

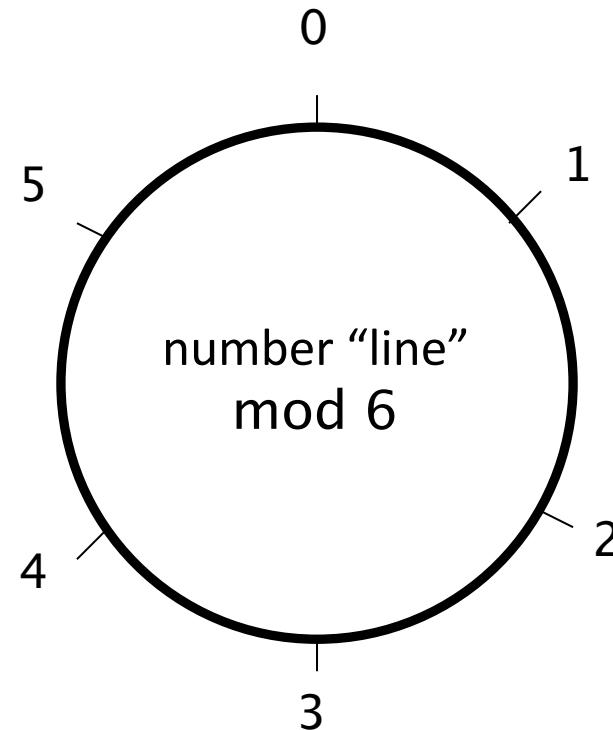
Modular Arithmetic

Clock Arithmetic

- For integers x and n , “ $x \bmod n$ ” is the remainder when we compute $x \div n$
 - We can also say “ x modulo n ”

□ Examples

- $7 \bmod 6 = 1$
- $33 \bmod 5 = 3$
- $33 \bmod 6 = 3$
- $51 \bmod 17 = 0$
- $17 \bmod 6 = 5$



Modular Addition

- Notation and facts
 - $7 \bmod 6 = 1$
 - $7 = 13 = 1 \bmod 6$
 - $((a \bmod n) + (b \bmod n)) \bmod n = (a + b) \bmod n$
 - $((a \bmod n)(b \bmod n)) \bmod n = ab \bmod n$
- Addition Examples
 - $3 + 5 = 2 \bmod 6$
 - $2 + 4 = 0 \bmod 6$
 - $3 + 3 = 0 \bmod 6$
 - $(7 + 12) \bmod 6 = 19 \bmod 6 = 1 \bmod 6$
 - $(7 + 12) \bmod 6 = (1 + 0) \bmod 6 = 1 \bmod 6$

Modular Multiplication

- Multiplication Examples
 - $3 \cdot 4 = 0 \pmod{6}$
 - $2 \cdot 4 = 2 \pmod{6}$
 - $5 \cdot 5 = 1 \pmod{6}$
 - $(7 \cdot 4) \pmod{6} = 28 \pmod{6} = 4 \pmod{6}$
 - $(7 \cdot 4) \pmod{6} = (1 \cdot 4) \pmod{6} = 4 \pmod{6}$

Modular Inverses

- *Additive inverse* of $x \bmod n$, denoted $-x \bmod n$, is the number that must be added to x to get $0 \bmod n$
 - $-2 \bmod 6 = 4$, since $2 + 4 = 0 \bmod 6$
- *Multiplicative inverse* of $x \bmod n$, denoted $x^{-1} \bmod n$, is the number that must be multiplied by x to get $1 \bmod n$
 - $3^{-1} \bmod 7 = 5$, since $3 \cdot 5 = 1 \bmod 7$

Modular Arithmetic Quiz

- Q: What is $-3 \bmod 6$?
- A: 3
- Q: What is $-1 \bmod 6$?
- A: 5
- Q: What is $5^{-1} \bmod 6$?
- A: 5
- Q: What is $2^{-1} \bmod 6$?
- A: No number works!
- Multiplicative inverse might not exist

Relative Primality

- x and y are **relatively prime** if they have no common factor other than 1
- $x^{-1} \bmod y$ exists only when x and y are relatively prime
- If it exists, $x^{-1} \bmod y$ is easy to compute using Euclidean Algorithm
 - We won't do the computation here

Totient Function

- $\varphi(n)$ is “the number of numbers less than n that are relatively prime to n ”
 - Here, “numbers” are positive integers
- Examples
 - $\varphi(4) = 2$ since 4 is relatively prime to 3 and 1
 - $\varphi(5) = 4$ since 5 is relatively prime to 1,2,3,4
 - $\varphi(12) = 4$
 - $\varphi(p) = p-1$ if p is prime
 - $\varphi(pq) = (p-1)(q-1)$ if p and q prime