins do this, so we will

not highlight it in future examples.

4.2.2 Open Spaces

Open Spaces is a system concept first demonstrated at the MIT Media Lab Sponsor Meeting

in April 2009 [25]. The demonstration showed how a user carrying an Amulet [26] - a small

device under development by the Viral Communications group that, amongst other things,

maintains a user’s identity - could interact with third-party “public” computers and use

their screens by virtue of being detected by them. The goal was to show how one might

take advantage of the processing power in one’s surroundings in a more fluid way. Images

of Open Spaces in use are shown in Figures 4-11 and 4-12.

Figure 4-11: Open Spaces being used by two people carrying Amulets.
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Figure 4-12: Open Spaces demonstration showing the calendars of two users side by side
at the screen. The presence of the users was detected with ContInt, and their calendars
were retrieved from their Ego agents.

Open Spaces was implemented as a plugin on top of Ego that used ContInt. The main

demo screen ran an agent that had one device with two infrared (IRDA) sensors. The

sensors were periodically polled for the IRDA ID of the user in front of them. The agent

maintained a set of identifiers of the form <(IRDA ID), “IRDA”, (User ID)> to map IRDA

IDs to user IDs. When a user was detected, a separate process running on the machine

powering the screen was notified through the remote eventing mechanism. The mech-

anism notified the process of the presence of an Amulet and the identity of the owner.

That process then retrieved appropriate data from the Amulet and from the agent of the

Amulet’s owner and rendered it on screen.

Open Spaces demonstrated extensibility of:

• Sensors - IRDA was not a sensor type in the ContInt implementation. Open Spaces

added this sensor type and the sensor polling implementation necessary for the Ten-

tacle code (the code that runs on smart devices to sense the environment.) The design

of identifiers was flexible enough to handle this new sensor type seamlessly.

• Remote eventing - The process that handled the retrieval of data from the Amulet

and its owner’s agent implemented the publish method as specified by the SMOCS

architecture. The process subscribed to the screen’s agent’s “Amulet detected” event
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and was notified accordingly.

4.2.3 TinyBT

TinyBT (so named for its similarity to TinyURL [46]) is an aggregator that maps Bluetooth

addresses to owner agent URLs. Users make their agent join the aggregator if they want

to advertise a mapping between their Bluetooth device’s MAC address and their agent

URL. This can be used by anyone who wants to get the public profile of an unknown Blue-

tooth MAC address: when a user senses the MAC AA:BB:CC:DD:EE:FF, http://<TinyBT

server>/AA:BB:CC:DD:EE:FF will map to the URL of the identifier’s owning agent, if that

agent has joined the service.

TinyBT is also a shortcut for users who want to spread identifiers widely. Rather than

sharing their identifiers with specific friends, users can join TinyBT and make their iden-

tifier public. Then they can receive rich contextual data from anyone, as anyone can map

the identifier back to the owning agent and share detected contextual data.

TinyBT demonstrates how useful aggregators can be and how flexible the APIs that

aggregators support are. TinyBT requires users to have the ContInt plugin and, upon

joining the aggregator, requires users to select a primary identifier to share. This is another

example of aggregator requirement extensibility.

4.2.4 RemoteSense

RemoteSense is a programming framework (and simple console implementation) that al-

lows users to connect to a remote agent and receive contextual data directly from the sen-

sors of the remote agent’s devices. Users of RemoteSense must have an agent, and they

must provide the framework with their private key and agent URL; the framework can

then use these to encrypt and sign communications with other agents. RemoteSense im-

plements the publish Inter-Agent endpoint and knows how to subscribe to events on

other agents. The remote event-driven process described in Open Spaces (section 4.2.2)

was implemented with RemoteSense. Figure 4-13 shows the console-based user interface

of the RemoteSense application.

RemoteSense demonstrates the extensibility of ContInt’s APIs. The choice to use HTTP-

based protocols meant that any system that can communicate over HTTP can communicate
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Figure 4-13: RemoteSense application showing a stream of contextual data from sensors
run on devices of a remote agent.

with an agent. RemoteSense was not envisioned from the outset, but the SMOCS architec-

ture proved able to accommodate it.

4.2.5 Advanced privacy controls

Ego (with ContInt) has been used as a development platform by a number of people since

its inception. One researcher developed privacy controls more advanced than the simple

ones provided in Ego and (at the time of writing) is in the process of integrating them into

the Ego core. ContInt can take advantage of these new privacy controls, as it is built on

Ego.

The new privacy controls allow users to:

• Perturb data - Users can share perturbed data with peers. For instance, if Bob does

not want to tell his friends exactly where he is but would like to give them an ap-

proximate region, the privacy controls can be set to perturb his location.

• Compute functions over a set of encrypted data - Fully homomorphic encryption

[22] is used to compute simple algebraic functions over encrypted data. The scheme

allows arbitrary addition and multiplication functions to be performed on encrypted

data by a single aggregator that returns a result only decodable by the agents who
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provided the data. This can be used by aggregators to collect community-wide intel-

ligence from a group of participants but not actually allow the aggregator access to

the raw data or the results.

