Understanding
Blockchain Technology

Introduction for Developers

Minho Shin
Myongji University

Agenda

* Shortest overview

e Satoshi’s whitepaper
* Deep dive

* Altcoins

Electronic Money Problem

Electronic money
» Keep track of who gave how much money to whom
(calfped Transactions)
Easy solution
e A Trusted Third Party (TTP) can do the job (database)
* This is what Credit companies do

Can we trust the financial companies?
* One organization manages all the cash in the world?
 We want a distributed solution

Why difficult?
* Double spending problem is the key challenge
* Bitcoin uses consensus algorithm Double Spending

in Bitcoin

o

Buyer

kP

Seller A

Seller B

The shortest intro. To
Bitcoin (Cryptocurrency)

IN TWO SLIDES

How Bitcoin works (without Why)

Store cash flow in (multiple) tx-chains

Store transactions in chained blocks
* only one universally-agreed chain of blocks

Hash-point 2

* hash of the previous transaction/block

* Change in previous XX changes following XX

Keep blocks in Peer-to-peer fashion

Transactions are signed by the payer
Users are identified by public key (or so)

Blocks are added by miners
* with great effort

Miners checks double-spending

Longest block-chain wins the consensus

Block 23

ns2 |

A

Block 24

A

A

Block 25

Block 26

D->L:S1 &

4

R o5 b

A

S—=>1J: 81
F2K:S3

Why Bitcoin works

e Public cryptography (ECCDSA)

* Authenticity, Non-repudiation

* Cryptographic hash (SHA256/ RIPE256)

* Integrity of transactions and blocks

e Consensus algorithm (Proof of Work)

* Democratic truthfulness
* No attacker can make the block chain of its own taste
» Attackers are outnumbered (outcomputed) by others

Block 23 < Block 24 =« Block 25 < Block 26
| ABS2 DoLs1 m
- 521:51
=5 .
A

Bitcoin: A Peer-to-Peer Electronic Cash System

Satoshi Nakamoto
satoshin@gmx.com
www.bitcoin.org

Nakamoto Satoshi’s

Whitepaper:

Bitcoin: A Peer-to-Peer Electronic Cash System

Crux of Bitcoin and Blockchain Technology

https://bitcoin.org/bitcoin.pdf

Introduction

* Limitations of TTP-based financial system
* non-reversible transaction is not possible
* mediation cost increases transaction cost
* no means of payments through communication w/o TTP

* New electronic payment system is needed

* based on cryptographic proof, not trust
e computationally-impractically irreversible transactions

* Double-spending problem solved
e P2P distributed timestamp server computationally proves the
chronical order of transactions

e Secure as long as honest nodes’ CPU power collectively
surpass attackers’

Transaction Transaction Transaction
. Owner 1's Owner 2's Owner 3's
| r‘a n S a Ct I O n S Public Key Public Key Public Key
. la,.

i, | S, | N
Owner 0's Owner 1's Owner 2's
Signature Signature v Signature

o o

Owner 1's Owner 2's Owner 3's
Private Key Private Key Private Key

e Coin = a chain of digital signatures

* Tx;: A transfers coin to B

* Coin+= Pubg, H(Tx, ;| Puby), Sign,(H(Tx. ; | Pubg))
* One can

* check if Tx,'s spender is TX. ;s recipient

* One cannot
* check if TX, ,’s recipient spent only once

Double Spending

 TTP (mint) model

 TTP needs to check all transactions for double-spending

 TTP issues new coin and only TTP-issued coin is trusted

* Distributed way
* Payee checks if payer signed the TX for the first time
e Payee needs to know all transactions, so be announced

* All participants need to agree on a single ordered history
of transactions

Timestamp Server

* Timestamp server publishes
* H, = Hash(H,_,, Block,)

* Block,=set of items exited at time t

e Publish to newspaper or bulletin boards
* - Centralized timestamp server = TTP ?

