Software Security

& Low-level Vulnerabilities

* Programs written in C and C++ are susceptible a
variety of dangerous vulnerabilities

Buffer overflows Attacks
On the stack - Stack smashing
On the heap

Format string attack

Due to integer overflow Stale memory access
Over-writing and over-reading Return-oriented

Format string mismatches Programming (ROP)

Dangling pointer dereferences

« All violations of memory safety

« Accesses to memory via pointers that don’t own that
memory

Memory layout

L ocation of data areas

xf
Set when 4G Oxffffffff
Process starts int £() {
int x;
Runtime
malloc(sizeof(long));
static int x;
Known at

static const int y=10;

compile time

0 0x00000000

Returning from functions

int main()

{

;;;c(“ﬂey”, 10, =3);
-+ Q: How do we resume here?

}

Oxffffffff

Stack frame
for func sebp

%ebp

Set %eip to 4 (%ebp) Push next %eip
at return before call

Buffer overflows

Security-relevant outcome

void func(char *argl)

{
int authenticated = 0;
char buffer([4];
strcpy(buffer, argl);
if (authenticated) { ...

}

int main()

{
char *mystr = “AuthMe!”;
func(mystr);

}

M e ! \O

buffer authenticated

Code Injection: Main idea

void func(char *argl)

{
char buffer[4];

sprintf (buffer, argl);

%elp

l

Text --- 00 00 00 00 %ebp %eip &argl .. HaxxOr c0d3

buffer

(1) Load my own code into memory

(2) Somehow get 2eip to point to it

Putting It all together

But it has to be something;
we have to start writing wherever
the input to gets/etc. begins.

. good
%elp padding guess

l

buffer [No Title]

nop sled malicious code

Other memory exploits

Heap overtlow

o Stack smashing overflows a stack allocated buffer

e You can also overflow a buffer allocated by
malloc, which resides on the heap

Heap overflow

typedef struct vulnerable struct {
char buff[MAX LEN];
int (*cmp) (char*,char¥*);

} vulnerable;

int foo(vulnerable* s, char* one, char* two)

{

strcpy(s->buff, one); copy one into buff

strcat(s->buff, two); copy two into buff
return s->cmp(s->buff, "file://foobar");

}

must have strlen(one)+strlen(two) < MAX LEN
or we overwrite s->cmp

Heap overtlow variants

- Overflow into the C++ object viable

- C++ objects (that contain virtual functions) are represented
using a vtable, which contains pointers to the object’s methods

« This table is analogous to s=>cmp in our previous example,
and a similar sort of attack will work

- Overflow into adjacent objects

- Where buff is not collocated with a function pointer, but is
allocated near one on the heap

- Overflow heap metadata
- Hidden header just before the pointer returned by malloc

- Flow into that header to corrupt the heap itself
- Malloc implementation to do your dirty work for you!

Integer overflow

void vulnerable()
{
char *response;
int nresp = packet get int();
if (nresp > 0) {
response = malloc(nresp*sizeof(char*));
for (i = 0; 1 < nresp; i++)
response[i] = packet get string(NULL);
}

Integer overtlow

void vulnerable()

{

charH{}J@fponse;
int[nTesp F packet_get_int();
if (nresp > 0) {

response = malloc(nresp*sizeof(char*));
for (i = 0; 1 < nresp; i++)

response[i] = packet get string(NULL);
}

o|f we set nresp to 1073741824 and sizeof (char*) is 4

Integer overflow

void vulnerable()

{

charH{{}J@fponse;

int] nresp F packet get int();
ifm 0) { Wrap-around
response = malloc|nresp*sizeof(char*)|);
for (i = 0; 1 < nresp; i++)
response[i] = packet get string(NULL);

}

o|f we set nresp to 1073741824 and sizeof (char*) is 4
ethen nresp*sizeof (char*) overflows to become O

Integer overflow

void vulnerable()

{

charH{}@$ponse;

int[nTresp F packet_get_int();
if (nresp > 0) { Wrap-around

response = malloc|nresp*sizeof(char*)|);

for (i = 0; i < nresp; 1i++)
B Sackat sl sk EPESHONE)
} Overflow

o|/f we set nresp to 1073741824 and sizeof (char*) is 4
ethen nresp*sizeof (char*) overflows to become O
esubsequent writes to allocated response overflow it

Corrupting data

e The attacks we have shown so far affect code

Return addresses and function pointers

 But attackers can overflow data as well, to

Modify a secret key to be one known to the attacker,
to be able to decrypt future intercepted messages
Modify state variables to bypass authorization checks
(earlier example with authenticated flag)

Modify interpreted strings used as part of commands
E.g., to facilitate SQL injection, discussed later in the course

Read overflow

e Rather than permitting writing past the end of a
buffer, a bug could permit reading past the end

 Might leak secret information

Read overflow

int main() {
char buf[100], *p;

int i, len;

while (1) {
P = fgets (bUf, sizeof (buf) ,stdin) 7
if (p == NULL) return 0;

_ Read integer
len = atoi(p);

P = fgets (bUf, sizeof (buf) ,stdin) 7
if (p == NULL) return O0; Read message

for (i=0; i i++) Echo back

if (!iscntrl(buf[i])) putchar(buf[i]) 7

N

else putchar('.'); (partial)
printf(“\n”);| May exceed message
+} actual message
length!