These controls demonstrate the extensibility of the Ego core. Ego implemented the

core of SMOCS, and these new privacy controls were added to the core of Ego with mi-

nor implementation changes required. The SMOCS privacy specification of selecting the

appropriate data to respond to a given requester was extended with new algorithms.

The above examples are five instances of applications supported by the SMOCS archi-

tecture and its implementation. Each application has unique requirements that test the

extensibility properties of the system. From these successful implementations and the ob-

servation that few changes needed to be made to existing Ego/ContInt code, we conclude

that the system has excellent extensibility properties. Future applications will continue to

test the SMOCS architecture but, given past and present experience implementing appli-

cations we believe that the system will be able to support many new applications in years

to come.

4.3 Privacy

We argue that the privacy mechanisms provided by ContInt are sufficient: users control

their data. To demonstrate this, consider two opposite cases and in an intermediate case of

user privacy requirement.

Alice runs a SMOCS agent on a public hosting service. She shares identifiers with

TinyBT in order to spread her identifiers widely so she can gather rich contextual data.

She opens up her current context to the public. She shares all her data and is not worried

about the privacy implications.

Bob is concerned about his privacy and shares his data with no one. He runs a SMOCS

agent on his own machine to which only he has physical access. He shares no identifiers,

and instead runs a Tentacle on his smart device. (If he has no smart device, he cannot use

the system to gather contextual data.) The Tentacle gathers contextual data and sends it

(encrypted) directly to his agent. Bob’s public profile shares no information. He is perfectly

happy with his privacy, and is in control of his data.
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The more interesting case occurs in the middle ground. Assume that Charlie wants to

share his context with Alice. Charlie’s agent allows Alice’s agent access to this data, and

Charlie must trust that Alice won’t release it to others. This is where notions of information

accountability come into play: Alice must accept that she is accountable to Charlie for

her use of Charlie’s data. Information accountability schemes are difficult; any human-

readable data can be copied, and so even software-level controls around data sharing can

be compromised. In the future such schemes may be possible; for now, we assume that

Charlie must place his trust in Alice.

Our system achieves sufficient privacy because it empowers users to control their data.

Everything is opt-in: if users want to gather rich contextual data by virtue of their identi-

fiers being sensed, they must share these identifiers with trusted peers. If users want to get

group-wide intelligence, they must share some personal data. If users want to be discov-

erable in a directory, they must share their name and agent URL. But it is entirely possible

to be like Bob and not share anything. Thus, data control is with the users and our privacy

requirements are satisfied.
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Chapter 5

Conclusion

In this chapter we give an overview of the work presented in this thesis and suggestions

for how this work can be taken forward.

5.1 Overview

In this thesis we define the concept of “socially mobile collaborative sensing” (SMOCS) and

demonstrate its usefulness as a truly viral contextual data gathering system. We show how

users with smart devices and dumb devices can collaborate to gather rich contextual data

about their environment in real time. The need for contextual data gathering is motivated

by the observation that more and more users are gathering contextual data with static and

mobile devices in order to use context-driven applications.

SMOCS, and the practical need for flexible privacy controls, led us to propose a dis-

tributed network composed of user-controlled “agents” connected by the Internet. Agents

form relationships in order to share data, including the identifiers required by SMOCS.

Agents act as personal data repositories and are designed to be as flexible as possible in

the data types they store in order to guarantee architectural extensibility. Agents are as-

sumed to be hosted on the Internet and identified uniquely by URLs.

Our SMOCS implementation called for HTTP-compliant RESTful APIs where possible.

Entity-Agent and Agent-Agent (or Inter-Agent) protocols are specified; EA protocols are

fully RESTful and IA protocols are as RESTful as possible - security requirements forced

us to design a non-standard RESTful protocol.

The SMOCS architecture is implemented with two components: Ego, a distributed so-

67



cial network that handles the core agent-based communications; and ContInt, the con-

textual data gathering plugin for Ego. We refer to this entire implementation as ContInt,

for simplicity. We also present ContInt’s device code that performs the actual sensing of

environment, the Tentacle. The agent is implemented as a set of web services, with a stan-

dard HTML user interface for user manipulation and exposed REST APIs providing the

possibility for future, non-browser based interface implementations.

We evaluate ContInt by considering scalability and performance metrics, its extensibil-

ity properties and we consider that its privacy controls are sufficient to give users confi-

dence.

We observe the expected O(n) storage use in the number of contextual data sensings

stored, and show empirically that the constant (number of bytes per sensing) is low, which

is important for scalability. We observe that an agent running a sensor in a contextually-

rich area creates on the order of 12 MB of data per day. We assert that uninteresting con-

textual data (e.g. data gathered by a static sensor that does not apply to the owner of the

agent) can periodically be archived to reduce database size, and that 3-4 GB of data per

year is not overwhelming for modern systems.

