
Package com.facebook.login

└Class LoginFragment.java

└Class LoginClient.java

└Class LoginManager.java

└Class LoginLogger.java

Package com.facebook

└Class FacebookActivity.java

Package com.facebook.appevents

└Class AppEventsLogger

public�class�FacebookActivity�extends�FragmentActivity

...(생략)...

private�static�String�FRAGMENT_TAG�=�“SingleFragment”;

private�Fragment�singleFragment;

@Override

public�void�onCreate(Bundle�savedInstanceState)�{

��super.onCreate(savedInstanceState);

��Intent�intent�=�getIntent();

��...(생략)...

��Fragmentmanager�manager�=�getSupportFragmentManager();

��Fragment�fragment�=�manager.findFragmentByTag(FRAGMENT_TAG);

1. Facebook�login은�Parse.com에서�ParseFaceBookUtils�클래스를�지원하고�있습니다.�구현된�소스는�비공개이

며,�API에서는�사용법에�대한�설명만�나와�있습니다.�따라서�Facebook�에서�지원하는�SDK내부의�login과�관

련된�소스를�분석하여�Authentication과�Authorization에�대해�조사해보려고�하였습니다.

[요약]

ⅰ)�Facebook�AccessToken

- expires�:�만기일

- permissions�:�권한

- declinedPermissions�:�declined�권한

- token�:�실제�facebook�으로�얻은�token�값.

- source�:�AccessTokenSource.FACEBOOK_APPLICATION,�AccessTokenSource.WEB_VIEW�등의�enum�값

- lastRefresh�:�가장�최근의�refresh�Time

- applicationid�:�AccessToken과�관련된�Facebook�Application의�Id

- userId�:�유저의�Id�입니다.

ⅱ)�Facebook�AccessToken�Request

- loginBehavior�:�실제�로그인할�때�로그인�방식을�설정,�SSO_WITH_FALLBACK(기본),�SSO_ONLY,�SUPPRESS_SSO

- permissions�:�read,�pulish�등의�권한�설정

- defaultAudience�:�Facebook의�공개범위.�감추기,�혼자만�보기,�친구에게�보이기(기본),�모두에게�보이기

- applicationId�:�com.facebook.sdk.ApplicationId의�metaData�중�문자열이나�숫자로�된�sdk�버전.

- authId�:�UUID(범용�공유�식별자)값,�RFC�4122(http://www.ietf.org/rfc/rfc4122.txt)참고.

ⅲ)�Facebook�AccessToken�Result

- code�:�SUCCESS,�CANCEL,�ERROR�의�enum�값

- token�:�실제�반환받은�AccessToken

- errormessage�:�에러메시지�┐�해당�부분은�정리하지�못하였습니다.

- errorCode�:�에러코드������┘

- request�:�result를�반환하게�한�request�–�정확하지�못합니다.

- loggingExtras�:��-�정확하지�못합니다.

추가:�페이스북�모바일�AccessToken의�경우�만기일이�대개�60일�이라고�합니다.

��if(�fragment�==�null�)�{

����if(�FacebookDialogFragment.TAG.equlas(intent.getAction())�)�{�//�TAG�=�“FacebookDialogFragment“

������FacebookDialogFragment�dialogFragment�=�new�FacebookDialogFragment();

������dialogFragment.setRetainInstance(true);

������dialogFragment.show(manager,�FRAGMENT_TAG);

������fragment�=�dialogFragment;

����}�else�{�//�TAG�=�“LoginFragment”

������fragment�=�new�LoginFragment();

������fragment.setRetainInstance(true);

������manager.beginTransaction()

��������.add(R.id.com_facebook_fragment_container,�fragment,�FRAGMENT_TAG)

��������.commit();

����}

��}

��singleFragment�=�fragment;

}

LoginFragment�가�실행될�Activity�입니다.