Sample transcript

% ./echo-server

24

every good boy does fine

ECHO: |every good boy does fine|

10
hello there OK: input length
ECHO: |hello ther| | < buffer size
2> BAD:
hello I th
ECHO: |hello..here..y does fine. | en_g

| > size !

leaked data

Heartbleed

The Heartbleed bug was a
read overflow in exactly this style

The SSL server should accept a “heartbeat”
message that it echoes back

The heartbeat message specifies the length of its
echo-back portion, but the buggy SSL software did
not check the length was accurate

Thus, an attacker could request a longer length, ana
read past the contents of the buffer
- Leaking passwords, crypto keys, ...

Internet Engineering Task Force (IETF) R. Seggelmann

Request for Comments: 6520 M. Tuexen
Category: Standards Track Muenster Univ. of Appl. Sciences
ISSN: 2070-1721 M. Williams

GWwhiz Arts & Sciences
February 2012

Transport Layer Security (TLS) and
Datagram Transport Layer Security (DTLS) Heartbeat Extension

When a HeartbeatRequest message is received and sending a
HeartbeatResponse is not prohibited as described elsewhere in this
document, the receiver MUST send a corresponding HeartbeatResponse
message carrying an exact copy of the payload of the received
HeartbeatRequest.

HB(1000bytes) |

I

J

Reply(1 OOODwes)}/

struct {
HeartbeatMessageType type;
uintl6é payload length;
opaque payload[HeartbeatMessage.payload length];
opaque padding[padding length];
} HeartbeatMessage;

HB(1000bytes)

Data
((1 byte))

Reply(1000bytes)

Data
(1000 bytes)

Framo (151 byta) Decrypted SSL record (40 bytes)
0000 03 fd 68 65 61 72 74 62 6c 65 65 64 2e 66 69 ...heartbleed.fi

w 6f 2e 69 6f 59 45 4c 4c 4f 57 20 53 lippo.ioYELLOW S
55 42 4d 41 4e 45 UBMARINE

Type Length

Frame (1159 bytes) Decrypted SSL record (1040 bytes)

0000 02 03 fd 68 65 61 72 74 62 6c 65 65 64 2e 66 69 ...heartbleed.fi
0010 6c 69 70 70 6f 2e 69 6f 59 45 4c 4c 4f 57 20 53 lippo.ioYELLOW S
0020 55 42 4d 41 52 49 4e 45 27 19 8d bd c6 d3 3d b3 UBMARINE'..... =,
0030 £f6 44 bl 1f fb 61 14 73 Oe f4 dl1 96 03 03 03 03

0040 f4 5d 50 82 82 b5 eb 68 28 53 60 69 fc b6 94 21
nnsn al 7o 7a AR 1A he Q- AR OF e A0 K1 00 4~ A2 Ada

0220 4c c4 dd 29 ac cl ea 1d 1lc 20 19 2f bl 68 63 fb
0230 18 3b 6f 53 35 36 63 36 37 0d 0a 0d 0a 5f 6d 65
0240 74 68 6f 64 3d 50 55 54 26 6¢c 6f 67 69 6e 3d 61 -
0250 64 6d 69 6e 26 70 61 73 73 77 6f 72 64 3d 63 6c o-xn&password=cl
0260 6f 75 64 73 68 61 72 6b 23 13 2a 85 7f 17 ad a3 pudshark#. *

0270 5c 15 b0 8e d0 94 45 78 00 00 00 00 00 00 00 0O

What's the difference?

void safe()
{
char buf[80];
1f(fgets(buf, sizeof(buf), stdin)==NULL)
return;
printf(“%s”,buf);
}

void vulnerable()
{
char buf[80];
if (fgets(buf, sizeof(buf), stdin)==NULL)
return;
printf (buf);

What's the difference?

void safe()
{
char buf([80];
if(fgets(buf, sizeof(buf), stdin)==NULL)
return;
printf(“%s”,buf);
}

void vulnerable()

{
char buf[80];

if (fgets(buf, sizeof(buf), stdin)==NULL)

return;
Attacker controls the format string

} |

