Software Security

Software Security

o Software security is a kind of computer security that
focuses on the secure design and implementation
of software

« Using the best languages, tools, methods

e Focus of study:

the code

e By contrast: Many popular approaches to security
treat software as a black box (ignoring the code)
- OS security, anti-virus, firewalls, etc.

J Y N_ :

Why Software Security?

Firewalls and anti-virus are Attackers often can bypass
like building walls around outer defenses to attack
a weak interior weaknesses within

Software Security aims to address weaknesses directly

Ex: Heartbleed

 SSL/TLS is a core protocol for encrypted
communications used by the web

 Heartbleed is a bug in the commonly usead
OpenSSL implementation of SSL/TLS, v1.0.1 - 1.0.1f

« Discovered in March 2014, it has been in released
code since March 2012 (2 years old!)

o A carefully crafted packet causes OpenSSL to read
and return portions of a vulnerable server's memory
« Leaking passwords, keys, and other private information

Heartbleed, meet SoftSec

- Black box security is incomplete against
Heartbleed exploits

- |ssue is not at the level of system calls or deposited
files: nothing the OS or antivirus can do

- Basic attack packets could be blocked by IDS, but

- “Packet chunking” may bypass basic filters
- Exfiltrated data on the encrypted channel; invisible to forensics

- Software security methods ®
attack the source of the

problem: the buggy code ,\

& Low-level Vulnerabilities

* Programs written in C and C++ are susceptible a
variety of dangerous vulnerabilities

Buffer overflows Attacks
On the stack - Stack smashing
On the heap

Format string attack

Due to integer overflow Stale memory access
Over-writing and over-reading Return-oriented

Format string mismatches Programming (ROP)

Dangling pointer dereferences

« All violations of memory safety

« Accesses to memory via pointers that don’t own that
memory

& Ensuring Memory Safety

* The easiest way to avoid these vulnerabillities is to
use a memory-safe programming language
- Better still: a type-safe language

* For C/C++, use automated defenses
- Stack canaries
« Non-executable data (aka W+X or DEP)
« Address space layout randomization (ASLR)
- Memory-safety enforcement (e.g., SoftBound)
« Control-flow Integrity (CFl)

* and safe programming patterns and libraries
- Key idea: validate untrusted input

Securing the WWW

» Cybersecurity battles rage on the world wide web
* There are new vulnerabilities and attacks

- SQL injection
 Cross-site scripting (XSS)

- Cross-site request forgery (CSRF)
- Session hijacking

 The defenses have a similar theme
« Careful who/what you trust: Validate input L

« Reduce the possible damage, make -
exploitation harder

ow-level &

security
or

C and the
iInfamous

buffer
overflow

What is a buffer overflow?

« A buffer overflow is a bug that affects low-level
code, typically in C and C++, with significant
security implications

 Normally, a program with this bug will simply crash

e But an attacker can alter the situations that cause
the program to do much worse
- Steal private information (e.qg., Heartbleed)
« Corrupt valuable information
* Run code of the attacker’s choice

Why study them?

o Buffer overflows are still relevant today
« C and C++ are still popular
- Buffer overflows still occur with regularity

* They have a long history
- Many different approaches developed to defend
against them, and bugs like them

 They share common features with other bugs that
we will study
- In how the attack works
- In how to defend against it

Critical systems in C/C++

 Most OS kernels and utilities
- fingerd, X windows server, shell

 Many high-performance servers
« Microsoft IS, Apache httpd, nginx
- Microsoft SQL server, MySQL, redis, memcached

 Many embedded systems
- Mars rover, industrial control systems, automobiles

A successful attack on these systems is
particularly dangerous!

