

Hash 2

Crypto Hash Function

- Crypto hash function $h(x)$ must provide
 - **Compression** — output length is small
 - **Efficiency** — $h(x)$ easy to compute for any x
 - **One-way** — given a value y it is infeasible to find an x such that $h(x) = y$
 - **Weak collision resistance** — given x and $h(x)$, infeasible to find $y \neq x$ such that $h(y) = h(x)$
 - **Strong collision resistance** — infeasible to find *any* x and y , with $x \neq y$ such that $h(x) = h(y)$
- Lots of collisions exist, but hard to find *any*

Hashes and Birthdays

- If $h(x)$ is N bits, 2^N different hash values are possible
- So, if you hash about $2^{N/2}$ random values then you expect to find a collision
 - Since $\sqrt{2^N} = 2^{N/2}$
- **Implication:** secure N bit symmetric key requires 2^{N-1} work to “break” while secure N bit hash requires $2^{N/2}$ work to “break”
 - Exhaustive search attacks, that is

Popular Crypto Hashes

- **MD5** — invented by Rivest
 - 128 bit output
 - Note: MD5 collisions easy to find
- **SHA-1** — A U.S. government standard, inner workings similar to MD5
 - 160 bit output
- Many other hashes, but MD5 and SHA-1 are the most widely used
- Hashes work by hashing message in blocks

Crypto Hash Design

- Desired property: **avalanche effect**
 - Change to 1 bit of input should affect about half of output bits
- Crypto hash functions consist of some number of rounds
- Want security and speed
 - Avalanche effect after few rounds
 - But simple rounds
- Analogous to design of block ciphers

Hash Uses

- Authentication (HMAC)
- Message integrity (HMAC)
- Message fingerprint
- Data corruption detection
- Digital signature efficiency
- Anything you can do with symmetric crypto
- Also, many, many clever/surprising uses...

HMAC

- Can compute a MAC of the message M with key K using a “hashed MAC” or **HMAC**
- HMAC is a **keyed hash**
 - Why would we need a key?
- How to compute HMAC?
- Two obvious choices: $h(K,M)$ and $h(M,K)$
- Which is better?

HMAC

- Should we compute HMAC as $h(K, M)$?
- Hashes computed in blocks
 - $h(B_1, B_2) = F(F(A, B_1), B_2)$ for some F and constant A
 - Then $h(B_1, B_2) = F(h(B_1), B_2)$
- Let $M' = (M, X)$
 - Then $h(K, M') = F(h(K, M), X)$
 - Attacker can compute HMAC of M' without K
- Is $h(M, K)$ better?
 - Yes, but... if $h(M') = h(M)$ then we might have $h(M, K) = F(h(M), K) = F(h(M'), K) = h(M', K)$

The Right Way to HMAC

- Described in RFC 2104
- Let B be the block length of hash, in bytes
 - $B = 64$ for MD5 and SHA-1 and Tiger
- $\text{ipad} = 0x36$ repeated B times
- $\text{opad} = 0x5C$ repeated B times
- Then

$$\text{HMAC}(M, K) = h(K \oplus \text{opad}, h(K \oplus \text{ipad}, M))$$

Online Bids

- Suppose Alice, Bob and Charlie are bidders
- Alice plans to bid A, Bob B and Charlie C
- They don't trust that bids will stay secret
- A possible solution?
 - Alice, Bob, Charlie submit **hashes** $h(A)$, $h(B)$, $h(C)$
 - All hashes received and posted online
 - Then bids A, B, and C submitted and revealed
- Hashes don't reveal bids (one way)
- Can't change bid after hash sent (collision)
- But there is a flaw here...