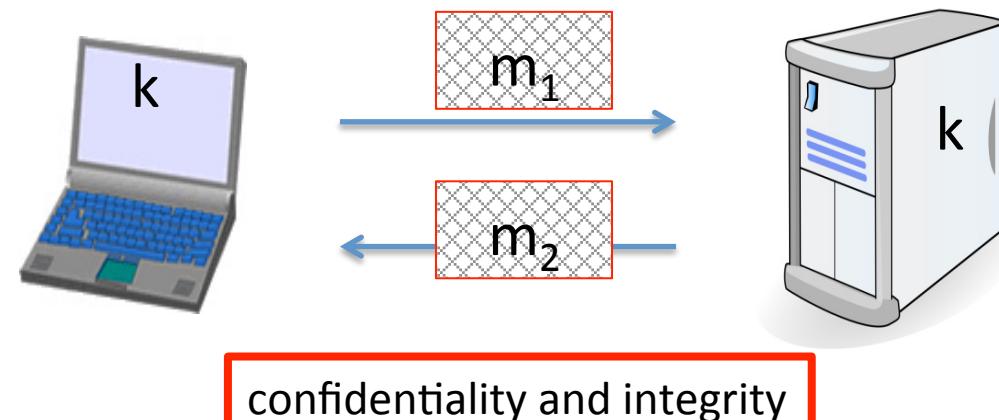
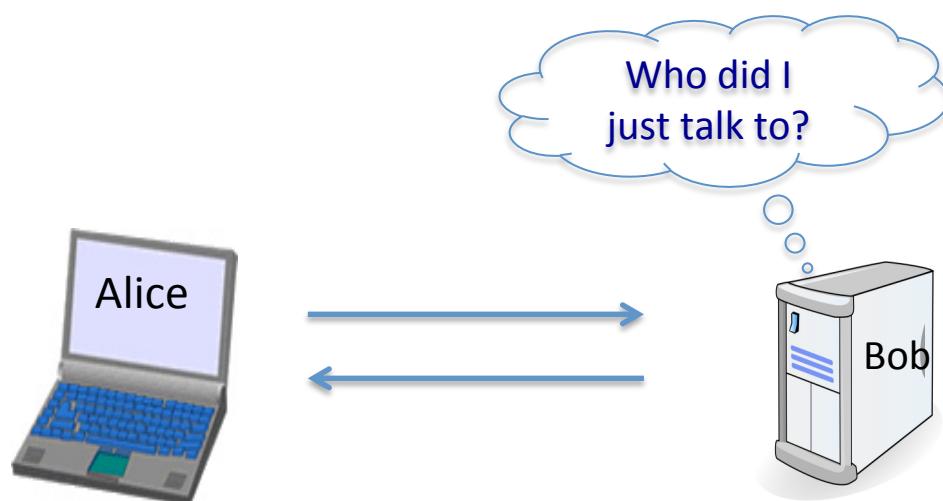

Cryptography

Crypto

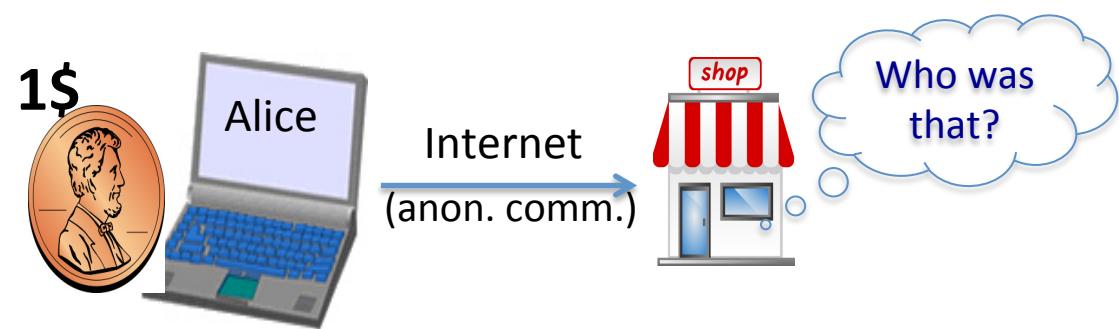

- **Cryptography** — making “secret codes”
- **Cryptanalysis** — breaking “secret codes”
- **Cryptology**: Cryptography + Cryptanalysis
- **Crypto** — all of the above (and more)

Crypto core

Secret authentication
and key establishment:



Secure communication:


But crypto can do much more

- Digital signatures
- Anonymous communication

But crypto can do much more

- Digital signatures
- Anonymous communication
- Anonymous **digital cash**
 - Can I spend a “digital coin” without anyone knowing who I am?
 - How to prevent double spending?