Fragment의�TAG로�실행할�Fragment가�무엇인지�구분합니다.

public�class�LoginFragment�extends�Fragment

...(생략)...

static�final�String�RESULT_KEY�=�“com.facebook.LoginFragment:Result”;

private�static�final�String�TAG�=�“LoginFragment”;

private�static�final�String�SAVED_LOGIN_CLIENT�=�“loginClient”;

@Override

public�void�onCreate(Bundle�savedInstanceState)�{

��super.onCreate(savedInstanceState);

��if(�savedInstanceState�!=�null�)�{�//�not�first�login

����loginClient�=�savedInstanceState.getParcelabel(SAVED_LOGIN_CLIENT);

����loginClient.setFragment(this);

��}�else�{�//�first�login

����loginClient�=�new�LoginClient(this);

��}

��loginClient.setOnCompletedListener(new�LoginClient.OnCompletedListener()�{�

����@Override

����public�void�onCompleted(LoginClient.Result�outcome)�{

������onLoginClientCompleted(outcome);

����}

��});

��...(생략)...

}

private�void�onLoginClientCompleted(LoginClient.Result�outcome)�{

��request�=�null;

��int�resultCode�=�(outcome.code�==�LoginClient.Result.Code.CANCEL)�?�//�Result�is�inner�class,

����Activity.RESULT_CANCELED�:�Activity.RESULT_OK;��������������������//�Result.Code�is�enum

��Bundle�bundle�=�new�Bundle();

��bundle.putparcelable(RESULT_KEY,�outcome);

��Intent�resultIntent�=�new�Intent();

��resultIntent.putExtra(bundle);

��//�The�activity�might�be�detached�we�will�send�a�cancel�result�in�onDetach

��if(�isAdded()�)�{

����getActivity().setResult(resultCode,�resultIntent);

����getActivity().finish();

��}

}

@Override

public�void�onSavedInstanceState(Bundle�outState)�{

��super.onSaveInstanceState(outState);

��outState.putParcelable(SAVED_LOGIN_CLIENT,�loginClient);�//�not�first�login

}

TAG가�LoginFragment인�Fragment�입니다.

Fragment�생명주기�중�onCreate에�LoginClient를�생성합니다.

LoginClient는�Parcelable�객체이기�때문에�Bundle형식으로�저장되어�메모리가�여유�있는�한�읽을�수�있습니

다.

Facebook�로그인�중�Callback�의�결과로�Result를�얻게�되는데,�이�때�상태코드를�판별하여�저장합니다.

class�LoginClient�implements�Parcelable

...(생략)...

public�interface�OnCompletedListener�{

��void�onCompleted(Result�result);

}

void�setFragment(Fragment�fragment)�{

��if(�this.fragment�!=�null�)�{

����throw�new�FacebookException(“Can’t�set�fragment�once�it�is�already�set.”);

��}

��this.fragment�=�fragment;

}

public�static�class�Request�implements�Parcelable�{

��private�final�LoginBehavior�loginBehavior;�//�enum

��private�Set<String>�permissions;

��private�final�DefaultAudience�defaultAudience;�//�enum

��private�final�String�applicationId;�

��private�final�String�authId;

��private�boolean�isRerequest�=�false;

��...(생략)..

}

public�static�class�Result�implements�Parcelable�{

��enum�Code�{

����SUCCES(“success”),�CANCEL(“cancel”),�ERROR(“error”);

����private�final�String�loggingValue;

����Code(String�loggingValue)�{�this.loggingValue�=�loggingValue;�}

����String�getLoggingValue()�{�return�loggingValue;�}

��}

��final�Code�code;

��final�AccessToken�token;

��final�String�errorMesage;

��final�String�errorCode;

��final�Request�request;

��public�Map<String,�String>�loggingExtra;

��...(생략)...

}

LoginFragment를�지정할�수�있으며�LoginCompleteListner�인터페이스를�정의할�수�있도록�했습니다.

Request에는�loginBehavior�:�Specifies�the�behaviors�to�try�during�login.�//�enum�입니다.

������������└�SSO_WITH_FALLBACK(true,�true),�SSO_ONLY(true,�false),�SUPPRESS_SSO(false,�true)

������������defaultAudience�:�NONE(null),�ONLY_ME,�FRIENDS,�EVERYONE�//�enum입니다.

������������permissons,�applicationId,�authId,�isRerequest�로�이루어져있습니다.

Result에는�Code�:�SUCCESS,�CANCEL,�ERROR�//�enum입니다.

�����������logginValue,�errorMessage,�errorCode,�request,�loggingExtra로�이루어져있습니다.