We monitor processor and memory usage, and demonstrate that up to 50 agents can

run concurrently on a single, commodity machine (2.2 GHz dual core, 6 GB RAM, Ubuntu

9.04 x64) even at peak usage. Peak usage was simulated by having all 50 agents share data

with their friends (a randomly selected subset of the other agents) and receive contextual

data inputs from simulated devices periodically. Our observations lead us to conclude that

agents are lightweight enough to be deployed on commodity hardware.

Five examples of applications built on top of (or in to) ContInt are assessed to demon-

strate the architectural extensibility of the system. We see that the decision to rely on

HTTP as a transport protocol and RESTful design principles enables rapid development

of diverse applications.

Finally, we revisit privacy with a practical observation of two extreme cases and an

intermediate case: a user who demands complete privacy and data control, and a user

who demands easy contextual sharing, rich contextual data gathering and less privacy,

and a user who is only prepared to share data with a trusted friend. All three cases are

satisfied by the system, primarily due to its opt-in structure: no data is exposed without

the permission of the user.
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5.2 Future work

We expect that future work will focus primarily on reducing the need to share identifiers; in

essence, killing the social nature of collaborative sensing. In future years, mobile devices

may become more open to developers, paving the way for fewer “dumb” devices and

allowing all users to run Tentacle code on their personal device.

Such developments might seem to negate the usefulness of SMOCS. While it is true

that the need for collaboration and, in particular, sharing personal identifiers with peers

may be reduced, we believe that the agent-based architecture used by SMOCS can be used

by future smart devices.

Immediate problems to be solved in order to secure SMOCS adoption include agent

migration between URLs and the inclusion of information accountability mechanisms:

• URL migration - We have relied upon URLs in our implementation as unique iden-

tifiers. When an agent wants to change its URL the process is difficult as the URL

must be updated in a multitude of places.

• Information accountability - We are interested in tracking information flow around

the network, and implementing preliminary accountability methods so that agents

can report their use of another agent’s data back to that agent. This will allow users

to be even more in control of their own data.

Note that these problems are do not prohibit deployment. As of writing, more than

30 people are actively using Ego/ContInt in the MIT Media Lab. We expect to see this

number rise as functionality is added.

Our goal with SMOCS is to demonstrate one possible way in which people could use

the computing resources in the world around them for their benefit. This as an instance of

the Third Cloud principle: the first cloud (the Internet) and the second cloud (“Web 2.0”)

will be displaced by a third cloud of hyper-local resources collaborating to achieve a task

[49]. We expect that most future work will focus on other applications of this principle.

Such work may not build directly upon SMOCS, but we expect that there will be much to

learn and develop from our architecture and its evaluation. The offloading of data collec-

tion, processing, storage and sharing due to our agent-based approach proves to be flexible

and powerful.
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We hope to see future work that makes better use of the idling computational resources

in the world around us, especially in the hyper-local world as portable devices increase in

capability. As Henry Ford said: “Coming together is a beginning. Keeping together is

progress. Working together is success.” In this thesis we have shown how devices can

come together and work together to achieve success. We expect progress.
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Appendix A

Implementation

In this appendix we detail ContInt, our implementation of the SMOCS architecture. Con-

tInt is built as a plugin for Ego, so many details concern work done on the Ego project. We

present details of Ego, the ContInt plugin, and the Tentacle code that gathers contextual

data from a device owned by an agent. These three components were first presented in

section 3.8.

We begin by presenting the decisions made that determined our implementation tools.

We then detail various aspects of the implementation that may be of interest to the reader,

including the distributed eventing subsystem, an overview of RESTful design patterns,

security frameworks and our plugin framework.

Developer-level technical details are available from the Ego documentation online at

http://enchalla.media.mit.edu/ego/.

A.1 Implementation decisions

The requirement of the Ego agent to be personally maintainable, reachable across a net-

work and to reuse standard protocols led us to implement the agent as an intelligent web

service. A web service architecture was chosen because:

• Internet - The Internet was the network to use for data sharing.

• Abstraction - A web service-based implementation forces abstraction between im-

plementation and API usage; data passed across HTTP must be serialized in a par-

ticular way, breaking any language-specific implementation details. This separation
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is crucial in software design.

• Protocol reuse - Web services allowed us to build upon the existing HTTP standard

and RESTful design patterns (see appendix A.2 for details.) Using established stan-

dards enables developers to build upon the system more easily.

• Caching - Existing network infrastructure is highly optimized for delivering data

across HTTP; memcached [40] and other caching software could be used by the agent

without it having to implement its own, domain-specific cache.

• Outsourcing hosting - A requirement of the SMOCS architecture was that users

should be able to run their own agent or have one hosted for them. Implement-

ing the agent as a web service enables users to run their own easily or to have it

outsourced to a web hosting company. Our implementation is compatible with the

Apache web server [17], meaning that it can be hosted by any machine running an

Apache instance. It is also compatible with the Web Server Gateway Interface (WSGI

specification [13] so can be run on any server with WSGI bindings. As of writing,

WSGI has wide support: Apache and Microsoft’s Internet Information Services (IIS)

[11] server support it [62].