History of butfer overtlows

f & The harm has been substantial

1999 2000 2001 2002 2003
| | | | |

I 1 I I I

- Morris worm
* Propagated across machines (too aggressively, thanks to a bug)

- One way it propagated was a buffer overflow attack against a
vulnerable version of fingerd on VAXes

« Sent a special string to the finger daemon, which caused it to
execute code that created a new worm copy

-+ Didn'’t check OS: caused Suns running BSD to crash
« End result: $10-100M in damages, probation, community service

Morris now a professor at MIT

- CodeRed

History of buffer overflows

The harm has been substantial

1988 1999 2000 | 2001 2002 2003
I I | I |

I I 1 | I

- Exploited an overflow in the MS-I11S server
« 300,000 machines infected in 14 hours

- SQL Slammer

History of buffer overflows

The harm has been substantial

1988 1999 2000 2001 2002 |2003
I I | I |

I I I I I

- Exploited an overflow in the
MS-SQL server

« 75,000 machines infected in
10 minutes

Slashdot * COlEEENE

stories
submissions
popular

blog

ask slashdot
book reviews
games

idle

yro

technology

23-Year-Old X11 Server Security Vulnerability Discovered

January 08, 2014 310:

1,

/

"The recent report of X11/X.0Org security in bad shape rings more truth
today. The X.Org Foundation announced today that they've found a
X11 security issue that dates back to @b The issue is a possible
stack buffer overflow that could lead to privilege escalation to root and
affects all versions of the X Server back to X11R5. After the
vulnerability being in the code-base for 23 years, it was finally
uncovered via the automated cppcheck static analysis utility."

Posted by Unknown Lamer on Wednesda
from the stack-smashing-for-fun-and-profit d

An anonymous reader writes

There's a scanf used when loading BDF fonts that can overflow using a
carefully crafted font. Watch out for those obsolete early-90s bitmap fonts.

800

600

400

200

0

Trends

M Total occurrences of CWE 119 (Buffer Error)

1997

1999

2001

2003 2005 2007 2009 2011

2013

What we'll do

 Understand how these attacks work, and how to
defend against them

* These require knowledge about:

« The compiler
« The OS
- The architecture

Analyzing security requires a whole-systems view

Memory layout

All programs are stored in memory

4G

The process’s view
of memory is that
it owns all of it

Oxffffffff

¢

In reality, these are
virtual addresses;
the OS/CPU map
them to physical

addresses

/

0x00000000

The instructions themselves are in memory

4G

Text

Oxffffffff

0x4c2 sub $0x224,%esp
0x4cl push %ecx

0x4bf mov %esp, %ebp
Ox4be push %ebp

0x00000000

L ocation of data areas

xf
Set when 4G Oxffffffff
Process starts int £() {
int x;
Runtime
malloc(sizeof(long));
static int x;
Known at

static const int y=10;

compile time

0 0x00000000

Memory allocation

Stack and heap grow in opposite directions

Compiler emits instructions
adjust the size of the stack at run-time

0x00000000 Oxffffffff
Heap — 3 2-1— Stack
— |
apportioned by the OS; Stack sush 1
managed in-process oointer iﬁ:i 2
by malloc

return

Focusing on the stack for now

Stack and function calls

 What happens when we call a function?
- What data needs to be stored?
« Where does it go?

 What happens when we return from a function?
« What data needs to be restored?
« Where does it come from?

Basic stack layout

void func(char *argl, int arg2, int arg3)
{

char locl[4]

int loc2;
}

Oxffffffff

loc2 loc1 7?7?77 77?7 argl arg2 arg3 caller's data

Local variables Arguments
pushed in the pushed in
same order as reverse order
they appear of code
in the code

The local variable allocation is ultimately up to the compiler: Variables could be allocated in any order,
or not allocated at all and stored only in registers, depending on the optimization level used.

Accessing variables

void func(char *argl, int arg2, int arg3)

{

loc2++; Q: Where is (this) 1loc2

OxXffffffff
Oxbffff323
Can’t know absolute But can know the relative address

address at compile time * loc2 is always 8B before 777s

Accessing variables

void func(char *argl, int arg2, int arg3)

{

loc2++; Q: Where is (this) 1loc2
y A: -8(%ebp)

OxXffffffff

Stack frame
Sebp for func

Frame pointer But can know the relative address
* loc2 is always 8B before 777s

Returning from functions

int main()

{

func(“Hey”, 10, =3);

y T Q: How do we restore %ebp?

sesp OXffffffff

Stack frame
for func %ebp

Returning from functions

int main()

{

%;;c(“ﬂey", 10, =3);
-+ Q: How do we restore %ebp?