LoginClient는�LoginManager에서�관리되며�실제�로그인에�관련된�부분은�LoginLogger를�통해�이루어집니다.

public�class�LoginManager

...(생략)...

private�static�volatile�LoginManager�instance;

private�LoginClient.Request�pendingLoginRequest;

private�HashMap<String,�String>�pendingLoggingExtras;

private�Context�context;

private�LoginLogger�loginLogger;

public�static�LoginManager�getInstance()�{

��if(�instance�==�null�)�{

����synchronizaed�(�LoginManager.class�)�{

������if(�instance�==�null�)�instance�=�new�LoginManager();

����}

��}

��return�instance;

}

boolean�onAcivityResult(int�resultCode,�Intent�data,�FacebookCallback<LoginResult>�callback)�{

��if(�pendingLoginRequest�==�null�)�{

����return�false;

��}

��FacebookException�exception�=�null;

��AccessToken�newToken�=�null;

��LoginClient.Result.Code�code�=�LoginClient.Result.Code.ERROR;

��Map<String,�String>�loggingExtra�=�null;

��boolean�isCanceled�=�false;

��if(�data�!=�null�)�{

����LoginClient.Result�result�=�(LoginClient.Result)

������data.getParcelableExtra(LoginFragment.RESULT_KEY);�//�RESULT_CANCELED�or�RESLT_OK

����if(�result�!=�null�)�{

������code�=�result.code;

������if(�resultCode�==�Activity.RESULT_OK�)�{

��������if(�result.code�==�LoginClient.Result.Code.SUCCESS�)�{

����������newToken�=�result.token;

��������}�else�{

����������exception�=�new�FacebookAuthorizationException(result.errorMesage);

��������}

������}�else�if(�resultCode�==�Activity.RESULT_CANCELED�)�{

��������isCanceled�=�true;

������}

������loggindExtras�=�result.loggingExtras;

����}

��}�else�if(�resultCode�==�Activity.RESULT_CANCELED�)��{�//�data�==�null

����isCanceled�=�true;

����code�=�LoinClient.Result.Code.CANCEL;

��}

��if(�exception�==�null�&&�newToken�==�null�&&�!isCanceled�)�{

����exception�=�new�FacebookException(“Unexpected�call�to�LoginManager.onActivityResult“);

��}

��logCompletedLogin(code,�loggingExtras,�exception);

��finishLogin(newToken,�exception,�iscanceled,�callback);

��return�true;

}

private�void�logCompleteLogin(LoginClient.Result.Code�result,�Map<String,�String>�resultExtras,

��Exception�exception)�{

��if(�pendingLoginRequest�==�null�)�{

����getLogger().logUnexpectedError()(

������LoginLogger.EVENT_NAME_LOGIN_COMPLETE,

������“Unexpectedd�call�to�logCompleteLogin�with�null�pendingAuthorizationRequest.”

����);

��}�else�{

����getLogger().logCompleteLogin(

������pendingLoginRequest.getAuthId(),

������pendingLoggingExtras,

������result,

������resultExtras,

������exception);

��}

}

private�void�finishLogin(AccessToken�newToken,�FacebookException�exception,�boolean�isCanceled,

��FacebookCallback<LoginResult>�callback)�{

��if(�newToken�!=�null�)�{

����AccessToken.setCurrentAccessToken(token);

����Profile.fetchProfileForCurrentAccessToken();

��}

��if(�callback�!=�null�)�{

����LoginResult�loginResult�=�new�Token�!=�null

������?�computeLoginResult(pendingLoginRequest,�newToken)

������:�null;

����if(isCanceled�||�(loginResult�!=�null�&&�loginResult.getRecentlyGrantedPermissions().size()==0)){

������callback.onCancel();

������return;

����}

����if(�exception�!=�null�){

������callback.onError(exception);

����}�else�if(�newToken�!=�null�)�{

������callback.onSuccess(loginResult);

����}

��}

��this.context�=�null;

��this.loginLogger�=�null;

}

private�LoginLogger�getLogger()�{

��if(�loginLogger�==�null�||

�������!loginLogger.getApplicationId().equals(�pendingLoginRequest.getApplicationId()))�{

����loginLogger�=�new�LoginLogger(�context,�pendingLoginRequest.getApplicationId());

��}

��return�loginLogger;

}

//�StartActivityDelegate�is�inner�class

private�void�startLogin(�StartActivityDelegate�startActivityDelegate,�LoginClient.Requet�request�)