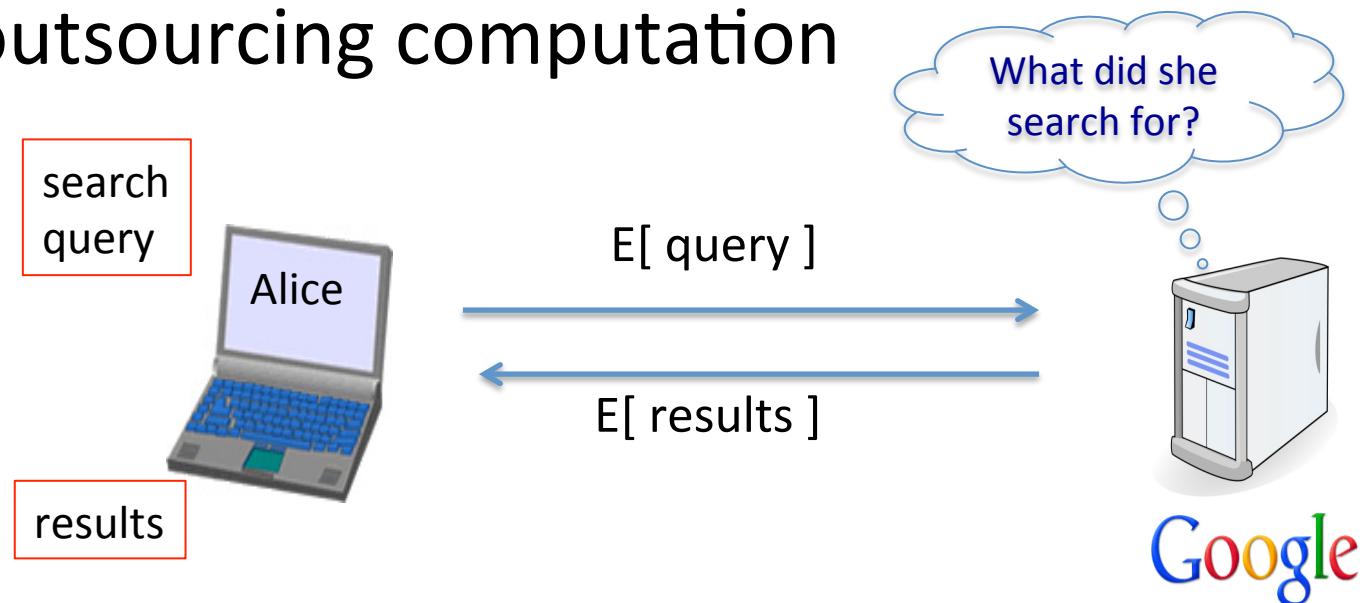
Protocols

- Elections
- Private auctions

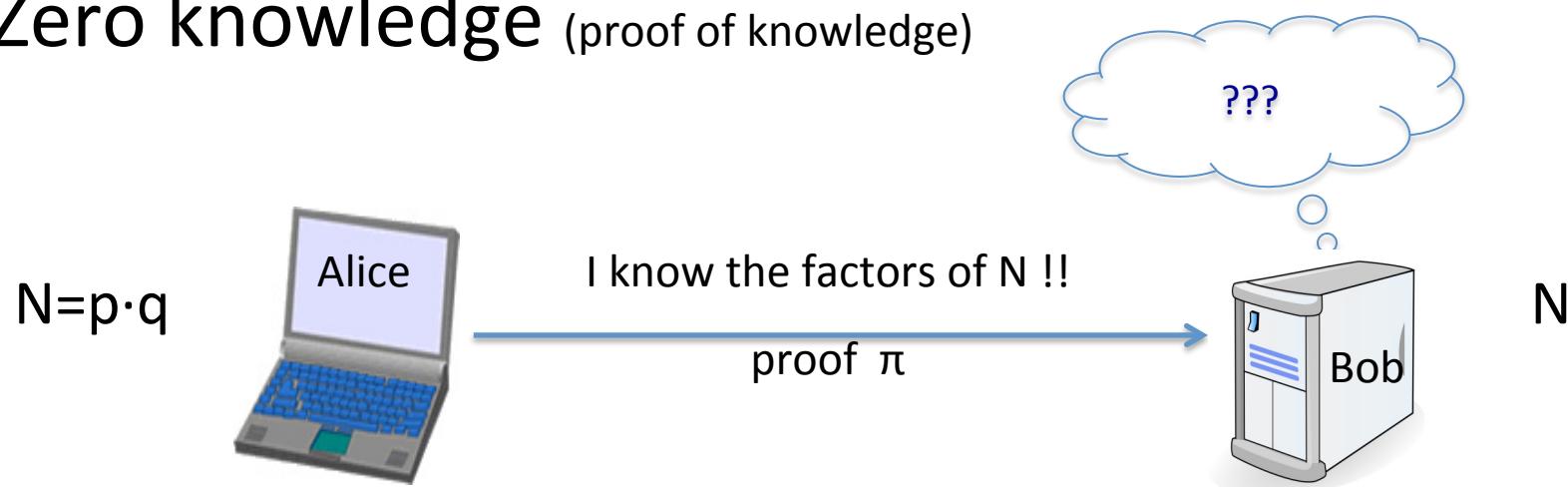
Protocols

- Elections
- Private auctions

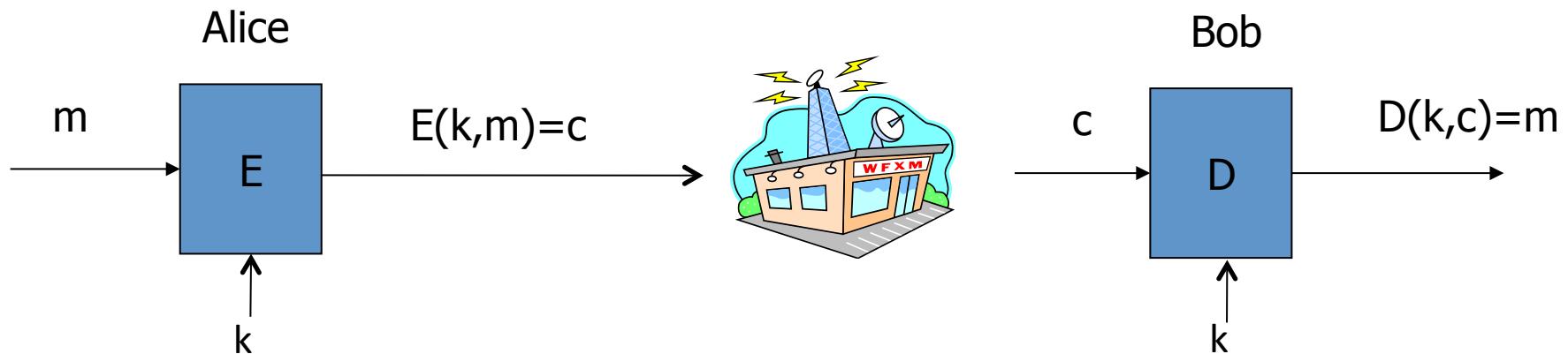
Goal: compute $f(x_1, x_2, x_3, x_4)$


trusted authority

“Thm:” anything the can done with trusted auth. can also be done without


- Secure multi-party computation

Crypto magic


- Privately outsourcing computation

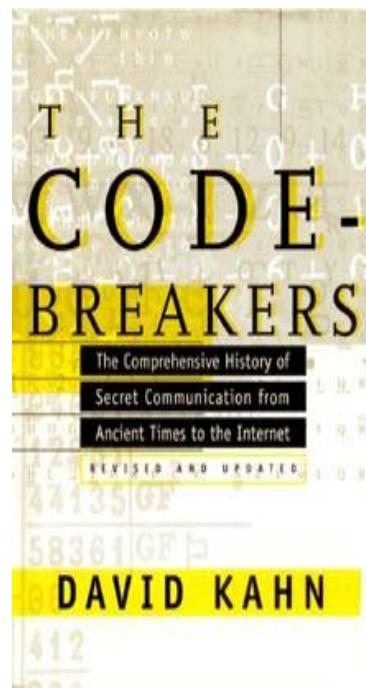
- Zero knowledge (proof of knowledge)

