

Hash

Hash Function Motivation

- Suppose Alice signs M
 - Alice sends M and $S = [M]_{Alice}$ to Bob
 - Bob verifies that $M = \{S\}_{Alice}$
 - Can Alice just send S ?
- If M is big, $[M]_{Alice}$ costly to *compute* & *send*
- Suppose instead, Alice signs $h(M)$, where $h(M)$ is much smaller than M
 - Alice sends M and $S = [h(M)]_{Alice}$ to Bob
 - Bob verifies that $h(M) = \{S\}_{Alice}$

Hash Function Motivation

- So, Alice signs $h(M)$
 - That is, Alice computes $S = [h(M)]_{Alice}$
 - Alice then sends (M, S) to Bob
 - Bob verifies that $h(M) = \{S\}_{Alice}$
- What properties must $h(M)$ satisfy?
 - Suppose Trudy finds M' so that $h(M) = h(M')$
 - Then Trudy can replace (M, S) with (M', S)
- Does Bob detect this tampering?
 - No, since $h(M') = h(M) = \{S\}_{Alice}$

Crypto Hash Function

- Crypto hash function $h(x)$ must provide
 - **Compression** — output length is small
 - **Efficiency** — $h(x)$ easy to compute for any x
 - **One-way** — given a value y it is infeasible to find an x such that $h(x) = y$
 - **Weak collision resistance** — given x and $h(x)$, infeasible to find $y \neq x$ such that $h(y) = h(x)$
 - **Strong collision resistance** — infeasible to find *any* x and y , with $x \neq y$ such that $h(x) = h(y)$
- Lots of collisions exist, but hard to find *any*

Pre-Birthday Problem

- Suppose N people in a room
- How large must N be before the probability someone has same birthday as me is $\geq 1/2$?
 - Solve: $1/2 = 1 - (364/365)^N$ for N
 - We find $N = 253$

Birthday Problem

- How many people must be in a room before probability is $\geq 1/2$ that any two (or more) have same birthday?
 - $1 - 365/365 \cdot 364/365 \cdots (365-N+1)/365$
 - Set equal to $1/2$ and solve: **N = 23**
- Surprising? A paradox?
- Maybe not: “Should be” about $\sqrt{365}$ since we compare all **pairs** x and y
 - And there are 365 possible birthdays

Of Hashes and Birthdays

- If $h(x)$ is N bits, 2^N different hash values are possible
- So, if you hash about $2^{N/2}$ random values then you expect to find a collision
 - Since $\sqrt{2^N} = 2^{N/2}$
- **Implication:** secure N bit symmetric key requires 2^{N-1} work to “break” while secure N bit hash requires $2^{N/2}$ work to “break”
 - Exhaustive search attacks, that is

Non-crypto Hash (1)

- Data $X = (X_0, X_1, X_2, \dots, X_{n-1})$, each X_i is a byte
- Define $h(X) = X_0 + X_1 + X_2 + \dots + X_{n-1}$
- Is this a secure cryptographic hash?
- Example: $X = (10101010, 00001111)$
- Hash is $h(X) = 10111001$
- If $Y = (00001111, 10101010)$ then $h(X) = h(Y)$
- Easy to find collisions, so **not** secure...

Non-crypto Hash (2)

- Data $X = (X_0, X_1, X_2, \dots, X_{n-1})$

- Suppose hash is defined as

$$h(X) = nX_0 + (n-1)X_1 + (n-2)X_2 + \dots + 1 \cdot X_{n-1}$$

- Is this a secure cryptographic hash?

- Note that

$$h(10101010, 00001111) \neq h(00001111, 10101010)$$

- But hash of (00000001, 00001111) is same as hash of (00000000, 00010001)

- Not “secure”, but this hash is used in the (non-crypto) application [rsync](#)

Non-crypto Hash (3)

- Cyclic Redundancy Check (CRC)
- Essentially, CRC is the remainder in a long division calculation
- Good for detecting burst **errors**
 - Random errors unlikely to yield a collision
- But easy to construct collisions
- CRC has been mistakenly used where crypto integrity check is required (e.g., WEP)

Popular Crypto Hashes

- **MD5** — invented by Rivest
 - 128 bit output
 - Note: MD5 collisions easy to find
- **SHA-1** — A U.S. government standard, inner workings similar to MD5
 - 160 bit output
- Many other hashes, but MD5 and SHA-1 are the most widely used
- Hashes work by hashing message in blocks