Having chosen to implement the agent as a web service, a web application framework

and set of languages for implementation had to be chosen. We chose to implement agents

in Python [19] on top of the Django web framework [18]. Python was our language of

choice because:

• Portability - Python can run on every major operating system and a variety of de-

vices, from high-end web servers to cellular telephones. Our implementation of the

agent can run on a portable Nokia N810 Internet tablet.

• Rapid development - Python allows developers to express themselves concisely.

Many common design patterns are abstracted, so more can be done in fewer lines

of code.

• Active community - The Python community is large and active. Many common

problems have been solved elegantly by others.
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• Libraries - Python has thousands of extension libraries and frameworks that can be

used. We used Django, geopy, httplib2, urllib2, pyyaml and simplejson.

Django is a web application framework built in Python that enables rapid development

of database-backed websites. Django, Pylons [47] and web.py [56] were compared and

Django was chosen, primarily due to past familiarity with the framework, but also because:

• Community - Django has the most active community of any Python web framework.

• Reliability - Django is a proven framework used by a number of large websites,

including the Lawrence Journal-World newspaper and its affiliates.

• REST support - Django has a number of third party plugins for building both REST-

ful and RPC-based applications. It is also bundled with essential tools for HTTP

security, and prevention of Cross-Site Request Forgery (CSRF) attacks.

• Abstraction - Django implements a Model-View-Controller paradigm

(Model-Template-View in Django-lingo, but the same as MVC) that allows for easy

separation between data models, manipulation of models and views of the models.

• Object expressiveness - Django has a mature object-relational mapper (ORM) for

persisting Python objects to database tables. The database drives the agent, so a

mature ORM is essential in order to express complex object relationships. Django’s

ORM supports one-to-many and many-to-many relationships as well as object inher-

itance.

Agents acquire large quantities of data over their lifetime and this data must be per-

sisted in a database. As noted, Django has a mature database wrapper. The wrapper

supports multiple database servers, including MySQL [2], PostgreSQL [24], and SQLite

[9]. SQLite was chosen because it is a self-contained file-based database. MySQL and

PostgreSQL would both require separate database services to be run. If this was required

of users the system’s virality would decrease as the barrier to entry increases. SQLite is

an excellent choice for a personal, lightweight web service like the agent for a number of

reasons:

• Single file - The database is stored entirely in a single file on the file system. It can

be backed up simply by copying it elsewhere. Backups are critical to a system that
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gathers sensitive data; we do not want users to lose all their personal data to a server

crash. Thus it is important to make the backup process easy. SQLite makes full

database backups trivial.

• Permissioning - If the database was run on a centralized database server, permis-

sioning would have to be needlessly replicated from the file system. Any time per-

missions are replicated, the possibility of error is introduced.

All web-service components of Ego and ContInt follow the same architecture. That

is, both the aggregator and the agent are implemented in this manner. Aggregators are

implemented as agents with added functionality; see section 3.6.2 for details of the added

functionality.

A.2 RESTful design patterns

Where possible, we implemented our communication protocols using the REST architec-

tural style. We evaluated XML-RPC (eXtensible Markup Language Remote Procedure

Call) [30], SOAP (Simple Object Access Protocol) [27] and REST (Representational State

Transfer) [15] as alternatives for web service protocol implementation. We chose REST

over XML-RPC and SOAP for the following reasons:

• Object-orientation - REST takes an object-oriented approach to web service design.

“Resources” are addressed with URLs, and manipulated with standard HTTP verbs.

XML-RPC and SOAP are function-oriented; rather than asking an object to update

itself, the developer must write a function that takes an object and a set of updates

and applies those updates to the object in a functional manner.

• HTTP verb reuse - REST reuses standard HTTP verbs (POST, GET, PUT, DELETE)

for the standard CRUD (CREATE, READ, UPDATE, DELETE) methods needed to

manipulate database-backed objects. In XML-RPC and SOAP, one has to write a cre-

ateObject, getObject, updateObject and deleteObject method for each type of object

being manipulated; the power of HTTP’s built-in verbs is lost.

• Broad support - REST tends to be the web service implementation of choice for most

modern ”Web 2.0” websites. Flickr, Twitter, Facebook and Google provide RESTful
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APIs. SOAP tends to be used in corporate environments because of its support from

Microsoft services and its static typing capabilities.

• Language agnostic - REST can be used by any language that provides HTTP bind-

ings. XML-RPC and SOAP need XML parsers at the very least; utility libraries would

be extremely useful due to XML-RPC and SOAP’s verbosity.

REST has some disadvantages:

• Loose protocol - Beyond the architectural and naming conventions, REST offers little

in terms of protocol. Message bodies (data sent in requests) can contain arbitrary

data; likewise, any data type can be returned. Some web services serialize data as

XML, others as JSON and still others as YAML. To be as flexible as possible, many

services support content negotiation [16]; requesters provide an Accept: (value) key-

value pair stating the serialization method to use in the server’s response.

