Defenses
against low-level attacks

Outline

« Memory safety and type safety

- Properties that, if satisfied, ensure an application is
iImmune to memory attacks

o Automatic defenses
Stack canaries
- Address space layout randomization (ASLR)

* Return-oriented programming (ROP) attack
- How Control Flow Integrity (CFl) can defeat it

- Secure coding

Detecting overtlows with canaries

19th century coal mine integrity
¢ |s the mine safe? We can do the same

e Dunno; bring in a canary for stack integrity
e |f it dies, abort!

ASLR today

- Available on modern operating systems

- Available on Linux in 2004, and adoption on other
systems came slowly afterwards; most by 2011

e Caveats:

- Only shifts the offset of memory areas
Not locations within those areas

- May not apply to program code, just libraries

- Need sufficient randomness, or can brute force

32-bit systems typically offer 16 bits = 65536 possible starting
positions; sometimes 20 bits. Shacham demonstrated a brute force
attack could defeat such randomness in 216 seconds (on 2004
hardware)

64-bit systems more promising, e.g., 40 bits possible

Vs \\\\\\,,...w/ﬁ,,_
UL AAMI S s
i /,\w \w ~

~f

=
)
T
D
@
O
)

The Web

* Previously: Applications written in C and C++

* |Issues like remote code injection and sensitive data
theft arise from violations of memory safety

 Now: Security for the World-Wide Web (WWW)

- New vulnerabilities to consider: SQL injection, Cross-
site Scripting (XSS), Session Hijacking, and Cross-
site Request Forgery (CSRF)

- These share some common causes with memory

safety vulnerabilities; like confusion of code and data
Defense also similar; validate untrusted input

* New wrinkle: Web 2.0’s use of mobile code
How to protect your applications and other web resources?

Web Security Outline

 Web 1.0: the basics
- Attack: SQL (“sequel”) injection

 The Web with state
- Attack: Session Hijacking
- Attack: Cross-site Request Forgery (CSRF)

 Web 2.0: The advent of Javascript
- Attack: Cross-site Scripting (XSS)

- Defenses throughout
Theme: validate or sanitize input, then trust it

Web Basics

Basic structure of web traffic

Client Server

HTTP Request

Browser Web server

User clicks

* Requests contain:
- The URL of the resource the client wishes to obtain
* Headers describing what the browser can do

* Request types can be GET or POST
« GET: all data is in the URL itself (no server side effects)
- POST: includes the data as separate fields (can have side effects)

HTTP GET requests

http:/www.reddit.com/r/security

HTTP Headers
http://www.reddit.com/r/security

GET /r/security HTTP/1.1

Host: www.reddit.com

[User-Agent:)Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.2.11) Gecko/20101013 Ubuntu/9.04 (jaunty) Firefox/3.6.11
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: 1ISO-8859-1,utf-8;q=0.7,*;,q=0.7

Keep-Alive: 115

Connection: keep-alive
__utmc=5565(

User-Agent is typically a browser
but it can be wget, JDK, etc.

MY SUBREDDITS w FRONT - ALL - RANDOM | PICS - FUNNY - GAMING - ASKREDDIT - WORLDNEWS - NEWS - VIDEOS - IAMA - TODAYILEARNED

gl’edd" SECURITY m new rising controversial top gilded

N Howto protectyourselffrom identity theft eianews con ‘

y vineetwaldia

comment share

secunty services in south africa (e secumy

tted 1 hour ago by armstrongsecuritysou
+) comment share

Abusmg The HTMLS Data-URI g guya net
comment share e |
Protect Your Private Information With Our Shredding Services In Arlington
TX nstantshredding.com

»d 1 hour ago by instantshredding
1 comment share

stant v eddeg

HTTP Headers
http://www.zdnet.com/worst-ddos-attack-of-all-time-hits-french-site-7000026330/

GET /worst-ddos-attack-of-all-time-hits-french-site-7000026330/ HTTP/1.1

Host: www.zdnet.com

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.2.11) Gecko/20101013 Ubuntu/9.04 (jaunty) Firefox/3.6.11
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: 1SO-8859-1,utf-8;q=0.7,*;,0=0.7

Keep-Alive: 115 . .
Con‘r)]‘ection; keep-alive Referrer URL: the SIte frOm WhICh

[Referer: http://www.reddit.com/rlsecun'ty] this request was issued

HTTP POST requests

Posting on Piazza

‘ HTTP Headers

https://piazza.com/logic/api?method=content.create&aid=hrteve7t83et | m p | | C Itly I N Cl U d es d at a
:(3::’ /Fl);)agzizcga.g(i)'::\ethod=content.create[&aid=hrteve7t83et HTI’P/l.l] a S a p a I’t Of th e U Rl_

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.2.11) Gecko/20101013 Ubuntu/9.04 (jaunty) Firefox/3.6.11
Accept: application/json, text/javascript, */*; q=0.01

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: 1SO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 115

Connection: keep-alive

Content-Type: application/x-www-form-uriencoded; charset=UTF-8

X-Requested-With: XMLHttpRequest

Referer: https://piazza.com/class

Content-Length: 339

Cookie: piazza_session="DFwWUuCEFIGVEGWWHL)yuCvVHIGtHKECCKL.5%25x+X+Ux%255M5%22%215%3F5%26x%26%26%7C%22%21r...
Pragma: no-cache

C - . -
l {"method":"content.create","params":{"cid":"hrpng9q2nndos","subject":"<p>Interesting.. perhaps it has to do with a change to the ...]