}

tesp Oxffffffff

Stack frame
for func %ebp

Push %$ebp before locals

Returning from functions

int main()

{

é&éc(“ﬁey", 10, =3);
-+ Q: How do we restore %ebp?

}

%esp OxXffffffff

Stack frame
%ebp for func %ebp

Push %ebp before locals
Set %ebp to current (%esp)

Returning from functions

int main()

{

;;;c(“ﬁey", 10, =3);
-+ Q: How do we restore %ebp?

}

tesp Oxffffffff

Stack frame
%ebp forfunc %ebp

Push %ebp before locals

Set %ebp to current (%esp)
Set ebp to(%ebp) atreturn

Instructions in memory

4G Oxffffffff

0x4a7 mov S0x0, %eax
0x4a2 call <func>
0x49b movl $0x804..,(%esp)

0x493 movl $0xa,0x4(%esp) — %eip

o' \ 0x00000000

Instructions in memory

4G Oxffffffff

0x5bf mov %esp, $ebp
0x5be push %ebp

0x4a7 mov S0x0,%eax

0x4a2 call <func> +— %eip
0x49b movl $0x804..,(%esp)

0x493 movl $0xa,0x4(%esp)

0 ' \ 0x00000000

Instructions iIn memory

4G Oxffffffff

0x5bf mov %esp, $ebp
0x5be push %ebp +— %eip

0x4a7 mov $0x0,%eax

0x4a2 call <func>

0x49b movl $0x804..,(%esp)
0x493 movl $0xa,0x4(%esp)

o' \ 0x00000000

Returning from functions

int main()

{

func(“Hey”, 10, -3);
-+ Q: How do we resume here?

}

Oxffffffff

Stack frame
for func %ebp

3ebp

Returning from functions

int main()

{

%;;c(“ﬂey", 10, =-3);
-+ Q: How do we resume here?

}

OxXffffffff

Stack frame
%ebp forfunc %ebp

Push next %eip
before call

Returning from functions

int main()

{

;;;c(“ﬂey”, 10, =3);
-+ Q: How do we resume here?

}

Oxffffffff

Stack frame
for func sebp

%ebp

Set %eip to 4 (%ebp) Push next %eip
at return before call

Stack and functions: Summary

Calling function:

1.Push arguments onto the stack (in reverse)

2.Push the return address, i.e., the address of the instruction you
want run after control returns to you

3.Jump to the function’s address

Called function:
4 Push the old frame pointer onto the stack (%ebp)

5.Set frame pointer (%ebp) to where the end of the stack is right now

(%esp)
6.Push local variables onto the stack

Returning function:
7.Reset the previous stack frame: %esp = %ebp, %ebp = (%ebp)

8.Jump back to return address: %cip = 4(%esp)

Buffer overflows

Benign outcome

void func(char *argl)

{
char buffer([4];
strcpy(buffer, argl);

}

int main()

{
char *mystr = “AuthMe!”;
func(mystr);

}

000 sebp teip sargl

buffer

Benign outcome

void func(char *argl)

{

char buffer[4];
strcpy(buffer, argl);

}

int main()

{
char *mystr = “AuthMe!”;
func(mystr);

Benign outcome

void func(char *argl)

{
char buffer([4)];

strcpy(buffer, argl);

}

int main()

{
char *mystr = “AuthMe!”;
func(mystr);

}

Upon return, sets $ebp to 0x0021654d

M e ! \O

buffer QEGFAULT (0x00216551) (during subsequent access)

Security-relevant outcome

void func(char *argl)

{
int authenticated = 0;
char buffer[4];
strcpy(buffer, argl);
if (authenticated) { ...

}

int main()

{
char *mystr = “AuthMe!”;
func (mystr);

}

buffer authenticated

Security-relevant outcome

void func(char *argl)

{
int authenticated = 0;
char buffer([4];
strcpy(buffer, argl);
if (authenticated) { ...