• Error reporting - REST indicates errors through HTTP status codes. The status codes

for errors include 400 (bad request), 401 (unauthorized), 403 (forbidden), 404 (not

found) and 405 (method not allowed). These codes alone do not provide enough

information to debug a complex problem. XML-RPC and SOAP have a well-defined

error structure in which error codes and messages are formatted in a particular way.

RESTful services tend to define their own error reporting format and enforce it by

convention. This can be irritating, as each service has a different error reporting

implementation. For example, Facebook and Yahoo!’s REST protocols have different

error reporting standards [14, 33].

We believe the advantages of REST far outweigh its disadvantages. Ego uses REST

extensively to export objects modelled in an agent’s database for manipulation over HTTP.

This enables data access and manipulation from anywhere: agent user interfaces could be

built for any device from an iPhone to a Desktop computer. Our web-based user interface,

detailed in appendix A.6 is built on the exposed REST interfaces.

A.3 Inter-Agent security protocols

Because Ego is a distributed network formed by a society of agents, it is necessary to define

clear inter-agent (IA) communication protocols. The protocols allow agents to maintain the
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structure of the network and share data with each other. Examples of inter-agent commu-

nication include agents requesting each other’s profile information, forming relationships

and alerting each other of events.

The design of the IA communication protocols was driven by two key motivations. The

protocols had to:

1. Support authentication and encryption - Different data could be returned depend-

ing on the identity of the requester. If a friend of an agent requests the agent’s profile

different data will be returned than that returned to a stranger asking the same ques-

tion. This is a relatively simple problem to solve in a centralized social website where

identity can be verified by the central server, but in a distributed network the prob-

lem is more difficult.

2. Be built on HTTP - We wanted any HTTP-speaking device to be able to act as an

agent. Furthermore, we wanted to be able to communicate with an agent from any

HTTP-speaking device, even if that device could not run an entire agent.

In standard centralized servers, HTTPS [50] is often used to encrypt client-server com-

munication. HTTPS supports encryption over TLS. Authentication is supported by

HTTP/1.0 (basic user name, password authentication) and more complex digest authenti-

cation is supported by HTTP/1.1 [20]. However, both authentication schemes require the

user to have an account on the server that they are requesting data from. This is acceptable

for our REST APIs which are designed only to be accessible by the owner of the agent,

but not acceptable for our IA APIs: for every agent to have an account on their friend’s

agents would introduce n2 worth of unnecessary storage overhead in the system, and be

very difficult to maintain.

A public key infrastructure (PKI) was needed to enable authentication and encryption.

PGP [6] is a distributed PKI system that allows users to maintain, share and endorse each

other’s public keys. PGP could be used by the agents, but introducing another third-party

component to the architecture reduces its virality by increasing the conceptual overhead

requirement for new users.

In our solution, agents generate their own RSA 1024-bit key pair the first time they

are run. The process is transparent to the user. Agents advertise their public key at a

well-known address so that others can access it easily. We then use the public key for two
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purposes:

1. Encryption - When making a request of a remote agent, the remote agent’s public

key is retrieved and the request is encrypted with this public key. Only the remote

agent can decrypt the request by using its private key.

2. Authentication - It is necessary for the requesting user to be authenticated in order

to access the information they want; agents can respond to the same query with

different results depending on the identity of the asking user. In the header of a

request, the following three fields are passed:

• ts - The UTC timestamp of the request, in epoch-seconds.

• req agent - The URL of the requesting agent.

• sig - The cryptographic signature over the entire request made using the re-

questing agent’s private key.

In addition to the core three fields, the header also includes whatever data is needed

by the requested method. For instance, if Alice was requesting Bob’s latest context, her

request might contain a set of filters declaring which types of context to return.

The entire request is encrypted before being sent to the target agent. Because HTTPS

cannot be used, one cannot use a standard HTTP POST with individually encrypted fields.

Instead, the entire request is bundled into a JSON (JavaScript Object Notation) object and

encrypted. This encrypted JSON object is then passed in the HTTP POST field “JSON”.

When the remote agent receives the request, it decrypts the posted JSON object and at-

tempts to authenticate the identity of the requesting user.

The ts, req agent and sig are deserialized from the decrypted JSON object. The public

key of the req agent is looked up in a cache; if it does not exist it is retrieved from the URL

specified by req agent. Once obtained, the key is used to verify the integrity of the data

by authenticating the signature against the data. Finally, the timestamp ts is compared to

current UTC time. If the time is within a small delta then the authenticity is verified and

an appropriate result is generated and returned.

Because responses are given in the form of HTTP responses, the request is vulnerable

to replay attacks. Snooping attackers can observe an encrypted request passing from Alice

to Bob. The attacker could capture the request and replay it at a later date; the request, after
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all, is a valid one - it has the required signature of Alice and has not been tampered with.

Replay attacks are thwarted by the inclusion of the timestamp of the request in the field ts.