Building block: sym. encryption

E, D : cipher k : secret key (e.g. 128 bits)

m, c : plaintext, ciphertext

Encryption algorithm is **publicly known**


- Never use a proprietary cipher

Crypto

- Basic assumptions
 - The system is completely known to the attacker
 - Only the key is secret
 - That is, crypto algorithms are not secret
- This is known as **Kerckhoffs' Principle**
- Why do we make this assumption?
 - Experience has shown that secret algorithms are weak when exposed
 - Secret algorithms never remain secret
 - Better to find weaknesses beforehand

History

David Kahn, “The code breakers” (1996)

Simple Substitution

- Plaintext: **fourscoreandsevenyearsago**
- Key:

Plaintext	a	b	c	d	e	f	g	h	i	j	k	l	m	n	o	p	q	r	s	t	u	v	w	x	y	z
Ciphertext	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C

- Ciphertext:

IRXUVFRUHDQGVHYHQBHDUVDJR

- Shift by 3 is “Caesar’s cipher”

Ceasar's Cipher Decryption

- Suppose we know a Ceasar's cipher is being used:

Plaintext	a	b	c	d	e	f	g	h	i	j	k	l	m	n	o	p	q	r	s	t	u	v	w	x	y	z
Ciphertext	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C

- Given ciphertext:

VSRQJHEREVVTXDUHSDQWV

- Plaintext: spongebobsquarepants

Not-so-Simple Substitution

- Shift by n for some $n \in \{0,1,2,\dots,25\}$
- Then key is n
- Example: key $n = 7$

Plaintext	a	b	c	d	e	f	g	h	i	j	k	l	m	n	o	p	q	r	s	t	u	v	w	x	y	z
Ciphertext	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G

Cryptanalysis I: Try Them All

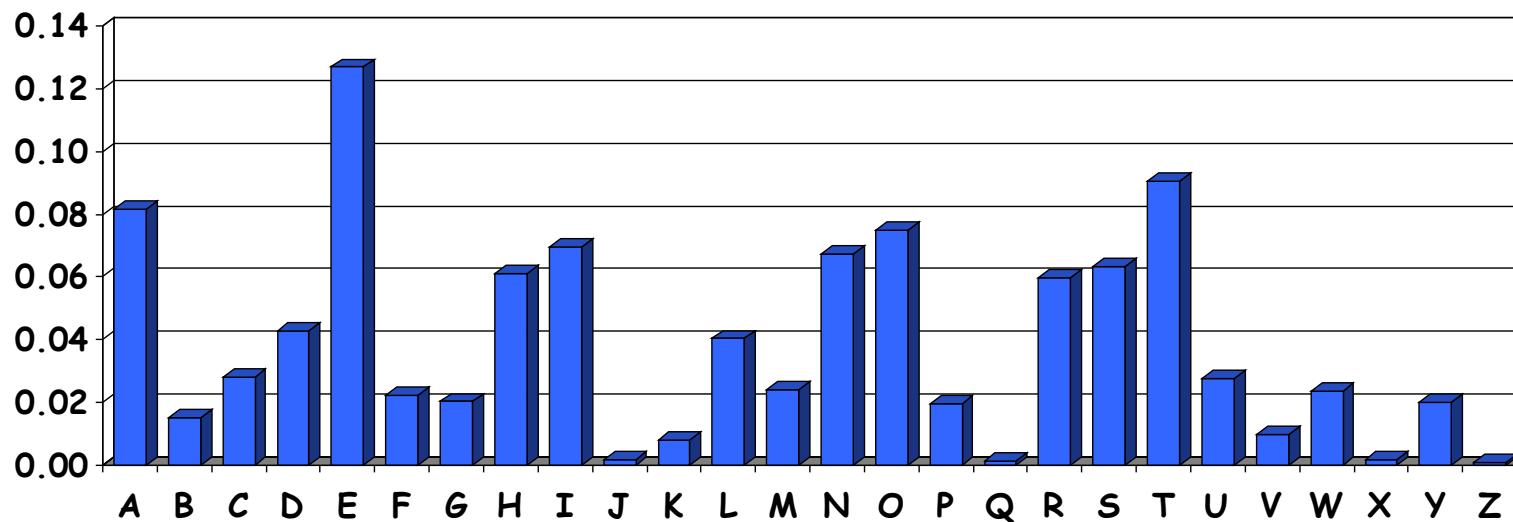
- A simple substitution (shift by n) is used
 - But the key is unknown
- Given ciphertext: **CSYEVIXIVQMREXIH**
- How to find the key?
- Only 26 possible keys—try them all!
- **Exhaustive key search**
- Solution: key is $n = 4$

Least-Simple Simple Substitution

- In general, simple substitution key can be any **permutation** of letters
 - Not necessarily a shift of the alphabet
- For example

Plaintext	a	b	c	d	e	f	g	h	i	j	k	l	m	n	o	p	q	r	s	t	u	v	w	x	y	z
Ciphertext	J	I	C	A	X	S	E	Y	V	D	K	W	B	Q	T	Z	R	H	F	M	P	N	U	L	G	O

- Then $26! > 2^{88}$ possible keys!


