Real-World Protocols

* Next, we look at real protocols
— SSH—a simple & useful security protocol
— SSL— practical security on the Web
— [PSec—security at the IP layer
— Kerberos — symmetric key, single sign-on
— WEP — “Swiss cheese” of security protocols

— GSM — mobile phone (in)security

Secure Shell (SSH)

SSH

Creates a “secure tunnel”

Insecure command sent thru SSH tunnel are
then secure

SSH used with things like rlogin
— Why is rlogin insecure without SSH?
— Why is rlogin secure with SSH?

SSH is a relatively simple protocol

SSH

e SSH authentication can be based on:
— Public keys, or
— Digital certificates, or
— Passwords

* Here, we consider certificate mode

— Other modes, see homework problems

* We consider slightly simplified SSH...

Simplified SSH

Alice, CP,R

CS, R,

g* mod p

g® mod p, certificateg, Sy

E(Alice, certificate,,, S ,, K) Bob

CP = “crypto proposed”, and CS = “crypto selected”

H = h(Alice,Bob,CP,CS,R,,Rz,92 mod p,g°®> mod p,g2® mod p)
SB = [H]Bob

S, = [H, Alice, certificate,]ajice

K=g2 mod p

MiM Attack on SSH?

Alice, R, Alice, R,
R, R
g* mod p | g'mod p
0 gimodpcerty, Sy s g’ mod p, certy, Sg
Alice Balicecert, S, K) E(Alice corty S, K)
— —

e Where does this attack fail?

* Alice computes:
— H, = h(Alice,Bob,CP,CS,R,,Rgz,92 mod p,gt mod p,g2 mod p)

* But Bob signs:
— H, = h(Alice,Bob,CP,CS,R,,Rz,g! mod p,g® mod p,g° mod p)

\;

Secure Socket Layer

o__
e

Socket layer

* “Socket layer”
lives between
application and
transport layers

e SSL usually
between HTTP
and TCP

Part 3— Protocols

8

Socket
“layer”

P_*

User

application

transport

OS

link

physical
NIC

What is SSL?

* SSLis the protocol used for majority of secure
transactions on the Internet

* For example, if you want to buy a book at
amazon.com...

— You want to be sure you are dealing with Amazon
(authentication)

— Your credit card information must be protected in
transit (confidentiality and/or integrity)

— As long as you have money, Amazon does not care who
you are

— So, no need for mutual authentication

Part 3 Protocols
9

Simple SSL-like Protocol

I’d like to talk to you securely

Here’s my certificate

{K}Bob

protected HTTP

____________>

* |s Alice sure she’s talking to Bob?

* |s Bob sure he’s talking to Alice?

Simplified SSL Protocol

Can we talk?, cipher list, R,

certificate, cipher, Ry

{S}g.p> E(h(msgs CLNT ,K),K)

h(msgs,SRVR ,K)
—
Data protected with key K

*————————————»

 Sis known as pre-master secret

* K=h(S,R,,Rp)

* “msgs” means all previous messages
CLNT and SRVR are constants

Part 3 Protocols
11

SSL Keys

* 6 “keys” derived from K =h(S,R, ,R;p)
— 2 encryption keys: send and receive
— 2 integrity keys: send and receive
— 2 IVs: send and receive
— Why different keys in each direction?

* Q: Why is h(msgs,CLNT,K) encrypted?
* A: Apparently, it adds no security...

SSL Authentication

e Alice authenticates Bob, not vice-versa
— How does client authenticate server?

— Why would server not authenticate client?

 Mutual authentication is possible: Bob sends
certificate request in message 2

— Then client must have a valid certificate

— But, if server wants to authenticate client, server could
instead require password

SSL MiM Attack?

R, R,
—
certificater, Ry certificateg, Ry
{S, }Trudy E(X;.K) {82} Bob-E(X5.K5) ‘
i || h(Y, K,) h(Y,K,)
e i —
Alice E(data,K,) E(data,K,) ”

* Q: What prevents this MiM “attack”?

* A:Bob’s certificate must be signed by a certificate
authority (CA)

 What does browser do if signature not valid?
 What does user do when browser complains?