If a request is received and the delta between the request’s timestamp and the current time

is over some limit, the request will not be processed and an error returned. This requires

agents to have synchronized clocks. We implemented clock synchronization using the

Network Time Protocol (NTP) [44]. Agents maintain a local clock offset from UTC, and

their local time must only be updated every month or so; qualitative observations have

shown minimal drift thus far.

The IA security protocol workflow is shown in Figure A-1.

A.4 Naming conventions

Naming conventions are given to improve modularity and understanding. The following

rules are adhered to:

Relative URL Description

/ URL of the agent’s core user interface.

/<package>/ URL of a component of Ego. For example, the ego.core

package that implements the core functionality can be

found under /core/.

/<package>/ia/ URL of exported inter-agent (IA) functions for a pack-

age.

/<package>/ui/ URL of web browser-renderable HTML pages (UI) for

manipulating an agent that are specific to a package.

/<package>/ajax/ URL of assorted methods to be used by the UI for

manipulating the agent via asynchronous JavaScript

calls.

/<package>/rest/<resource>/ URL of exported RESTful models of a package. For

instance, the ego.core package allows its Agent model

to be manipulated over REST. So /core/rest/agent/

would be a RESTful endpoint.
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Figure A-1: Agent IA function encryption and authentication workflow.
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A.5 API generation

As noted in our discussion of REST (appendix A.2), the protocol’s lack of support for auto-

generated descriptor formats (such as WSDL) increases difficulty for developers. Develop-

ers cannot simply parse a WSDL file in order to list all possible methods; they must read

the protocol documentation. We solved this problem in Ego by generating lightweight

Python API wrappers from the source documentation.

Ego’s documentation is generated by Sphinx [4], the new standard for Python docu-

mentation. Sphinx uses the reStructuredText markup language [1] to embed metadata in

documentation strings for functions. Sphinx allows extensions to be built to parse custom

“directives”. We extended Sphinx with three new directives: jsonparams, jsonreturns and

httpmethod:

• jsonparams - Documents a set of JSON-encoded parameters to the function. The

parameters are expected to be contained in the form variable “JSON”, regardless of

the HTTP request type (POST, GET, etc.) used. Parameters are specified in YAML

encoding. YAML was chosen for its clarity and similarity to Python syntax.

• jsonreturns - Documents a set of JSON-encoded return values to expect from the

function. Like the jsonparams directive, jsonreturns has parameters specified in

YAML encoding.

• httpmethod - Specifies the HTTP method (GET, POST, PUT, DELETE) to be used

when calling this function. Takes one argument which should be one of GET, POST,

PUT or DELETE.

An example of this format can be seen in the ContInt plugin’s inter-agent protocol

specifications:

def report(request):

"""

Reports an identification of this agent.

.. httpmethod:: POST

.. jsonparams::

req_agent : The URL of the requesting agent

ts : The UTC timestamp of this request in epoch-seconds

sig : The cryptographic hash of this request
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using the req_agent’s private key

report: {

observer : The URL of the agent that made the observation,

observed : The URL of the agent that was observed,

identifier: {

pattern : The pattern used for identification,

sensor_type : The type of the sensor that was used,

agent_url : The URL of the agent identified by this identifier,

},

timestamp : The time of this report in UTC epoch-seconds,

}

meta : Key-value pairs of metadata about this report. (optional)

.. jsonreturns::

resp_agent : The URL of the responding agent

errors : A list of error strings that occured

error : A boolean indicating whether an error occurred

ts : The UTC timestamp of this request, in epoch-seconds

sig : The cryptographic hash of this response using the

resp_agent’s private key

"""

The directives allowed us to define special documentation formatting and, as a byprod-

uct, allowed us to generate a Python API around IA functions. The process of calling an

IA function on another agent improved dramatically. The old API had a large amount of

boilerplate code:

import simplejson, urllib, urlparse, time

params = { "req_agent" : "http://my.agent.url.com/",
"ts" : time.time(),
"sig" : generate_sig(),

}
json = simplejson.dumps(params)
params = urllib.urlencode({"JSON" : json})
# POST request
f = urllib.urlopen(urlparse.urljoin(

"http://ebola.media.mit.edu/camick/",
"./core/ia/profile/"), params)

response = simplejson.loads(f.read())
f.close()
# Do something with response

The new API reduces the boilerplate significantly:

import egoapi
my_private_key = "ABCDEF"
egoapi.set_origin("http://my.agent.url.com/", my_private_key)
egoapi.set_target("http://ebola.media.mit.edu/camick/")

81



Figure A-2: User interface of the main screen of an agent.

response = egoapi.core_ia_profile()

Developers can use this new API with little understanding of RESTful APIs and with

much less boilerplate code.

A.6 Web-based user interface

Ego provides a web-based user interface from which users can manipulate the data stored

in their agent. The interface is dynamic, and is implemented in HTML, CSS and JavaScript.

Figure A-2 shows the main screen of an agent; figures A-3 and A-4 show screens oriented

around friends and their recent status updates.