}

int main()

{
char *mystr = “AuthMe!”;
func(mystr);

}

M e ! \O

buffer authenticated

Could 1t be worse?

void func(char *argl)

{

char buffer(4);
strcpy(buffer, argl);

| IR Savs NaT |

buffer

strcpy will let you write as much as you want (til a \0’)

Could it be worse?

void func(char *argl)

{

char buffer[4];
strcpy(buffer, argl);

All ours!

buffer

strcpy will let you write as much as you want (til a \0’)
What could you write to memory to wreak havoc?

Could it be worse?

void func(char *argl)

{

char buffer([4];
strcpy(buffe

) \
—g=p C il S

buffer

All ours!

—

strcpy will let you write as much as you want (til a \0’)
What could you write to memory to wreak havoc?

Stack Smashing Example

* Program asks for a serial number that the
attacker does not know

e Attacker does not have source code

* Attacker does have the executable (exe)

[*]command Prompt
C:\Documents and Settings\Administrator\Desktop\programs\sre\Release>ho

Enter Serial Number
woeliweliow

C:\Documents and Settings\Administrator\Desktop\programs\sre\Release>

2 Program quits on incorrect serial number

Buffer Overflow Present?

e By trial and error, attacker discovers apparent
buffer overflow

¢ |Command Prompt - bo

C:\Documents and Settings“\Administrator\Desktop\programs\sre\Release>ho

Enter Serial Number
AAAAAAARAAA

X|

The instruction at "0x00004141" referenced memory at "0x00004141", The memory could not be "read”.

= (Click on OK ta terminate the program
Click on CANCEL to debug the program

oK | Cancel |

3 Note that 0x41 is ASCII for “A”

d Looks like ret overwritten by 2 bytes!

Disassemble Code

 Next, disassemble bo.exe to find

-text:00401000

.text:00401000 sub
.text:00401003 push
.text:00401008 call
.text:004061060D lea
-.text:004081011 push
-.text:0040810812 push
.text:004610617 call
.text:0040101C push
.text:00461061E lea
-text:004010822 push
-text:004010827 push
.text:00401028 call
.text:0040102D add
.text:004061030 test
.text:0040610632 jnz
.text:00401034 push
.text:00401039 call
.text:00401063E add

esp, 1Ch

offset aEnterSerialNum ; "‘nEnter Serial Numberin®
sub_40109F

eax, [esp+2Bh+var_1C]

eax

offset as 3 V%S

sub_4061088

8

ecx, [esp+2Ch+var_1C]

offset asS123n456 ; ""S123N456"

ecx

sub_461058

esp, 18h

eax, eax

short loc_461641

offset aSerialNumberIs ; “Serial number is correct.in”
sub_40109F
esp, 4

d The goal is to exploit buffer overflow to
jump to address 0x401034

Part 4 — Software

50

Buffer Overflow Attack

* Find that, in ASCII, 0x401034 is “@AP4”

¢ |Command Prompt - bo

C:\Documents and Settings\Administrator\Desktop\programs\sre\Release>ho

Enter Serial Number
AAR P4

@ The instruction at "0x00341040" referenced memory at "0x00341040", The memory could not be "read".

Click on OK to terminate the program
Click on CANCEL to debug the program

oK | Cancel |

- Byte order is reversed? Why?
1 X86 processors are “little-endian”

Overflow Attack, Take 2
 Reverse the byte order to “4"P@” and...

[c*]Command Prompt
C:\Documents and Settings\Administrator\Desktop\programs\sre\Release>ho

Enter Serial Number

AA4"PE

Serial number is correct.

C:\Documents and Settings\Administrator\Desktop\programs\sre\Release’>

- Success! We've bypassed serial number check by
exploiting a buffer overflow

d What just happened?

o Overwrote return address on the stack

Buffer Overflow

e Attacker did not require access to the source
code

* Only tool used was a disassembler to
determine address to jump to

* Find desired address by trial and error?

— Necessary if attacker does not have exe

— For example, a remote attack

Source Code

* Source code for buffer overflow example

J FIaW eaS||y #include <stdio.h>
¥include <string.h>
found by |
main()
attacker... Y char in(75];
0 Without printf ("~nEnter Serial Number:n");
scanf{"%=s", 1in):
aCCess to 1f{!strncmp(in, "S123N456", 8))
1
source COde ! printf({"Serial number is correct.n");

¥

¥

Part 4 — Software
54