Block Block

ltem ‘ ltem ‘ ‘ ltem ltem ‘

Proof of Work

Goal: Distributed Timestamp Server

Proof-of-work

* Finding a value that hashes to 0-bits-beginning value
* Exponentially difficult by # of beginning 0-bits
* Verified by one hashing

* Hashcash Block Block
Bitcoin PoW > PrevHash | | Nonce |~~~ » PrevHash | | Nonce
° Flnd Nonce S.t. ‘ Tx ‘ ‘ Tx ‘ ‘ ‘ ’ Tx ‘ ‘ Tx ‘ ‘ ‘

« H(Block,) = {0}"{0,1}*
* where Block, := H(Block, ;) | Tx’s | Nonce
Bitcoin POW solves
 Cannot change a block, w/o redoing PoW for Block,_,

* Implements vote-per-CPU majority decision making
* Longest chain wins
* Moving target: n increase to keep avg # of blocks per hour =6

Hashcash

Originally proposed by Cynthia Dwork
Hashcash proposed by Adam Back

Sending an email costs a PoW

* Find a <counter> s.t.
e SHA-1(1:20:<time>:<recipient>:<rand>:<counter>)={0}2%{0,1}140

* Takes about 1 sec

Receiver accepts an email only if

e <time> is recent(2-days), <recipient> is correct
e and valid PoW

This prevents a spammer

e whose business relies on the ability to send many emails quickly

Network

1)
2)
3)

4)
5)

6)

New transactions are broadcast to all nodes.
Each node collects new transactions into a block.

Each node works on finding a difficult proof-of-work for
its block.

When a node finds a proof-of-work, it broadcasts the
block to all nodes.

Nodes accept the block only if all transactions in it are
valid and not already spent.

Nodes express their acceptance of the block by working
on creating the next block in the chain, using the hash of
the accepted block as the previous hash.

Incentive

* Node can get incentives by either

e First transaction in a block starts a new coin of the block
creator
* Transaction fee = input — output of a transaction

* Once enough coins were created, only transaction fee is
incentive

* Incentive encourages attackers (dominating CPU

power) to play honest

* because it is more profitable (generating blocks) than
undermining the system

Reclaiming Disk Space

e Growing chains of blocks can use-up disks

* Old transactions buried in enough blocks can be discarded
* However, it will change the hash of the block, causing a mass

e Use Merkle Tree to hash a set of transactions

* A set of transactions (i.e., a branch) can be pruned without affecting
the root hash of the tree

Block Block

Block Header (Block Hash) Block Header (Block Hash)

{ Prev Hash ‘ ‘ Nonce ‘ ‘ Prev Hash ‘ ‘ Nonce ‘
Hash01 Hash2s Hash(;; Hash2s
/4\' I 4>

/
HashO Hash1 Hash2 Hash3 Hash2 ;’.4’;53;
A A
o | [[me| [1a] Tx3

Transactions Hashed in a Merkle Tree After Pruning Tx0-2 from the Block

Simplified Payment Verification

* A node (miner) can verify a payment against double-spending
e as it has all the blocks and its transactions of the longest chain

* A user (not miner) can perform simplified verification by
* Keep only block headers of the longest chain
* Get the MTree branch of the transaction to verify
* Check if the transaction matches with the MTree

* Meaning that the block creator verified the transaction, and the block
was accepted in the longest chain

Longest Proof-of-Work Chain

Block Header Block Header Block Header
b} Prev Hash | | Nonce ‘ ﬁ Prev Hash Nonce [™ Prev Hash ‘ | Nonce | >
| Merkle Root I ‘ Merkle Root Merkle Root }
4 »
' Hasho1 | Hash23
4 >

Merkle Branch for Tx3

Hash2 Hash3

|Tx3|

Combining and Splitting Value

* To allow combining/splitting values
* transaction contains multiple inputs/outputs