��throws�FacebookException�{

��this.pendingLoginRequest�=�request;

��this.pendingLoggingExtras�=�new�HashMap<>();

��this.context�=�startActivityDelegate.getActivityContext();

��logStartLogin();

��CallbackmanagerImpl.registerStaticCallback(

����CallbackManagerImpl.RequestCodeOffset.Login.toRequestCode(),

����new�CallbackmanagerImplCallback()�{

������@Override

������public�boolean�onActivityResult(int�resultCode,�Intent�data)�{

��������return�LoginManager.this.onActivityResult(resultCode,�data);

������}

����}

��);

��boolean�started�=�tryFacebookActivity(startActivityDelegate,�request);

��pendingLoggingExtras.put(

����LoginLogger.EVENT_EXTRAS_TRY_LOGIN_ACTIVITY,

����started�?

����AppEventsConstanst.EVENT_PARAM_VALUE_YES�:�AppEventsConstants.EVENT_PARAM_VALUE_NO

��);

��if�(�!started�)�{

����FacebookException�exception�=�new�FacebookException(

������“Log�in�attempt�failed:�FacebookActivity�could�not�be�started.”�+

��������“Please�make�sure�you�added�FacebookActivity�to�the�AndroidManifest.”);

����logCompleteLogin(LoginClient.Request.Code.ERROR,�null,�exception);

����this.pendingLoginRequest�=�null;

����throw�exception;

��}

}

private�void�logStartLogin()�{

��getLogger().logStartLogin(pendingLoginRequest);

}

private�boolean�tryFacebookActivity(StartActivityDelegate�startActivityDelegate,

��LoginClient.Request�request)�{

��Intent�intent�=�getFacebookActivityIntent(request);

��if(�!resolveIntent(intent))�{

����return�false;

��}

��try�{

����startActivityDelegate.startActivityForResult(intent,�LoginClient.getLoginReqeustCode());

��}�catch�(�ActivityNotFoundException�e)�{

����return�false;

��}

��return�true;

}

private�boolean�resolveIntent(Intent�intent)�{

��ResolveInfo�resolveInfo�=�Facebook.getApplicationContext().getPackageManager()

����.resolveActivity(intent,�0);

��if(�resolveInfo�==�null�){

����return�false;

��}

��return�true;

}

public�void�logInWithReadPermissions(Fragment�fragment,�Collection<String>�permissions)�{

��validateReadPermissions(permissions);

��LoginClient.Request�loginReqeust�=�createLoginRequest(permissions);

��startLogin(new�FragmentStartActivityDelegate(fragment),�loginRequest);

}

public�void�logInWithReadPermissions(Activity�activity,�Collection<String>�permissions)�{

��validateReadPermissions(permissions);

��LoginClient.Request�loginRequest�=�createLoginReqeust(permissions);

��startLogin(new�ActivityStartActivityDelegate(activity),�loginRequest);

}

public�void�validateReadPermissions(Collection<String>�permissions)�{

��if(�permissions�==�null�)�{

����return;

��}

��for(�String�permission�:�permissions�){

����if(�isPublishPermission(permission)�)�{

������throw�new�FacebookException(

��������String.format(“Cannot�pass�a�publish�or�manage�permission�(%s)�to�a�request�for�read”

����������+“authorization”,�permission));

����}

��}

}

private�LoginClient.Request�createLoginRequest(Collection<String>�permissions)�{

��LoginClient.Request�request�=�new�LoginClient.Request(

����loginBehavior,

����Collections.unmodifiableSet(�permissions�!=�null�?�new�HashSet(permissions)

������:�new�HashSet<String>()),

����defaultAudience,

����FacebookSdk.getApplicationId(),

����UUID.randomUUID().toString()

��);

��request.setRerequest(AccessToken.getCurrentAccessToken�!=�null�);

��return�request;

}���

LoginManager는�volatile�이고�동시성을�해결하기�위해�getInstance를�보시면�class자체를�synchronized�합

니다.

onAcivityResult에서는�facebook�callback�login�과정을�마친�뒤�앞서�저장한�상태코드를�판별하여�로그인을�

마무리�하는�과정입니다.

logCompleteLogin에서는�로그인�상태코드에�이상이�없을�경우�LoginLogger를�통해�Login을�진행하게�됩니다.

finishLogin에서는�AccessToken과�Profile을�저장하게�됩니다.

