

Chapter 4:

Public Key Cryptography

You should not live one way in private, another in public.
— Publilius Syrus

Three may keep a secret, if two of them are dead.
— Ben Franklin

Public Key Cryptography

- Two keys
 - Sender uses recipient's **public key** to encrypt
 - Recipient uses **private key** to decrypt
- Based on “trap door one way function”
 - “One way” means easy to compute in one direction, but hard to compute in other direction
 - Example: Given p and q , product $N = pq$ easy to compute, but given N , it's hard to find p and q
 - “Trap door” used to create key pairs

Public Key Cryptography

- Encryption
 - Suppose we **encrypt** M with Bob's public key
 - Bob's private key can **decrypt** to recover M
- Digital Signature
 - **Sign** by “encrypting” with your private key
 - Anyone can **verify** signature by “decrypting” with public key
 - But only you could have signed
 - Like a handwritten signature, but way better...

RSA

RSA

- By Clifford Cocks (GCHQ), independently, **Rivest, Shamir, and Adleman (MIT)**
 - RSA is the *gold standard* in public key crypto
- Let p and q be two large prime numbers
- Let $N = pq$ be the **modulus**
- Choose e relatively prime to $(p-1)(q-1)$
- Find d such that $ed = 1 \bmod (p-1)(q-1)$
- **Public key** is (N, e)
- **Private key** is d

RSA

- Message M is treated as a number
- To encrypt M we compute
$$C = M^e \text{ mod } N$$
- To decrypt ciphertext C compute
$$M = C^d \text{ mod } N$$
- Recall that e and N are public
- If Trudy can factor $N=pq$, she can use e to easily find d since $ed = 1 \text{ mod } (p-1)(q-1)$
- **Factoring the modulus breaks RSA**
 - Is factoring the only way to break RSA?

Does RSA Really Work?

- Given $C = M^e \pmod{N}$ we must show
 $M = C^d \pmod{N} = M^{ed} \pmod{N}$
- We'll use **Euler's Theorem**:
If x is relatively prime to n then $x^{\varphi(n)} = 1 \pmod{n}$
- Facts:
 - 1) $ed = 1 \pmod{(p-1)(q-1)}$
 - 2) By definition of "mod", $ed = k(p-1)(q-1) + 1$
 - 3) $\varphi(N) = (p-1)(q-1)$
- Then $ed - 1 = k(p-1)(q-1) = k\varphi(N)$
- Finally, $M^{ed} = M^{(ed-1)+1} = M \cdot M^{ed-1} = M \cdot M^{k\varphi(N)} = M \cdot (M^{\varphi(N)})^k \pmod{N} = M \cdot 1^k \pmod{N} = M \pmod{N}$

Simple RSA Example

- Example of RSA
 - Select “large” primes $p = 11, q = 3$
 - Then $N = pq = 33$ and $(p - 1)(q - 1) = 20$
 - Choose $e = 3$ (relatively prime to 20)
 - Find d such that $ed = 1 \bmod 20$
 - We find that $d = 7$ works
- **Public key:** $(N, e) = (33, 3)$
- **Private key:** $d = 7$

Simple RSA Example

- **Public key:** $(N, e) = (33, 3)$
- **Private key:** $d = 7$
- Suppose message $M = 8$
- Ciphertext C is computed as
$$C = M^e \bmod N = 8^3 = 512 = 17 \bmod 33$$
- Decrypt C to recover the message M by
$$M = C^d \bmod N = 17^7 = 410,338,673 = 12,434,505$$

$$* 33 + 8 = 8 \bmod 33$$