SSL Sessions vs Connections

SSL session is established as shown on previous
slides

SSL designed for use with HTTP 1.0

HTTP 1.0 often opens multiple simultaneous
(parallel) connections

— Multiple connections per session
SSL session is costly, public key operations

SSL has an efficient protocol for opening new
connections given an existing session

SSL Connection

session-1D, cipher list, R ,

session-ID, cipher, Ry
h(msgs,SRVR ,K)

h(msgs,CLNT,K)

| Alice » Protected data

____________>

* Assuming SSL session exists

* So, Sis already known to Alice and Bob
* Both sides must remember session-1D
* Again, K=h(S,R,,Rp)

0 No public key operations! (relies on known S)

Part 3 Protocols
16

Kerberos

Part 3— Protocols
17

Kerberos

* In Greek mythology, Kerberos is 3-headed dog that
guards entrance to Hades

— “Wouldn’t it make more sense to guard the exit?”

* In security, Kerberos is an authentication protocol
based on symmetric key crypto

— Originated at MIT

— Based on work by Needham and Schroeder
— Relies on a Trusted Third Party (TTP)

Motivation for Kerberos

Authentication using public keys

— N users = N key pairs

Authentication using symmetric keys
— N users requires (on the order of) N2 keys

Symmetric key case does not scale

Kerberos based on symmetric keys but only
requires N keys for N users

- Security depends on TTP
+ No PKl is needed

Kerberos KDC

Kerberos Key Distribution Center or KDC
— KDC acts as the TTP

— TTP is trusted, so it must not be compromised

KDC shares symmetric key K, with Alice, key K4
with Bob, key K. with Carol, etc.

And a master key Ky known only to KDC

KDC enables authentication, session keys

— Session key for confidentiality and integrity

In practice, crypto algorithm is DES

Part 3 Protocols

20

Kerberos Tickets

 KDC issue tickets containing info needed to
access network resources

 KDC also issues Ticket-Granting Tickets or TGT's
that are used to obtain tickets

e Each TGT contains

— Session key
— User’s ID
— Expiration time
* Every TGT is encrypted with Ky
— So, TGT can only be read by the KDC

Part 3 Protocols
21

Kerberized Login

Alice enters her password

Then Alice’s computer does following:

— Derives K, from Alice’s password
— Uses K, to get TGT for Alice from KDC

Alice then uses her TGT (credentials) to securely
access network resources

Plus: Security is transparent to Alice

Minus: KDC must be secure —it’s trusted!

Kerberized Login

Alice wants

—
Alice’s a TGT
password
E(S,, TGTK,)

Computer

* Key K, =h(Alice’s password)
* KDC creates session key S,

* Alice’s computer decrypts S, and TGT
— Then it forgets K,

 TGT =E("Alice”, S, Kipe)

Part 3 Protocols
23

Alice Requests “Ticket to Bob”

I want to
talk to Bob

REQUEST

REPLY

Computer KDC

« REQUEST = (TGT, authenticator)

— authenticator = E(timestamp, S ,)

« REPLY = E(“Bob”, K,3, ticket to Bob, S,)
— ticket to Bob = E(“Alice”, K, 5, Kp)

* KDC gets S, from TGT to verify timestamp

Part 3 Protocols
24

Alice Uses Ticket to Bob

ticket to Bob, authenticator

E(timestamp + 1, K ,p)

Alice’s
Computer

* ticket to Bob = E(“Alice”, K, 5, Kg)
* authenticator = E(timestamp, K)

* Bob decrypts “ticket to Bob” to get K ,; which he then
uses to verify timestamp

Part 3 Protocols
25

Kerberos

* Key S, used in authentication
— For confidentiality/integrity

* Timestamps for authentication and replay
protection

* Recall, that timestamps...

— Reduce the number of messages—like a nonce
that is known in advance

— But, “time” is a security-critical parameter

Kerberos Questions

When Alice logs in, KDC sends E(S,, TGT,K,)
where TGT = E(“Alice”, S, Kxpe)

Q: Why is TGT encrypted with K, ?

A: Extra work for no added security!

In Alice’s “Kerberized” login to Bob, why can Alice
remain anonymous?

Why is “ticket to Bob” sent to Alice?
— Why doesn’t KDC send it directly to Bob?

Kerberos Alternatives

* Could have Alice’s computer remember password
and use that for authentication

— Then no KDC required
— But hard to protect passwords

— Also, does not scale

* Could have KDC remember session key instead of
putting itina TGT

— Then no need for TGT

— But stateless KDC is major feature of Kerberos

Kerberos Keys

In Kerberos, K, = h(Alice’s password)
Could instead generate random K ,

— Compute K, = h(Alice’s password)

— And Alice’s computer stores E(K,, K,)

Then K, need not change when Alice changes her
password

— But E(K,, K,) must be stored on computer

This alternative approach is often used

— But not in Kerberos