Cryptanalysis II: Be Clever

- We know that a simple substitution is used
- But not necessarily a shift by n
- Find the key given the ciphertext:

PBFPVYFBQXZTYFPBFEQJHDXXQVAPTPQJKTOYQWIPBVWLXTOBTFXQWAXBVCXQWA
XFQJVWLEQNTOZQGGQLFXQWAKVWLXQWAEBIPBFXFQVXGTJVWLBTQPWAEBF
PBFHCVLXBQUFEVWLXGDPEQVPQGVPPBFTIXPFHXZHVFAGFOTHFEFBQUFTDHZBQ
POTHXTYFTODXQHFTDPTOGHFQPBQWAQJJTODXQHFOQPWTBDHHIXQVAPBFZQ
HCFWPFPBFIPBQWKFABVYYDZBOTHPBQPQJTQOTOGHFQAPBFEQJHDXXQVAVX
EBQPEFZBVFOJIWFFACFCCFHQWAUVWFLQHGFVAFXQHFUFHILTTAVWAFFAWTE
VOITDHFHQAITIXPFHXAFQHEFZQWGFLVWPTOFFA

Cryptanalysis II

- Cannot try all 2^{88} simple substitution keys
- Can we be more clever?
- English letter frequency counts...

Cryptanalysis II

- Ciphertext:

PBFPVYFBQXZTYFPBFEQJHDXXQVAPTPQJKTOYQWIPBVWLXTOBTFXQWAXBVCXQWAXFQJVWL
EQNTOZQGGQLFXQWA KVWLXQWAEBIPBFXFQVXGTVJVWLBT P QWAEBFPBFHCVLXBQUF
WLXGDPEQVPQGVPPBFTIXPFHXZHVFAGFOTHFEFBQUFTDHZBQPOTHXTYFTODXQHFTDPT
GHFQPQBQWAQJTODXQHFOQPWTBDHHIXQVAPBFZQHCFWPFPBFIPBQWKFABVYYDZBOT
HPBQPQJTQOTOQHFQAPBFEQJHDXXQVAVXEBQPEFZBVFOJIWFFACFCCFHQWAUVWFLQHG
FXVAFXQHFUFHILTTAVWAFFAWTEVOITDHFHFQAITIXPFHXAFQHEFZQWGFLVWPTOFFA

- Analyze this message using statistics below

Ciphertext frequency counts:

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
21	26	6	10	12	51	10	25	10	9	3	10	0	1	15	28	42	0	0	27	4	24	22	28	6	8

2. Vigener cipher (16'th century, Rome)

$k = \boxed{C \ R \ Y \ P \ T \ O} \ C \ R \ Y \ P \ T \ O \ C \ R \ Y \ P \ T$
(+ mod 26)

$m = W \ H \ A \ T \ A \ N \ I \ C \ E \ D \ A \ Y \ T \ O \ D \ A \ Y$

$c = Z \ Z \ Z \ J \ U \ C \ L \ U \ D \ T \ U \ N \ W \ G \ C \ Q \ S$

suppose most common = "H" \rightarrow first letter of key = "H" – "E" = "C"

Double Transposition

- Plaintext: **attackxatxdawn**

	col 1	col 2	col 3
row 1	a	t	t
row 2	a	c	k
row 3	x	a	t
row 4	x	d	a
row 5	w	n	x

Permute rows
and columns

	col 1	col 3	col 2
row 3	x	t	a
row 5	w	x	n
row 1	a	t	t
row 4	x	a	d
row 2	a	k	c

- Ciphertext: **xtawxnattxadakc**
- Key is matrix size and permutations:
(3,5,1,4,2) and (1,3,2)

One-Time Pad: Encryption

e=000	h=001	i=010	k=011	l=100	r=101	s=110	t=111
-------	-------	-------	-------	-------	-------	-------	-------