* Outputs at most 2

* One for payment
 One for back to sender

Transaction

> In Out

— 1 |n

Privacy

 TTP-model preserves privacy by access control

* Bitcoin privacy is preserved by
e anonymity of public keys, generated per transaction
* despite all transactions are announced publicly

* Some linking between transactions are unavoidable
* when using multiple-inputs per transaction

Traditional Privacy Model

Third Party

|dentities Transactions | B> _usted L g o nterparty Public

New Privacy Model

Identities Transactions 4>{ Public

Calculations

 What if attacker tries to generate an alternative chain faster than honest
chain
* Attacker can’t forge other’s transactions due to crypto
» Attacker can only forge its own transactions to get money back

* Let X = Length(honest chain) - Length(alt-chain)
e X:a binomial random walk
» X++if honest nodes find next block (w/ probability p)
» X--if attacker finds next block (w/ probability q)
e p+tq=1
* Qz: probability that X reaches 0 starting from z

* i.e., attacker catches up from z blocks behind

e Then
1 ifp=gq

q,= .,
(/' p) if p>q

Gambler’s Ruin

e A gambler will eventually go broke if he bets a fraction of money for each game
even if winning probability = 0.5

* Event Q,
 Starting with X=n, X reaches 0 (P(X--) = q)

* Event W
* X decreases by 1 at the first game (attacker wins)
* P(W)=gq,P(*W)=p

* P(Q,) = P(Q,|W)P(W)+P(Q, |~W)P(~W)
= P(Qn-l)q + P(Qn+1)p

* P(Qg) =1, P(Qy) =0

* Solve a Linear Homogeneous Recurrence
* A =(1/p)A, - (a/p)A.4

Linear Homogeneous Recurrence

* A, = (1/p)A, . —(a/p)A,,

* Characteristic equation
* r’—=(1/p)r+(a/p)=0
* Solution: q/p, 1

* A, =X(a/p)"+Y(1)"

e Ifp>q, Ayj=1=X+Y,A =0=Y,s0X=1
* thus A, =(a/p)"

e Ifg>=p, 1=X+Y,A =0=X(g/p)"+Y
* so X=1/(1-(g/p)") > 0,Y > 1
* thusA =1

Double spending attack

After a transaction that attacker spends money, attacker
tries to branch the chain so that it can send the money back
to himself

What'’s the success probability of the attack when the
recipient waits for z blocks before accepting the payment?

e During z blocks of honest chain, average # of blocks the
attacker could generate (Poisson process)

* (z/p) * g = (time for generating z honest blocks) * q

* Probability that attacker can still catch up after z blocks

i?\ke_ (g/p)= ™" ifk<z
~ " h 1 ifk>z

A

Double Spending Attack

A

2 A e” gl p)*™" ifk<z
~ 1 ifk>z

* T=z/p: average time for generating z honest blocks

* A=zq/p: average # of attacker’s blocks generated during T

* k: # of attacker’s blocks generated during T

e event A: attacker’s block chain wins consensus

* event A,: attacker generates k blocks during T

* P(A)=P(A[A)P(A))+P(A[A,)P(A,)+ P(A]A,)P(A,)+ ...

* P(A,) = Ak e*/k! (Poisson distribution)

* ifk>z P(A|A,) =1 (attacker wins during T)

* if k =z, attacker has to catch up z-k blocks after T and until forever
e done

Puzzles for Proof of Work

* Easy to verify
e Difficulty can be adjusted

* Chance of winning proportional to hash power
* Sequential puzzle = Bad
* Weighted sampling - Good

e Concerns about ASICs

Scrypt

* Memory hard hash function
* Constant time/memory tradeoff

e Used widely
* Litecoin

e How it works

* Fill memory with random values
 Read from memory in random order

* Disadvantage

 Verification is expensive
* Not ASIC resistant

Cuckoo Hash Cycles

* Memory hard puzzle with cheap verification

* How it works
 Compute a random bipartite graph based on X

* Find a cycle of K size
e Output X and K edges

N N
A A
00000 OO000O0 O
N _‘/" - 4 \ 4 < ' / \ / W /’ !
T '-\\\r/\ 7‘ /// T \\\\\ A -
/ ~ / / 5
X [/
/ /,/ <K /
/ /j’/ // -~ — 4
(/A\J «/ \‘; ’//\l ((/) ‘/) \/\ (G \\ () (\\r d ()
& W WO U U W K_// 2B A A A

