Authentication Protocols



Authentication

Alice must prove her identity to Bob
— Alice and Bob can be humans or computers

May also require Bob to prove he’s Bob (mutual
authentication)

Probably need to establish a session key

May have other requirements, such as
— Use public keys

— Use symmetric keys

— Use hash functions

— Anonymity, plausible deniability, etc., etc.



Authentication

 Authentication on a stand-alone computer is
relatively simple

— Hash password with salt

— “Secure path,” attacks on authentication software,
keystroke logging, etc., can be issues

e Authentication over a network is challenging
— Attacker can passively observe messages
— Attacker can replay messages

— Active attacks possible (insert, delete, change)



Simple Authentication

“I’'m Alice”

Prove it

My password is “frank™

e Simple and may be OK for standalone system

e Butinsecure for networked system
— Subject to a replay attack (next 2 slides)
— Also, Bob must know Alice’s password



Authentication Attack

“I’'m Alice”

Prove it

My password is “frank™

Part 3 Protocols
5



Authentication Attack

“I’'m Alice”

Prove it

My password is “frank™

* This is an example of a replay attack

* How can we prevent a replay?



Simple Authentication

I’m Alice, my password is “frank”

 More efficient, but...

e ...Same problem as previous version

Part 3 Protocols
7



Better Authentication

“I’'m Alice”

Prove it

h(Alice’s password)

e Better since it hides Alice’s password
— From both Bob and Trudy

e But still subject to replay



Challenge-Response

 To prevent replay, use challenge-response

— Goal is to ensure “freshness”

* Suppose Bob wants to authenticate Alice

— Challenge sent from Bob to Alice

* Challenge is chosen so that...
— Replay is not possible
— Only Alice can provide the correct response

— Bob can verify the response



Nonce

To ensure freshness, can employ a nonce

— Nonce == number used once

What to use for nonces?

— That is, what is the challenge?

What should Alice do with the nonce?

— That is, how to compute the response?
How can Bob verify the response?

Should we rely on passwords or keys?



Challenge-Response

“I’'m Alice”
Nonce

h(Alice’s password, Nonce)

2 Nonce is the challenge

2 The hash is the response

2 Nonce prevents replay, ensures freshness
2 Password is something Alice knows

2 Note: Bob must know Alice’s pwd to verify

Part 3 Protocols
11



Generic Challenge-Response

“I’'m Alice”

Nonce

Something that could only be

from Alice (and Bob can verify) Bob

* |n practice, how to achieve this?
* Hashed password works, but...

* Encryption is better here (Why?)



Symmetric Key Notation

* Encrypt plaintext P with key K
C =E(PK)

* Decrypt ciphertext C with key K
P =D(C.K)

* Here, we are concerned with attacks on protocols,
not attacks on crypto

— So, we assume crypto algorithms are secure



Authentication: Symmetric Key

Alice and Bob share symmetric key K
Key K known only to Alice and Bob

Authenticate by proving knowledge of
shared symmetric key

How to accomplish this?

— Cannot reveal key, must not allow replay (or
other) attack, must be verifiable, ...



Authentication with Symmetric Key

“I’'m Alice”
R

ER K)

a Secure method for Bob to authenticate Alice
3 Alice does not authenticate Bob

d So, can we achieve mutual authentication?



Mutual Authentication?

“I’'m Alice”, R

ER K)

E(R K)

 What’s wrong with this picture?

e “Alice” could be Trudy (or anybody else)!



Mutual Authentication

* Since we have a secure one-way
authentication protocol...

* The obvious thing to do is to use the protocol
twice

— Once for Bob to authenticate Alice

— Once for Alice to authenticate Bob

* This has got to work...



Mutual Authentication

“I’'m Alice”, R,

RB ’ E(RA7 K)

* This provides mutual authentication...

e ...ordoesit? See the next slide



Mutual Authentication Attack

I.“T’'m Alice”, R,

2.R,,ER,,K)

5.ER;, K)

3.“I'm Alice”, Ry
—
4.Rq, E(Ry, K)

Part 3 Protocols
19



Mutual Authentication

* Our one-way authentication protocol is not
secure for mutual authentication

— Protocols are subtle!

— The “obvious” thing may not be secure

e Also, if assumptions or environment change,
protocol may not be secure

— This is a common source of security failure

— For example, Internet protocols



Symmetric Key Mutual
Authentication

“I’'m Alice”, R,

R,, E(“Bob” R, K)

E(“Alice” R;.K)

* Do these “insignificant” changes help?

* Yesl!



Public Key Notation

* Encrypt M with Alice’s public key: {M} ..
* Sign M with Alice’s private key: [M] ..
* Then

_ [{M}Alice ]Alice =M
— {Mlajice Fatice =M
* Anybody can use Alice’s public key

* Only Alice can use her private key

Part 3 Protocols



Public Key Authentication

“I’'m Alice”

{R}Alice

Alice

e |s this secure?

* Trudy can get Alice to decrypt anything!