��AccessToken은�Date�expires

����������������Set<String>�permissions

����������������Set<String>�declinedPermissions

������(NotNull)�String�token,�the�access�token�string�obtained�from�Facebook

����������������AccessTokenSource�source,�an�enum�indicating�how�the�token�was�originally�obtained(

��in�most�cases,�this�will�be�either�AccessTokenSource.FACEB

��OOK_APPLICATION�or�AccessTokenSource.WEB_VIEW);�if�null,

��FACEBOOK_APPLICATION�is�assumed.

����������������Date�lastRefresh

�����(NotNull)� String� applicationId,� the� ID� of� the� Facebook� Application� associated� with� this����������

���������������������������������������accesstoken

�����(NotNull)��String�userId,�the�id�of�user

��Profile은�String�id,�(NotNull)�The�id�of�the�profile.�

������������String�firstName

������������String�middleName

������������String�lastName

������������String�name

������������Uri�linkUri,�The�link�for�this�profile.�Can�be�null.

으로�이루어져있습니다.

이�외에�함수들은�ReadPermission을�가지고�로그인하는�것들과�관련된�함수들만�모아보았습니다.

LoginLogger

private�final�AppEventsLogger�appEventsLogger;

...(생략)...

static�final�String�EVENT_PARAM_AUTH_LOGGER_ID�=�“0_auth_logger_id”;

static�final�String�EVENT_PARAM_TIMESTAMP�=�“1_timestamp_ms”;

static�final�String�EVENT_PARAM_LOGIN_RESULT�=“2_result”;

static�final�String�EVENT_PARAM_METHOD=“3_method”;

...(생략)...

static�Bundle�newAuthorizationLoggingBundle(String�authLoggerId)�{

��Bundle�bundle�=�new�Bundle();

��bundle.putLong(EVENT_PARAM_TIMESTAMP,�System.currentTimeMillis());

��bundle.putString(EVENT_PARAM_AUTH_LOGGER_ID,�authLoggerId);

��bundle.putString(EVENT_PARAM_METHOD,�“”);

��bundle.putString(EVENT_PARAM_LOGIN_RESULT,�“”);

��bundle.putString(EVENT_PARAM_ERROR_MESSAGE,�“”);

��bundle.putString(EVENT_PARAM_ERROR_CODE,�“”);

��bundle.putString(EVENT_PARAM_EXTRAS,�“”);

��return�bundle;

}

public�void�logStartLogin(LoginClient.Request�pendingLoginReqeust�)�{

��Bundle�bundle�=�newAuthorizationLoggingBundle(pendingLoginRequest.getAuthId());

��try�{

����JSONObject�extras�=�new�JSONObject();

����extras.put(EVENT_EXTRAS_LOGIN_BEHAVIOR,

������pendingLoginRequest.getLoginBehavior().toString());

����...(생략)...

��}

��appEventsLogger.logSdkEvent(EVENT_NAME_LOGIN_STATRT,�null,�bundle);

}

login에�관련된�constants들이�차례로�정의되어�있으며�이를�활용하여�bundle을�만듭니다.

만든�bundle을�가지고�해당하는�log�이름과�함께�logSdkEvent를�실행합니다.

AppEventsLogger

public�void�logSdkEvent(String�eventname,�Double�valueToSum,�Bundle�parameters)�{

��logEvent(eventName,�valueToSum,�parameters,�true);

}

private�void�logEvent(String�eventName,�Double�valueToSum,�Bundle�parameters,

��boolean�isImplicitlyLogged�)�{

��AppEvent�event�=�new�AppEvent(this.context,�eventName,�valueToSum,�parameters,�isImplicitlyLogged);

��logEvent(context,�event,�accessTokenAppId);

}

private�static�void�logEvent(final�Context�context,�final�AppEvent�event,

��final�AccessTokenAppIdPair�accessTokenAppId)�{

��FacebookSdk.getExecutor().execute(new�Runnable()�{

����@Override

����public�void�run()�{

������SessionEventsState�state�=�getSessionEventsState(context,�accessTokenAppId);

������state.addEvent(event);

������flushIfNecessary();

����}

��});

}

LoginLogger의�bundle을�통해�넘겨받은�파라미터들(constants)을�통해�실질적으로�로그인을�실행합니다.

