
Understanding
Blockchain Technology

Introduction for Developers

Minho Shin

Myongji University

Agenda

• Shortest overview

• Satoshi’s whitepaper

• Deep dive

• Altcoins

Electronic Money Problem

• Electronic money
• Keep track of who gave how much money to whom

(called Transactions)

• Easy solution
• A Trusted Third Party (TTP) can do the job (database)
• This is what Credit companies do

• Can we trust the financial companies?
• One organization manages all the cash in the world?
• We want a distributed solution

• Why difficult?
• Double spending problem is the key challenge
• Bitcoin uses consensus algorithm

The shortest intro. To
Bitcoin (Cryptocurrency)
IN TWO SLIDES

How Bitcoin works (without Why)

• Store cash flow in (multiple) tx-chains

• Store transactions in chained blocks

• only one universally-agreed chain of blocks

• Hash-point 

• hash of the previous transaction/block

• Change in previous XX changes following XX

• Keep blocks in Peer-to-peer fashion

Block 23 Block 24 Block 25 Block 26

AB: $2

CD: $3

EF: $3

BC: $1

DA: $2

ES: $1

DL: $1

SJ: $1

FK: $3

CH: $1

KP: $1

LX: $1

• Transactions are signed by the payer

• Users are identified by public key (or so)

• Blocks are added by miners

• with great effort

• Miners checks double-spending

• Longest block-chain wins the consensus

Why Bitcoin works

• Public cryptography (ECCDSA)
• Authenticity, Non-repudiation

• Cryptographic hash (SHA256/ RIPE256)
• Integrity of transactions and blocks

• Consensus algorithm (Proof of Work)
• Democratic truthfulness
• No attacker can make the block chain of its own taste

• Attackers are outnumbered (outcomputed) by others

Block 23 Block 24 Block 25 Block 26

AB: $2

CD: $3

EF: $3

BC: $1

DA: $2

ES: $1

DL: $1

SJ: $1

FK: $3

CH: $1

KP: $1

LX: $1

Nakamoto Satoshi’s
Whitepaper:
Bitcoin: A Peer-to-Peer Electronic Cash System

Crux of Bitcoin and Blockchain Technology

https://bitcoin.org/bitcoin.pdf

Introduction

• Limitations of TTP-based financial system
• non-reversible transaction is not possible
• mediation cost increases transaction cost
• no means of payments through communication w/o TTP

• New electronic payment system is needed
• based on cryptographic proof, not trust
• computationally-impractically irreversible transactions

• Double-spending problem solved
• P2P distributed timestamp server computationally proves the

chronical order of transactions
• Secure as long as honest nodes’ CPU power collectively

surpass attackers’

Transactions

• Coin = a chain of digital signatures

• Txi: A transfers coin to B
• Coin+= PubB, H(Txi-1|PubB), SignA(H(Txi-1|PubB))

• One can
• check if Txi’s spender is TXi-1’s recipient

• One cannot
• check if TXi-1’s recipient spent only once

Double Spending

• TTP (mint) model

• TTP needs to check all transactions for double-spending

• TTP issues new coin and only TTP-issued coin is trusted

• Distributed way
• Payee checks if payer signed the TX for the first time

• Payee needs to know all transactions, so be announced

• All participants need to agree on a single ordered history
of transactions

Timestamp Server

• Timestamp server publishes
• Ht = Hash(Ht-1, Blockt)

• Blockt=set of items exited at time t

• Publish to newspaper or bulletin boards
•  Centralized timestamp server = TTP ?

Proof of Work

• Goal: Distributed Timestamp Server

• Proof-of-work
• Finding a value that hashes to 0-bits-beginning value

• Exponentially difficult by # of beginning 0-bits

• Verified by one hashing
• Hashcash

• Bitcoin PoW
• Find Nonce s.t.

• H(Blockt) = {0}n{0,1}*
• where Blockt := H(Blockt-1) | Tx’s | Nonce

• Bitcoin PoW solves
• Cannot change a blockt w/o redoing PoW for Block>=t

• Implements vote-per-CPU majority decision making
• Longest chain wins

• Moving target: n increase to keep avg # of blocks per hour = 6

Hashcash

• Originally proposed by Cynthia Dwork

• Hashcash proposed by Adam Back

• Sending an email costs a PoW

• Find a <counter> s.t.