— So, should have two key pairs



Public Key Authentication

“I’'m Alice”

R

[R]atice

Alice

* |s this secure?
* Trudy can get Alice to sign anything!

— Same a previous — should have two key pairs



Public Keys

* Generally, a bad idea to use the same key
pair for encryption and signing

* |nstead, should have...
— ...one key pair for encryption/decryption...

— ...and a different key pair for signing/verifying
signatures



Session Key

e Usually, a session key is required
— |l.e., a symmetric key for a particular session

— Used for confidentiality and/or integrity

 How to authenticate and establish a session key
(i.e., shared symmetric key)?

— When authentication completed, want Alice and Bob
to share a session key

— Trudy cannot break the authentication...

— ...and Trudy cannot determine the session key



Authentication & Session Key

“I’'m Alice”, R

{R ’K}Alice

{R +1 . K}g.

* |s this secure?
— Alice is authenticated and session key is secure
— Alice’s “nonce”, R, useless to authenticate Bob
— The key K is acting as Bob’s nonce to Alice

e No mutual authentication



Public Key Authentication and
Session Key

“I’'m Alice”, R

[R.Klgop

[R +1.K]ajice

* |s this secure?
— Mutual authentication (good), but...

— ... session key is not secret (very bad)



Public Key Authentication and
Session Key

“I’'m Alice”, R
—
{ [R ’K]Bob}Alice

{[R +1.K] pjice S Bob

e |s this secure?
e Seems to be OK

 Mutual authentication and session key!



Public Key Authentication and
Session Key

“I’'m Alice”, R
[{R’K}Alice]Bob

[{R +1.K}gp]atice

e |s this secure?

* Seems to be OK
— Anyone can see {RK},;.. and {R +1 K},



Perfect Forward Secrecy

e Consider this “issue”...

— Alice encrypts message with shared key K and sends
ciphertext to Bob

— Trudy records ciphertext and later attacks Alice’s (or
Bob’s) computer to recover K

— Then Trudy decrypts recorded messages

* Perfect forward secrecy (PFS): Trudy cannot later
decrypt recorded ciphertext

— Even if Trudy gets key K or other secret(s)
* |s PFS possible?

Part 3 Protocols
31



Perfect Forward Secrecy

Suppose Alice and Bob share key K

For perfect forward secrecy, Alice and Bob cannot
use K to encrypt

Instead they must use a session key K¢ and forget
it after it’s used

Can Alice and Bob agree on session key K¢ in a
way that ensures PFS?



Naive Session Key Protocol

E(Ks, K)

E(messages, Ky)

* Trudy could record E(Kg, K)
* If Trudy later gets K then she can get K¢

— Then Trudy can decrypt recorded messages



Perfect Forward Secrecy

e We use Diffie-Hellman for PFS
* Recall: public gandp

gt mod p

g®> mod p

2 But Diffie-Hellman is subject to MiM
J How to get PFS and prevent MiM?



Part 3

35

Perfect Forward Secrecy

/;

E(g* mod p, K)

E(g" mod p, K)

Session key K¢ = g2 mod p

Alice forgets a, Bob forgets b

So-called Ephemeral Diffie-Hellman
Neither Alice nor Bob can later recover Kq
Are there other ways to achieve PFS?

Protocols



Mutual Authentication, Session Key
and PFS

“I’'m Alice”, R,
Rg, [{R4, 2° mod p} ajicelgob

[{Rg, g mod p}gqplatice

1 Session key is K = g2® mod p
2 Alice forgets a and Bob forgets b

2 If Trudy later gets Bob’s and Alice’s secrets, she
cannot recover session key K



Timestamps

A timestamp T is derived from current time
Timestamps used in some security protocols

— Kerberos, for example

Timestamps reduce number of msgs (good)
— Like a nonce that both sides know in advance

“Time” is a security-critical parameter (bad)

Clocks never exactly the same, so must allow for
clock skew — creates risk of replay

— How much clock skew is enough?



Public Key Authentication with
Timestamp T

“I'm Alice”, {[T, K] Ajice S Bob

{[T+1, K]z atice

2 Secure mutual authentication?
2 Session key?
2 Seems to be OK



Public Key Authentication with
Timestamp T

“I'm Alice”, [{T, K}gop] Atice

[{T +1, K} aticelBob

0 Secure authentication and session key?

2 Trudy can use Alice’s public key to find
{T, K}y, and then...



Public Key Authentication with
Timestamp T

“I'm Trudy”, [{T, K}y

[{T +1 > I<}Trudy]B0b

2 Trudy obtains Alice-Bob session key K
2 Note: Trudy must act within clock skew



Public Key Authentication

Sign and encrypt with nonce...
— Secure

Encrypt and sign with nonce...
— Secure

Sign and encrypt with timestamp...
— Secure

Encrypt and sign with timestamp...
— Insecure

Protocols can be subtle!



Public Key Authentication with
Timestamp T

“I'm Alice”, [{T, K}gop] Atice

[{T +1} aticelBob

2 Is this “encrypt and sign” secure?

o Yes, seems to be OK

2 Does “sign and encrypt” also work here?