Virtual Mining

* No real resources are consumed for mining

* Electric power, computing equipments
* Virtual Mining
* Miners are chosen B3ssd g8 %eﬁﬁﬁﬂ?tﬁfﬁﬂmeq%%tol
1t ystem

* Brining wealth outside Bitcoift into the s
* 51% Attack is even b8fdess O =L}

* Approaches

* Proof-of-Stake: older coin gets higher stake

* Proof-by-Burn: coins used for mining gets destroyed

* Proof-by-Deposit: mining coins can be reclaimed later
* Proof-of-Activity: any coin (if online) can win

* Any security gain by consuming real resources?
* Unanswered yet

Keys and Addresses

* Generate Public/Private key
. . . Public Key to Bitcoin Address
pair of Elliptic Curve

cryptography ke

 Generate Bitcoin address
from Public key

SHA256

i

J | "Double Hash”
<);};ﬁ“ or

i ‘ HASH160

|

RIPEMD160

Public Key Hash
(20 bytes/160 bits)

Base58Check Encode
with 0x00 version prefix

Bitcoin Address
(Base58Check Encoded Public Key Hash)

Base58Check Encoding

/ Base58Check Encoding \
Payload

e Public key hash (20bytes) —

a Add Version Prefix

B a S e 5 8 eHash (Version Prefix + Payload)
Version Payload SHA256
* Encoding by {a..z, A..Z, 0..9} - ﬁSTff,S,f
{O) Ol II I })
Version Payload Checksum |
Ba Se58Ch ec k OAdd first 4 bytes as checksum
Base 58 Encode
* Add version & checksum Qrraentasess

. . Base58Check Encoded Payload
* Bitcoin address: 25 bytes \ /

 Encoded address: 34 chars

Type Version Base58 result
Value Character Value Character Value Character Value Character prefix (hex) prefix
0 1 1 2 2 3 3 4 Bitcoin Address 0x00 1
4 5 5 6 6 7 7 8 Pay-to-Script-Hash 0x05 3
8 9 9 A 10 B n c Address
12 D 13 E 14 | F 15 |G Bitcoin Testnet 0x6F morn
16 H 17 18 K 19 L Address
20 M 21 N 20 =] o3 Q Private Key WIF 0x80 5 K,orL

Transaction

Transaction view information about a bitcoin transaction

0627052b6f2891212703066a912ea5772ceddadcaa5abfbdBas7286c345c212

1GdK9UzpHBzqzX2A9.FP3Di4weBwagmoQA

-{U] 0.015 BTC
1CdidIKFAaatwczBwBHQowXYCpvKBh7FK (0.1 BTC - Output) { ngien)

1Cdid9KFAaatweczBwBttQewXYCpvKBh7FK -

(Unspent) 0.0845 BTC

oo

Summary Inputs and Outputs

Size 258 (bytes) Total Input 0.1 BTC
Received Time 2013-12-27 23:03:05 Total Output 0.0995 BTC
Included In 277316 (2013-12-27 23:11:54 +9 Fees 0.0005 BTC
Blocks minutes)

Estimated BTC Transacted 0.015 BTC

* Fee = Input — Output
* Receiver’s pub key = script Pub key

"version": 1,
"locktime": 0O,
"vin": [
{
vExid":
"7957a35fe64£80d234d76d83a2a8f1a0d814
9a41d81de548f0a65a8a999f6£18",

