Hash



Hash Function Motivation

e Suppose Alice signs M
— Alice sends M and S = [M] ;... to Bob
— Bob verifiesthat M = {S} ;..

— Can Alice just send S?
* If M is big, [M] ;.. costly to compute & send

e Suppose instead, Alice signs h(M), where h(M) is
much smaller than M

— Alice sends M and S = [h(M)] ,;;.. to Bob
— Bob verifies that h(M) = {S} A}



Hash Function Motivation

* So, Alice signs h(M)
— That is, Alice computes S = [h(M)] Ajice
— Alice then sends (M, S) to Bob
— Bob verifies that h(M) = {S} A}
 What properties must h(M) satisfy?
— Suppose Trudy finds M’ so that h(M) = h(M”)
— Then Trudy can replace (M, S) with (M’, S)
 Does Bob detect this tampering?
— No, since h(M’) =h(M) = {S}ji.



Crypto Hash Function

e Crypto hash function h(x) must provide
— Compression — output length is small
— Efficiency —h(x) easy to compute for any x

— One-way—given a value y it is infeasible to find an x
such that h(x) =y

— Weak collision resistance — given x and h(x),
infeasible to find y = x such that h(y) = h(x)

— Strong collision resistance — infeasible to find any x
and y, with x = y such that h(x) = h(y)

* Lots of collisions exist, but hard to find any



Pre-Birthday Problem

* Suppose N people in a room

* How large must N be before the probability
someone has same birthday as meis=1/2?

— Solve: 1/2 =1 - (364/365)N for N
— We find N = 253



Birthday Problem

e How many people must be in a room before
probability is = 1/2 that any two (or more) have
same birthday?

— 1-365/365 - 364/365 - - -(365-N+1)/365
— Set equal to 1/2 and solve: N =23

e Surprising? A paradox?

* Maybe not: “Should be” about sqrt(365) since
we compare all pairs X and y

— And there are 365 possible birthdays



Of Hashes and Birthdays

* If h(x)is N bits, 2N different hash values are possible

* So, if you hash about 22 random values then you
expect to find a collision
— Since sqrt(2N) = 2N?

* Implication: secure N bit symmetric key requires 2N-!

work to “break” while secure N bit hash requires 2?2
work to “break”

— Exhaustive search attacks, that is



Non-crypto Hash (1)

Data X = (X,,X,,X,,...,X,_;), each X. is a byte
Define h(X) = X +X,+X+...+X

Is this a secure cryptographic hash?

Example: X = (10101010, 00001111)

Hash is h(X) = 10111001

If Y = (00001111, 10101010) then h(X) = h(Y)

Easy to find collisions, so not secure...



Non-crypto Hash (2)

Data X = (X(,X,X5,.- X, 1)
Suppose hash is defined as
h(X) = nX,+(n-1) X +(n-2)X,+...+1-X_,
Is this a secure cryptographic hash?
Note that
h(10101010, 00001111) = h(00001111, 10101010)

But hash of (00000001, 00001111) is same as hash
of (00000000, 00010001)

Not “secure”, but this hash is used in the (non-
crypto) application rsync



Non-crypto Hash (3)

Cyclic Redundancy Check (CRC)

Essentially, CRC is the remainder in a long division
calculation

Good for detecting burst errors

— Random errors unlikely to yield a collision
But easy to construct collisions

CRC has been mistakenly used where crypto integrity
check is required (e.g., WEP)



Popular Crypto Hashes

MD5 —invented by Rivest
— 128 bit output
— Note: MD5 collisions easy to find

SHA-1— A U.S. government standard, inner
workings similar to MD5

— 160 bit output

Many other hashes, but MD5 and SHA-1 are the
most widely used

Hashes work by hashing message in blocks