• SHA-1(1:20:<time>:<recipient>:<rand>:<counter>)={0}20{0,1}140

• Takes about 1 sec

• Receiver accepts an email only if

• <time> is recent(2-days), <recipient> is correct

• and valid PoW

• This prevents a spammer

• whose business relies on the ability to send many emails quickly

Network

1) New transactions are broadcast to all nodes.

2) Each node collects new transactions into a block.

3) Each node works on finding a difficult proof-of-work for
its block.

4) When a node finds a proof-of-work, it broadcasts the
block to all nodes.

5) Nodes accept the block only if all transactions in it are
valid and not already spent.

6) Nodes express their acceptance of the block by working
on creating the next block in the chain, using the hash of
the accepted block as the previous hash.

Incentive

• Node can get incentives by either
• First transaction in a block starts a new coin of the block

creator

• Transaction fee = input – output of a transaction

• Once enough coins were created, only transaction fee is
incentive

• Incentive encourages attackers (dominating CPU
power) to play honest
• because it is more profitable (generating blocks) than

undermining the system

Reclaiming Disk Space

• Growing chains of blocks can use-up disks

• Old transactions buried in enough blocks can be discarded
• However, it will change the hash of the block, causing a mass

• Use Merkle Tree to hash a set of transactions
• A set of transactions (i.e., a branch) can be pruned without affecting

the root hash of the tree

Simplified Payment Verification

• A node (miner) can verify a payment against double-spending
• as it has all the blocks and its transactions of the longest chain

• A user (not miner) can perform simplified verification by
• Keep only block headers of the longest chain

• Get the MTree branch of the transaction to verify

• Check if the transaction matches with the MTree

• Meaning that the block creator verified the transaction, and the block
was accepted in the longest chain

Combining and Splitting Value

• To allow combining/splitting values
• transaction contains multiple inputs/outputs

• Outputs at most 2
• One for payment

• One for back to sender

Privacy

• TTP-model preserves privacy by access control

• Bitcoin privacy is preserved by
• anonymity of public keys, generated per transaction
• despite all transactions are announced publicly

• Some linking between transactions are unavoidable
• when using multiple-inputs per transaction

Calculations

• What if attacker tries to generate an alternative chain faster than honest
chain

• Attacker can’t forge other’s transactions due to crypto

• Attacker can only forge its own transactions to get money back

• Let X = Length(honest chain) - Length(alt-chain)

• X: a binomial random walk

• X++ if honest nodes find next block (w/ probability p)

• X-- if attacker finds next block (w/ probability q)

• p+q = 1

• Qz: probability that X reaches 0 starting from z

• i.e., attacker catches up from z blocks behind

• Then

Gambler’s Ruin

• A gambler will eventually go broke if he bets a fraction of money for each game
even if winning probability = 0.5

• Event Qn

• Starting with X=n, X reaches 0 (P(X--) = q)

• Event W

• X decreases by 1 at the first game (attacker wins)

• P(W) = q, P(~W) = p

• P(Qn) = P(Qn|W)P(W)+P(Qn|~W)P(~W)
= P(Qn-1)q + P(Qn+1)p

• P(Q0) = 1, P(Qinf) = 0

• Solve a Linear Homogeneous Recurrence

• An+1 = (1/p)An – (q/p)An-1

Linear Homogeneous Recurrence

• An = (1/p)An-1 – (q/p)An-2

• Characteristic equation
• r2 – (1/p)r + (q/p) = 0

• Solution: q/p, 1

• An = X(q/p)n + Y(1)n

• If p>q, A0 = 1 = X + Y, Ainf = 0 = Y , so X=1
• thus An = (q/p)n

• If q>=p, 1 = X + Y, Ainf = 0 = X (q/p)inf + Y
• so X=1/(1-(q/p)inf)  0, Y  1

• thus An = 1

Double spending attack

• After a transaction that attacker spends money, attacker
tries to branch the chain so that it can send the money back
to himself

• What’s the success probability of the attack when the
recipient waits for z blocks before accepting the payment?