“wout™ @,

"scriptSig"
"3045022100884d142d86652a3f47bad746ec
719pbfbd040a570bldeccbb6498c75cdae24dc
b02204b9f039ff08df09cbe9f6addac960298
cad530a863ea8£53982c09db8f6e3813[ALL]
0484ecc0d46£1918b30928faleded99f16altf
b4fde0735e7adeB8416ab9fed23cc541233637
6789d172787ec3457eeed1c04£4938de5cecl’
b4al0fa336aB8d752adf",

"sequence'": 429 95
}
1y
"wout": [
{

"value": 0.01500000,
"scriptPubKey": "OF DUP
OP_HASH160
ab68025513c3dbd2f7b92a94e0581£5d50£65
4e7 OP EQUALVERIFY OP CHECKSIG"
b

{
"value": 0.0845 0,
"scriptPubKey": "OP DUP
OP HASH160

7f9bla77fb68d60c536c2fd8acaas3a8f3ccO2
5a8 OP_EQUALVERIFY OP_CHECKSIG",
}

Transaction Script

* Script
* reverse-polish notation stack-based execution language

* P2PKH (Pay to Public Key Hash)

Unlocking Script Locking Script
(scriptSig) + (scriptPubKey)
<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHECKSIG
Unlock Script Lock Script (scriptPubKey) is found in a transaction output and is the
(scriptSig) is provided encumbrance that must be fulfilled to spend the output
by the user to resolve

the encumbrance

STACK

STACK

STACK

Execution of {Unlock lock} script

<sig>

<PubkK>

<sig>

<Pubk>
<PubK>

<sig>

SCRIPT

<sig> <PubK> DUP HASH16@ <PubKHash> EQUALVERIFY CHECKSIG

EXECUTION
POINTER
Execution starts
Value <sig> is pushed to the top of the stack

SCRIPT

<PubK> DUP HASH16@ <PubKHash> EQUALVERIFY CHECKSIG

EXECUTION
POINTER
Execution continues, moving to the ri?ht with each step
Value <PubK> is pushed to'the top of the stack, on top of <sig>

SCRIPT

DUP 1 1ASH166 <PubKHash> EQUALVERIFY CHECKSIG

EXECUTION
POINTER
DUP operator duplicates the top item in the stack,
the resulting value is pushed to the top of the stack

STACK

STACK

STACK

STACK

<PubKHash>
<PubK>

<sig>

<PubKHash>
<PubKHash>
<PubK>

<sig>

<PubK>

<sig>

TRUE

SCRIPT

HASH160 <PubKHash> EQUALVERIFY CHECKSIG

|

EXECUTION
POINTER

HASH160 operator hashes the top item in the stack with RIPEMD160(SHA256(PubK))
the resulting value (PubKHash) is pushed to the top of the stack

SCRIPT

<PubKHash> EQUALVERIFY CHECKSIG

|

EXECUTION
POINTER
The value PubKHash from the script is pushed on top of the value PubKHash calculated previously
from the HASH160 of the PubK

SCRIPT

EQUALVERIFYCHECKSIG

| |

EXECUTION
POINTER
The EQUALVERIFY operator compares the PubKHash encumbering the transaction with the PubKHash
calculated from the user's PubK. If they match, both are removed and execution continues

SCRIPT

CHECKSIG

EXECUTION
POINTER
The CHECKSIG operator checks that the signature <sig> matches the public key <PubK> and pushes
TRUE to the top of the stack if true.

Bitcoin Network

(W) -
W
o

‘.’w;, ' FullNode !

®v 4 _ Gt i L

Block header

Table 1. The structure of a block

Size

4 bytes

80 bytes

1-9 bytes (Varlnt)

Variable

Field

Block Size

Block Header

Transaction Counter

Transactions

Description

The size of the block, in bytes, following this field

Several fields form the block header

How many transactions follow

The transactions recorded in this block

Table 2. The structure of the block header

Size

4 bytes

32 bytes

32 bytes

4 bytes

4 bytes

4 bytes

Field Description

ersion A version number to track software/protocol upgrades

Previous Block Hash A reference to the hash of the previous (parent) block in the chain
Merkle Root A hash of the root of the merkle tree of this block's transactions
Timestamp The approximate creation time of this block {seconds from Unix Epoch)
Difficulty Target The Proof-of-Work algorithm difficulty target for this block

Nonce A counter used for the Proof-of-Work algorithm

Genesis Block

* Transaction contains the text:
* The Times 03/Jan/2009 Chancellor on brink of second

gl

bailout for banks.