Explicitly includes data as a part of the request’s content

urrp Status reason F11 1P r€SPONSES

version €°9d€ phrase

\r[nrrpnj 20{ ox]‘/

“T'| Date: Tue, 18 Feb 2014 08:20:34 GMT

Server: Apache

Set-Cookie: session-zdnet-production=6bhqcaliOcbciagullsisac2p3; path=/; domain=zdnet.com
Set-Cookie: zdregion=MTISLjluMTISLjE1MzplczplczpjZD)mNWYS5YTdkODUIN2Q2YzZM5NGU3M2Y1ZT! RmNj
Set-Cookie: zdregion=MTI5LjluMTISLjE1MzplczplczpjZDJmNWYS5YTdkODU1IN2Q2YZM5NGU3M2Y1ZTRmMN
Set-Cookie: edition=us; expires=Wed, 18-Feb-2015 08:20:34 GMT; path=/; domain=.zdnet.com

| Set-Cookie: session-zdnet-production=590b97fpinqe4bg6lde4dvvqll; path=/; domain=zdnet.com
Set-Cookie: user_agent=desktop

Set-Cookie: zdnet_ad_session=f

Set-Cookie: firstpg=0

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0

Pragma: no-cache

X-UA-Compatible: IE=edge,chrome=1

Vary: Accept-Encoding

Content-Encoding: gzip

Content-Length: 18922

Keep-Alive: timeout=70, max=146

Connection: Keep-Alive

. Content-Type: text/html; charset=UTF-8

<html> </html>

Headers

Data .

SQL injection

SQL (Standard Query Language)

Table
Table name

Password

dee@pp.com j3i8g8ha
Row

ecord)

Charlie readgood@pp.com Oaergja

.com 1bjb9a93

Dennis

Column
SELECT Age FROM Users WHERE Name='Dee’; 28

UPDATE Users SET email=’'readgoodl@pp.com’
WHERE Age=32; -- this is a comment

INSERT INTO Users Values(‘Frank’, ‘M’', 57, ...);
DROP TABLE Users;

Server-side code

Website

Usemame: I Password: Log me on automatically each visit | Log in I

“Login code” (PHP)

Sresult = mysql query(“select * from Users
where (name=‘'Suser’ and password=‘S$pass’);"”);

Suppose you successfully log in as $user
If this returns any results

How could you exploit this?

SQL injection

Usemame:] Password: Log me on automatically each visit Log in I

v u
.......
‘‘‘‘‘
a
......

frank’ OR 1=1); --

Sresult = mysqgl query(“select * from Users
where (name=‘'S$user’ and password=‘Spass’);"”);

Sresult = mysqgl query(“select * from Users
where (name=‘'frank’ OR 1=1); --
and password=‘whocares’);"”);

SQL injection

---.---.--u---u-..--.-n------ L] - - - L L LI LT T
L LT
L LT TRy

frank’ OR 1=1); DROP TABLE Users; --

Sresult = mysql query(“select * from Users
where(name='Suser’ and password=‘Spass’);"”);

Sresult = mysql query(“select * from Users
where (name=‘'frank’ OR 1=1);
DROP TABLE Users; --
and password=‘whocares’);");

Can chain together statements with semicolon:
STATEMENT 1 ; STATEMENT 2

SQL injection attacks are common

2
15 o4, of vulnerabilities that o
‘are SQL injection
10— —
5 I
U O X OO > O O U O
& P& P 00
P PP PP PP PP PP PP

http://web.nvd.nist.gov/view/vuln/statistics

HI, THIS 1S

YOUR SON'S SCHOOL.

WE'RE HAVING SOME
COMPUTER TROUBLE.

\%m

OH, DEAR - DID HE
BREAK SOMETHING?

IN A WAY

%4

DID YOU REALLY
NAME YOLR SON
Robert'); DROP
TABLE Students;-- 7

~OH.YES UTTLE
BOBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEAR'S STUDENT RECORDS.
I HOPE YOURE HAPPY.

!