• During z blocks of honest chain, average # of blocks the
attacker could generate (Poisson process)
• (z/p) * q = (time for generating z honest blocks) * q

• Probability that attacker can still catch up after z blocks

Double Spending Attack

• T=z/p: average time for generating z honest blocks

• ƛ=zq/p: average # of attacker’s blocks generated during T

• k: # of attacker’s blocks generated during T

• event A: attacker’s block chain wins consensus

• event Ak: attacker generates k blocks during T

• P(A) = P(A|A0)P(A0)+P(A|A1)P(A1)+ P(A|A2)P(A2)+ …

• P(Ak) = ƛk e-ƛ/k! (Poisson distribution)

• if k > z, P(A|Ak) = 1 (attacker wins during T)

• if k ≦z, attacker has to catch up z-k blocks after T and until forever

• done

Puzzles for Proof of Work

• Easy to verify

• Difficulty can be adjusted

• Chance of winning proportional to hash power
• Sequential puzzle  Bad

• Weighted sampling  Good

• Concerns about ASICs

Scrypt

• Memory hard hash function
• Constant time/memory tradeoff

• Used widely
• Litecoin

• How it works
• Fill memory with random values
• Read from memory in random order

• Disadvantage
• Verification is expensive
• Not ASIC resistant

Cuckoo Hash Cycles

• Memory hard puzzle with cheap verification

• How it works
• Compute a random bipartite graph based on X

• Find a cycle of K size

• Output X and K edges

Virtual Mining

• No real resources are consumed for mining
• Electric power, computing equipments

• Virtual Mining
• Miners are chosen based on the contributed Bitcoins
• Brining wealth outside Bitcoin into the system
• 51% Attack is even harder

• Approaches
• Proof-of-Stake: older coin gets higher stake
• Proof-by-Burn: coins used for mining gets destroyed
• Proof-by-Deposit: mining coins can be reclaimed later
• Proof-of-Activity: any coin (if online) can win

• Any security gain by consuming real resources?
• Unanswered yet

- 210,000 블록마다화폐발행량이

50% 줄어든다.

Keys and Addresses

• Generate Public/Private key
pair of Elliptic Curve
cryptography

• Generate Bitcoin address
from Public key

Base58Check Encoding

• Payload
• Public key hash (20bytes)

• Base58
• Encoding by {a..z, A..Z, 0..9} –

{0, O, l, I}

• Base58Check
• Add version & checksum

• Bitcoin address: 25 bytes

• Encoded address: 34 chars

Transaction

• Fee = Input – Output

• Receiver’s pub key  script Pub key

Transaction Script

• Script
• reverse-polish notation stack-based execution language

• P2PKH (Pay to Public Key Hash)

Execution of {Unlock lock} script

Bitcoin Network

Block header

Genesis Block

• Transaction contains the text:
• The Times 03/Jan/2009 Chancellor on brink of second

bailout for banks.

Merkle Tree

Miner’s incentives

• Mining reward는 4년마다절반으로감소되고있다.

• 210,000 블록마다화폐발행량이 50% 줄어든다.

- 50(2009 / 2) -> 25(2012 / 11) -> 12.5(2016 / 7)

- 2140년까지기하급수적으로줄어든다.

- 2140년이후에는새로운비트코인은발행되지않는다.

- 2140년에는 2,099,999,997,690,000 사토시, 2100만비트코인이

모두발행됨.

• 2140년이후에는모든수익이 Transaction fee에서발생한다.

• Fee는비트코인소득의 0.5% 또는그이하로나타난다

1390억달러

Altcoin

• Bitcoin Jan, 2009

• One altcoin launched every month (now ~500)

Altcoins

• Features
• Better/Different security

• Mining puzzles
• Contract/platform features
• Different parameters
• Community supports

• Namecoin (2011)
• replaces Domain Name Registration

• Litecoin (2011)
• Memory-hard puzzle
• Block-rate 2x faster

• Peercoin (2012)
• First PoS

Mining Attacks

• Miner (Mining pool) on a large network can
demolish small altcoin
• Jan 2012, CoiledCoin by Eligius pool

• Jul 2013, TerraCoin

• Nov 2013, WorldCoin

Merge Mining

• Mining is exclusive between coins

• Merge Mining
• combine mining efforts of two coins

• Mining in an altcoin is a valid mining attempt in Bitcoin

• Embed the block header of altcoin into the block header
of Bitcoin

Merge Mining: How it works