"hash™ : "9@8e0e0esal19do689ce85ae165831e934117633046a2a6C172b3F1b6Bagce2bt",

“confirmations™ : 388321,
“size"™ @ 285,
"height” : @,
"wersion™ @ 1,
"merkleroot™ : "4a5eledbzabB89+3a32518a388c231bcB87H01817667322cc77ab2127b7atdeda33b™,
"o [
"4a5eledbaab89f3a32518a88c31bcB87FH18FT76673e2cc77ab2127b7afdedaz3b”
],
"time" : 1231806585,
"nonce" : 2883236893,
"bits" : "1deefff",
"difficulty™ : 1.08860088,
"nextblockhash” : "2020208B839a8e6886ab5051d76T411475428a1c08947ex328161bbf18eb6248"™

Merkle Tree

P P,

HABCDEFGH \ HIJKLMNOP |

Miner’s incentives

* Mining reward= 44 EIHZf A

. Feel H|ERAQI AE O

SEte =2 A0 QUL
210,000 EE0OtC} 3tH 23l 2k0| 50% & O =L}
50(2009 /2) -> 25(2012 / 11) -> 12.5(2016/ 7)
2140 AKX 7|5teX L 2 S0 =L

2140 0|2 0= M2 H|[ER QI 2 Y3l | X| Qf=C}.
21403 0| = 2,099,999,997,690,000 A} E A|, 21008t H| E A Q10|
D& gdE

214043 O| 20| = 2= £=20| Transaction fee| A{ EF A SHC}
0.

5% CE= 7] O|&}2 L}EFLIC}

—

=

Altcoins Launched

Altcoin

* Bitcoin Jan, 2009

* One altcoin launched every month (now ~500)

Market Capitalization, $USD

\' @ Bitcoin
: ‘ @ Ethereum
Y w @ Ripple

D \{| 139091 &2 @ Bitcoin Cash
- Bitcoin @ Litecoin
@ Monero
® Dash
25
. Dogecoin 12V
' Altcoins launched per month
| (genesis block)
10
5 - Namecoin Limenin Peercoin
Bitcoin /
o 2009 2010 2011

Altcoins

Features

» Better/Different security
* Mining puzzles
e Contract/platform features
* Different parameters
e Community supports

Namecoin (2011)

* replaces Domain Name Registration
Litecoin (2011)

 Memory-hard puzzle
* Block-rate 2x faster

Peercoin (2012)
* First PoS

Mining Attacks

* Miner (Mining pool) on a large network can
demolish small altcoin
* Jan 2012, CoiledCoin by Eligius pool
e Jul 2013, TerraCoin
* Nov 2013, WorldCoin

Merge Mining

* Mining is exclusive between coins

Previous Bitcoin block /Bitcoin transactions
/
H(prev || merkl root || nonce) < TARGET

Previous Altcoin block Altcoin transactions
g __—

H(alt prev || alt merkl root || nonce) < TARGET

* Merge Mining
 combine mining efforts of two coins

* Mining in an altcoin is a valid mining attempt in Bitcoin

* Embed the block header of altcoin into the block header
of Bitcoin

Merge Mining: How it works

H(prev || merkl root || nonce) < TARGET

/ a valid Altcoin block

tx[0] (coinbase) vl
SCIiptSig: alt header / alt header
scriptPubKey: ..\ \ alt prev, \

Ex (] '\\ alt merkl root \

tx[2] .. |

"\ Coinbase scriptSig is

lid Altcoi
ignored by Bitcoin Ko s

transactions