AND I HOPE
- YOUVE LEARNED
TO SANMIZE YOUR
DATABASE. INPUTS.

http://xkcd.com/327/

The underlying issue

:Sresult = mysql query(“select * from Users :
: where (name='S$user’ and password=‘S$pass’);"”);:

e This one string combines the{code and the data>
« Similar to buffer overflows

When the boundary between code and data blurs,
we open ourselves up to vulnerabilities

The underlying issue

iSresult = mysqgl query(“select * from Users :
; where (name=‘$user’ and password=‘S$pass’);");!

select / from / where Should be
data, not code

Users

Suser password | $pass

Prevention: Input Validation

e Since we require input of a certain form, but we
cannot guarantee it has that form, we must validate
it before we trust it

« Just like we do to avoid buffer overflows

- Making input trustworthy
- Check it has the expected form, and reject it if not
 Sanitize it by modifying it or using it it in such a way
that the result is correctly formed by construction

Sanitization: Prepared Statements

Treat user data according to its type
- Decouple the code and the data

§$result = mysql query(“select * from Users :
: where (name=‘$user’ and password=‘$pass’);"”);i

$db = new mysql(“localhost”, *“user”, *“pass”, “DB");
Sstatement = Sdb->prepare(“select * from Users

where (name=? and password=?);"); Bind variables
Decoupling lets us compile now, before binding the data

$Sstatement->bind param(“ss”, S$user, $pass);
$statement->execute(); Bind variables are typed

Using prepared statements

:$statement = $db->prepare(“select * from Users §
: where(name=? and password=?);");

Binding is only applled
to the leaves, so the
structure of the tree
is fixed

select / from / where

password

Session Hijacking

Cookies and web authentication

* An extremely common use of cookies is to
track users who have already authenticated

* |f the user already visited

http://website.com/login.html?user=alice&pass=secret

with the correct password, then the server associates a
‘session cookie” with the logged-in user’s info

e Subsequent requests include the cookie in the request

headers and/or as one of the fields:
http://website.com/doStuff.html?sid=8lasf98as8eak

* The idea is to be able to say “| am talking to the same
browser that authenticated Alice earlier.”

Stealing Session Cookies

Client Server

g Browser Web server

« Compromise the server or user’s machine/browser
* Predict it based on other information you know

PR AR A L AR R AR AR AN EEEREREREREEREEREREEEEEENERERERERESRELSESEREEEREERARRERERERERERERRRERERNENRREDNN)

: « Sniff the network

- DNS cache poisoning
« Trick the user into thinking you are Facebook
- The user will send you the cookie

Network-based attacks

Mitigating Hijack

Uses one cookie (auth_token)
to validate user, which is a function of
- User name, password

auth_token weaknesses
- Does not change from one login to the next
« Does not become invalid when the user logs out

- Thus: steal this cookie once, and you can log in as the
user any time you want (until password change)!

Defense: Time out session IDs and delete them once
the session ends

http://packetstormsecurity.com/files/119773/twitter-cookie.txt

Cross-Site Request
Forgery (CSRF)

URLSs with side effects

http://bank.com/transfer.cgi?amt=9999&to=attacker

 GET requests often have side effects on server state
« Even though they are not supposed to

 What happens if

- the user is logged in with an active session cookie
- arequest is issued for the above link?

 How could you get a user to visit a link?

—xploiting URLs with side-eftects

Client attacker.com

bank.com

Browser

Cookie

bank.com
Browser automatically
visits the URL to obtain
what it believes will be
an image

Cross-Site Request Forgery

* Target: User who has an account on a vulnerable server

* Attack goal: make requests to the server via the users
browser that look to the server like the user intended to
make them

* Attacker tools: ability to get the user to “click a link”
crafted by the attacker that goes to the vulnerable site

e Key tricks:
- Requests to the web server have predictable structure

« Use of something like to force the victim to
send it

CSRF protections: REFERER

* The browser will set the REFERER field to the page
that hosted a clicked link

HTTP Headers
http://www.zdnet.com/worst-ddos-attack-of-all-time-hits-french-site-7000026330/

GET /worst-ddos-attack-of-all-time-hits-french-site-7000026330/ HTTP/1.1

Host: www.zdnet.com

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.2.11) Gecko/20101013 Ubuntu/9.04 (jaunty) Firefox/3.6.11
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;0=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

-Ch : - -1,utf-8;0=0.7,*;0=0.
e g O BRSLUTEA=0INAZ0T L Tryst requests from pages a user

Connection: keep-alive could Ieg|t|mate|y reach

(Referer: http://www.reddit.com/r/security | .
- From good users, if referrer header
present, generally trusted

- Defends against session hijacks too

Problem: Reterrer optional

* Not included by all browsers
« Sometimes other legitimate reasons not to have it

* Response: lenient referrer checking

 Blocks requests with a bad referrer, but allows
requests with no referrer

« Missing referrer always harmless?

 No: attackers can force the removal of referrer
- Bounce user off of £tp: page
- Exploit browser vulnerability and remove it
- Man-in-the-middle network attack

CS

RF Protection: Secretized Links

- Include a secret in every link/form

« Can use a hidden form field, custom HTTP header, or
encode it directly in the URL

« Must not be guessable value
« (Can be same as session id sent in cookie

 Frameworks help: Ruby on Rails embeds secret in
every link automatically

http://website.com/doStuff.html?sid=81asf98as8eak