ContInt adds user interfaces to manage devices, identifiers, geographical regions of

interest (to support region-based events) and a simple visualization of recent contextual

data of friends. These four images are shown in Figures A-5, A-6, A-7 and A-8 respectively.
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Figure A-3: User interface showing a list of all friends of the agent’s owner.

Figure A-4: User interface showing timeline of recent status updates from the friends of
the agent’s owner.
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Figure A-5: User interface showing device management screen in the ContInt Ego plugin.

Figure A-6: User interface showing identifier management screen in the ContInt Ego plu-
gin.
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Figure A-7: User interface showing geographic region management in the ContInt Ego
plugin.
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Figure A-8: User interface showing latest contextual data in the ContInt Ego plugin.
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A.7 Distributed eventing

A major goal of Ego was to build a publish/subscribe architecture to allow data to flow

freely between agents in a social network. The classic observer/observable pattern laid

out succinctly by the Gang of Four [21] was applied in order to implement our solution.

We began by implementing a local eventing subsystem that allowed code running on

the agent to register function handlers for different event types. When an event is raised,

all handlers of the event are called in the order that they were added. The API exposed by

the eventing subsystem is simple:

• register event handler (string event type, function handler func)

Registers a function to be called when a certain event type is emitted. The event type

must exist, or an exception is raised.

• create event type (string event type)

Creates a new event type.

• remove event handler (string event type, function handler func)

Removes a function that was registered to be called when a certain event type was

raised.

• emit (string event type)

Emits the given event type. This causes all handlers of this event type to be called.

Common types of events include “an agent requested your friendship”, “new contex-

tual data was reported” and “your friend updated his status.” These events are emitted

and captured by observers running locally on the agent. Common observers include the

logging subsystem that captures and logs all agent-wide events, and plugins. Events al-

low clean decoupling between different parts of software running on the agent. Plugins are

particularly benefited by this separation, as it allows them to tie into existing functionality

without having to modify existing code.

Event handler functions have the following method signature:

handler func (string event type, dict event data, string src agent=None)

The event type is the name of the event that was fired. This is included as some handler

functions might be registered to multiple different event types. event data is a dictionary
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of arbitrary data associated with the event. For instance, if the event was describing a

friendship request, the event data dictionary would contain the requesting agent’s URL

and a personal message associated with the request. Each event has its own set of data,

and it is up to the designer of each event type to document this data clearly. The src agent

field contains the URL of the agent that raised this event. It defaults to None; this signifies

that the event was raised locally.

The distributed eventing system was built on top of the local eventing subsystem. We

added one additional method:

• register remote handler (string event type, url remote url)

Registers a remote URL to be notified of events raised on the local agent.

The function wraps the remote url inside a new function that handles the serialization

and publishing of the event to registered subscribers. This is done by:

1. Creating a new dictionary, event, that contains the raised event type and its event data.

2. Serializing the event dictionary into JSON.

3. Posting the serialized event dictionary to the remote url with all the necessary fields

for secure IA communication (detailed in appendix A.3.)

A.8 Plugin framework

Ego acquires hundreds of megabytes of personal user data; thousands if rich contextual

data is maintained. In order to take full advantage of this data for the purposes that Ego is

designed for (personal data mining, community sharing), it is extremely important to open

up Ego to plugin development. Plugins are small applications that are built on top of the

core Ego framework that manipulate its data or add new functionality for data collection

and sharing.

A plugin is a self-contained Django application with a few special attributes in its

init .py file. Creating a plugin is easy for anyone familiar with Django:

1. Create a Django application.

2. Create an init .py file in the root of the Django application that contains:
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Figure A-9: User interface showing plugin management in Ego.

• img (string) - A URL to an image to display in Ego’s UI.

• index (string) - The name of the view function that is the index of the applica-

tion. For example, “myplugin.views.index”. This is wired to the icon displayed

in the Ego website, and will be the first page rendered when users visit the plu-

gin.

• name (string) - A name to display in the UI.

• description (string) - A short description to be displayed in the plugin manage-

ment UI.

3. Copy the root directory into Ego’s “plugins” subdirectory.

Ego agents periodically check the contents of the plugins subdirectory to see if it has

changed. New plugins are loaded dynamically at runtime. Plugins can be enabled and

disabled from the plugin control panel in Ego’s web UI, shown in Figure A-9.

A.9 Tentacle implementation

There are two different implementations that work together to form ContInt: the ContInt

application and the device code that runs on smart devices. The device code, known as the
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Tentacle code, polls sensors on the device and reports it back to the owning agent. There

are three different Tentacle implementations:

• Linux - The Linux implementation is designed for standard Linux distributions. It is

implemented in Python. The code has been tested on Ubuntu, Fedora and Maemo

(Nokia’s Internet tablet Linux distribution). The Linux implementation supports

scanning of Bluetooth, capturing images from attached webcams and location sens-

ing with both GPS and WPS (WiFi positioning).

• PyS60 - The PyS60 implementation is written in Python but targeted at the Symbian

S60 [43] platform. S60 is the platform that most of Nokia’s cell phones, including the

N95, run. The platform is more restricted than Python on a Linux; many standard

Python libraries are not available. The PyS60 implementation can determine location

through GPS and WPS and can scan for Bluetooth neighbors.

• Android - The Android implementation is a Java implementation designed to run

on Google’s Android G1 cellular phones. It can determine location through GPS and

WPS, scan for Bluetooth neighbors, and record accelerometer data.

A.9.1 Workflow

All devices have the same general code structure and implement the same abstract work-

flow.

1. The device reads a configuration file named “config.json”. config.json has the follow-

ing key-value pair structure:

{

"agent_url" : "http://ego.media.mit.edu/viral/",

"private_device_id" : "90e35e3776fe9c2a7abfdf3e435920eee1eb1e3e2ef0edec339ebcb1"

}

The agent url stores the URL of the agent to report sensor readings to. The pri-

vate device id is the unique id of this reporting device. It is the SHA-224 hexadec-

imal digest of the string concatenation of the device’s database model ID, the time

that the device was added to the agent, and a random number between 0 and 109.

This allows the device to communicate with the agent specified in agent url without
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having to retain the user’s login credentials on the device. If devices were to identify

themselves to their owning agent by simply providing their ID and that ID was noth-

ing more than a function of their creation order, fake devices that spoofed reports to

agents could be created.

2. The device connects to the agent specified by agent url, supplying private device id.

The agent responds with the latest configuration settings for the device. (This allows

devices to have their configuration settings updated on their agent’s web-based user

interface and pick up new settings between runs.) The configuration that the device

receives has the structure:

"config": {

"main": {

"agent_url": "http://ego.media.mit.edu/viral/",

"device_id": 1,

"sensor_ids": [2]

},

"sensor_2": {

"identifies": true,

"provides_meta": true,

"type": "bluetooth",

"id": 2

},

"meta": {

"common.location.lat": "42.361210",

"common.location.lng": "-71.087337",

"common.location.name": "Viral Communications"

},

"options": {

"common.report_period_s" : 40,

}

}

The configuration always contains 3 sections:

• main - This contains the URL to report to (agent url), the ID of the reporting

device (device id), and the IDs of the sensors that are hosted on the device

(sensor ids; a list of integers.)

• meta - A collection of key-value pairs of fixed metadata to be injected into every

report this device makes (unless overridden by a sensor running on the device):

this is fixed contextual data.
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• options - Contains a set of device-specific options in key-value format.

The above example is from a static sensor that stays in Viral Communications and

can only scan for Bluetooth neighbors. Thus the device reports additional metadata

including its approximate latitude and longitude, and a location name.

For each sensor id in main.sensor ids, a corresponding entry “sensor ” + sensor id

exists. In the above example, there is only one sensor on this device and it is sensor ID

2, so sensor 2 is a field in the configuration. Each sensor configuration contains four

fields: a boolean indicating whether the sensor can identify individuals (Bluetooth

and cameras can; a GPS receiver cannot), a boolean indicating whether the sensor

provides contextual metadata, the sensor type as a string, and the ID of this sensor

in the agent’s database.

3. For each sensor in the retrieved configuration, the code instantiates an object of that

sensor’s type. All constructors take two arguments: a set of device configuration

options (as specified in options) and the ID of the sensor.

4. A loop is then entered. The loop sleeps for 30 seconds, or the value of

“common.report period s” if this key is passed in options. When the sleep period

has passed, each of the sensors on the device is polled in turn for readings. Each

sensor implements a poll function that returns two objects: a list of raw sensor read-

ings that can be used for identification and a list of sensor readings to be used for

contextual data. Sensors that do not identify will return empty lists when polled for

readings; sensors that do not provide metadata will return empty lists when polled

for the metadata.

5. The readings form each device are bundled into a map of key-value pairs and serial-

ized into a JSON object. This object has the form:

{

"device_id" : 1,

"sensors" : {

2 : [ {"reading":"abcdefg", "ts":1234567.8},

{"reading":"hijklmno", "ts":1234568.9} ],

},

"meta" : {

"common.location.lat": "42.361210",
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"common.location.lng": "-71.087337",

"common.location.name": "Viral Communications"

},

}

This object is encrypted with the public key of the agent to report to, and is then

sent over HTTP to the exposed IA function /contint/p/report/. This is the private

reporting API used by devices to report sensings; it is not to be confused with the

public reporting API /contint/ia/report/ that allows agents to report sightings to

each other.

A.10 Source code

The source code for Ego, ContInt and the Tentacle are available through Subversion [29]. It

is not included in this thesis due to its size - at the time of writing, the code is nearly 29,000

lines. The code can be obtained from Subversion:

svn co http://enchalla.media.mit.edu/svn/ego/trunk/ego/

Details on how to use the code to run an agent are available in tutorials on the Ego

website: http://ego.media.mit.edu/.
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