Encryption: Plaintext \oplus Key = Ciphertext

	h	e	i	l	h	i	t	l	e	r
Plaintext:	001	000	010	100	001	010	111	100	000	101
Key:	111	101	110	101	111	100	000	101	110	000
Ciphertext:	110	101	100	001	110	110	111	001	110	101

s r l h s s t h s r

One-Time Pad: Decryption

e=000	h=001	i=010	k=011	l=100	r=101	s=110	t=111
-------	-------	-------	-------	-------	-------	-------	-------

Decryption: Ciphertext \oplus Key = Plaintext

	s	r	l	h	s	s	t	h	s	r
Ciphertext:	110	101	100	001	110	110	111	001	110	101
Key:	111	101	110	101	111	100	000	101	110	000
Plaintext:	001	000	010	100	001	010	111	100	000	101
	h	e	i	l	h	i	t	l	e	r

One-Time Pad

Double agent claims sender used following “**key**”

	s	r	l	h	s	s	t	h	s	r
Ciphertext:	110	101	100	001	110	110	111	001	110	101
“ key ”:	101	111	000	101	111	100	000	101	110	000
“Plaintext”:	011	010	100	100	001	010	111	100	000	101
	k	i	l	l	h	i	t	l	e	r

e=000 h=001 i=010 k=011 l=100 r=101 s=110 t=111

One-Time Pad

Or sender is captured and claims the key is...

	s	r	l	h	s	s	t	h	s	r
Ciphertext:	110	101	100	001	110	110	111	001	110	101
“key”:	111	101	000	011	101	110	001	011	101	101
“Plaintext”:	001	000	100	010	011	000	110	010	011	000
	h	e	l	i	k	e	s	i	k	e

e=000 h=001 i=010 k=011 l=100 r=101 s=110 t=111

One-Time Pad Summary

- **Provably** secure...
 - Ciphertext provides **no** info about plaintext
 - All plaintexts are equally likely
- ...but, only when be used correctly
 - Pad must be random, used only once
 - Pad is known only to sender and receiver
- Note: pad (key) is same size as message
- So, why not distribute msg instead of pad?

Real-World One-Time Pad

- Project VENONA
 - Encrypted spy messages from U.S. to Moscow in 30's, 40's, and 50's
 - Nuclear espionage, etc.
 - Thousands of messages
- Spy carried one-time pad into U.S.
- Spy used pad to encrypt secret messages
- Repeats within the “one-time” pads made cryptanalysis possible

VENONA Decrypt (1944)

[C% Ruth] learned that her husband [v] was called up by the army but he was not sent to the front. He is a mechanical engineer and is now working at the ENORMOUS [ENORMOZ] [vi] plant in SANTA FE, New Mexico. [45 groups unrecoverable]

detain VOLOK [vii] who is working in a plant on ENORMOUS. He is a FELLOWCOUNTRYMAN [ZEMLYAK] [viii]. Yesterday he learned that they had dismissed him from his work. His active work in progressive organizations in the past was cause of his dismissal. In the FELLOWCOUNTRYMAN line LIBERAL is in touch with CHESTER [ix]. They meet once a month for the payment of dues. CHESTER is interested in whether we are satisfied with the collaboration and whether there are not any misunderstandings. He does not inquire about specific items of work [KONKRETNAYa RABOTA]. In as much as CHESTER knows about the role of LIBERAL's group we beg consent to ask C. through LIBERAL about leads from among people who are working on ENOURMOUS and in other technical fields.

- “Ruth” == Ruth Greenglass
- “Liberal” == Julius Rosenberg
- “Enormous” == the atomic bomb

Stream ciphers

Attacks on OTP and stream ciphers

Review

OTP: $E(k,m) = m \oplus k$, $D(k,c) = c \oplus k$

Making OTP practical using a PRG: $G: K \rightarrow \{0,1\}^n$

Stream cipher:

$$E(k,m) = m \oplus G(k) , D(k,c) = c \oplus G(k)$$

Security: PRG must be unpredictable

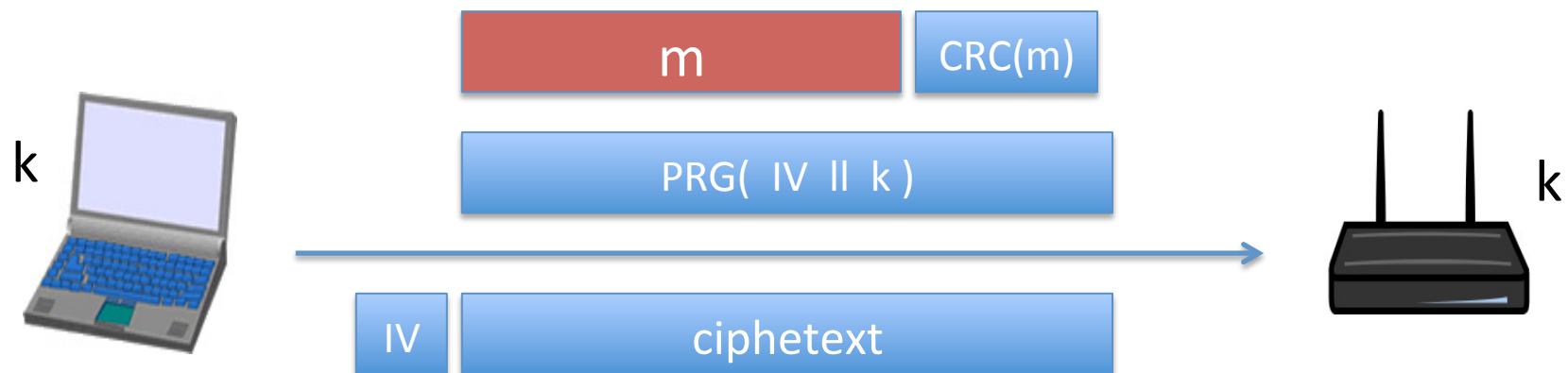
Attack 1: **two time** pad is insecure !!

Never use stream cipher key more than once !!

$$C_1 \leftarrow m_1 \oplus \text{PRG}(k)$$

$$C_2 \leftarrow m_2 \oplus \text{PRG}(k)$$

Eavesdropper does:

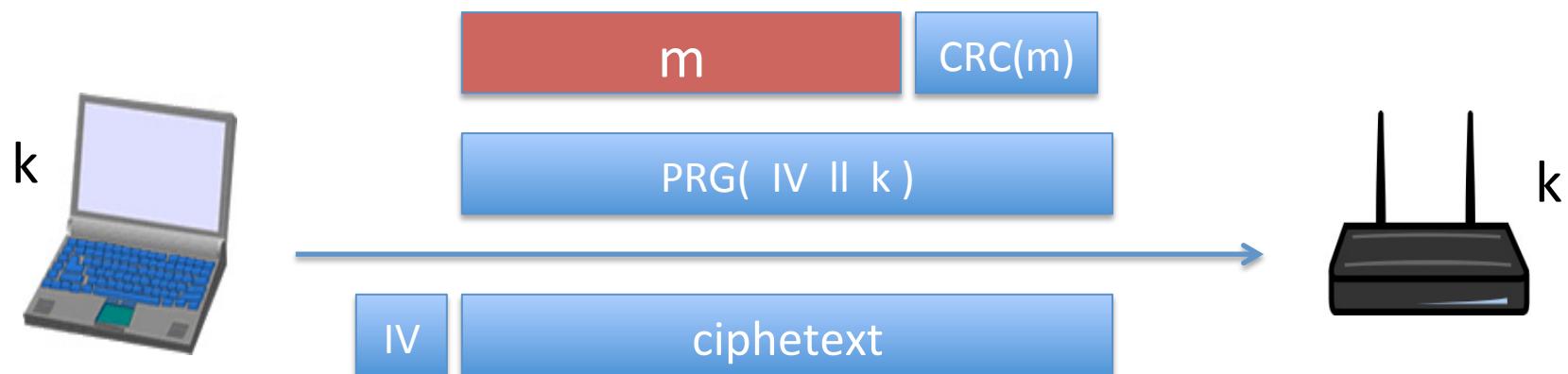

$$C_1 \oplus C_2 \rightarrow m_1 \oplus m_2$$

Enough redundancy in English and ASCII encoding
that:

$$m_1 \oplus m_2 \rightarrow m_1, m_2$$

Real world examples

802.11b WEP:

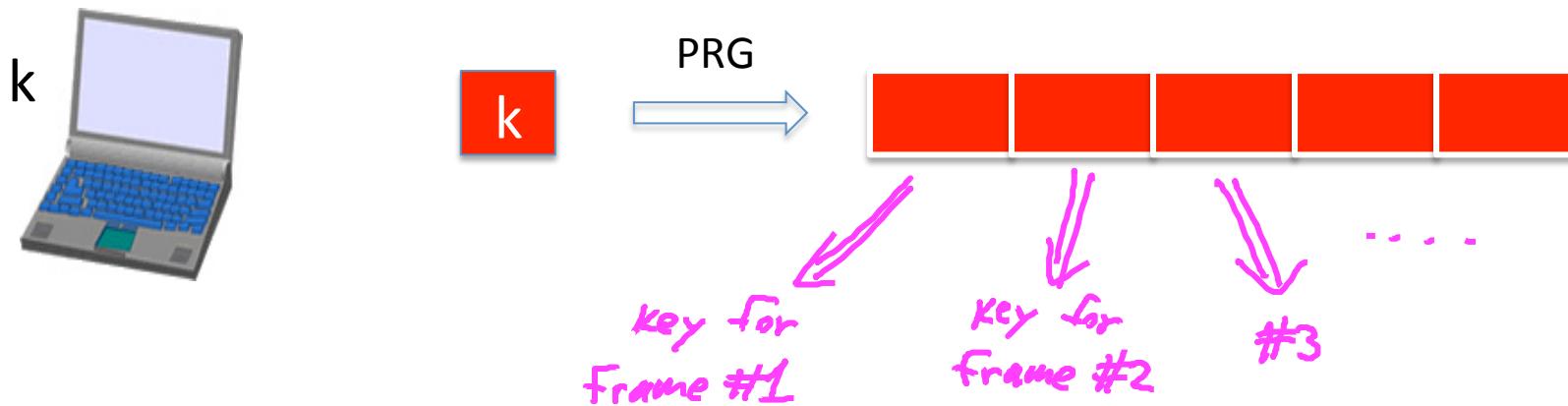


Length of IV: 24 bits

- Repeated IV after $2^{24} \approx 16M$ frames
- On some 802.11 cards: IV resets to 0 after power cycle

Avoid related keys

802.11b WEP:



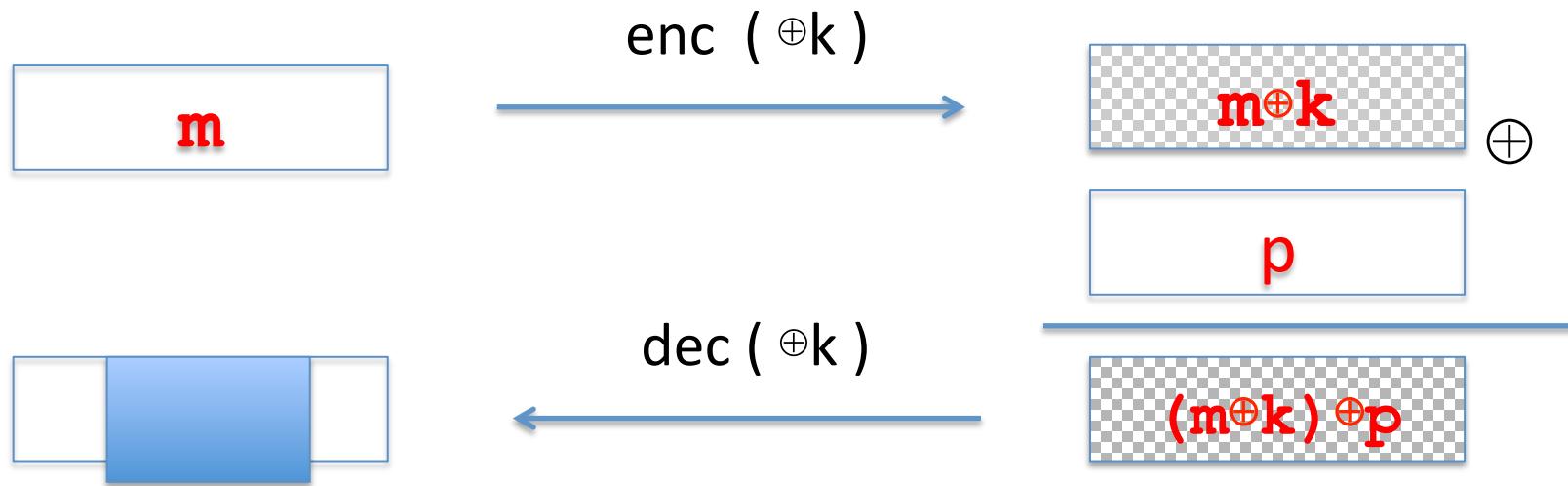
key for frame #1: $(1 \parallel k)$

key for frame #2: $(2 \parallel k)$

⋮

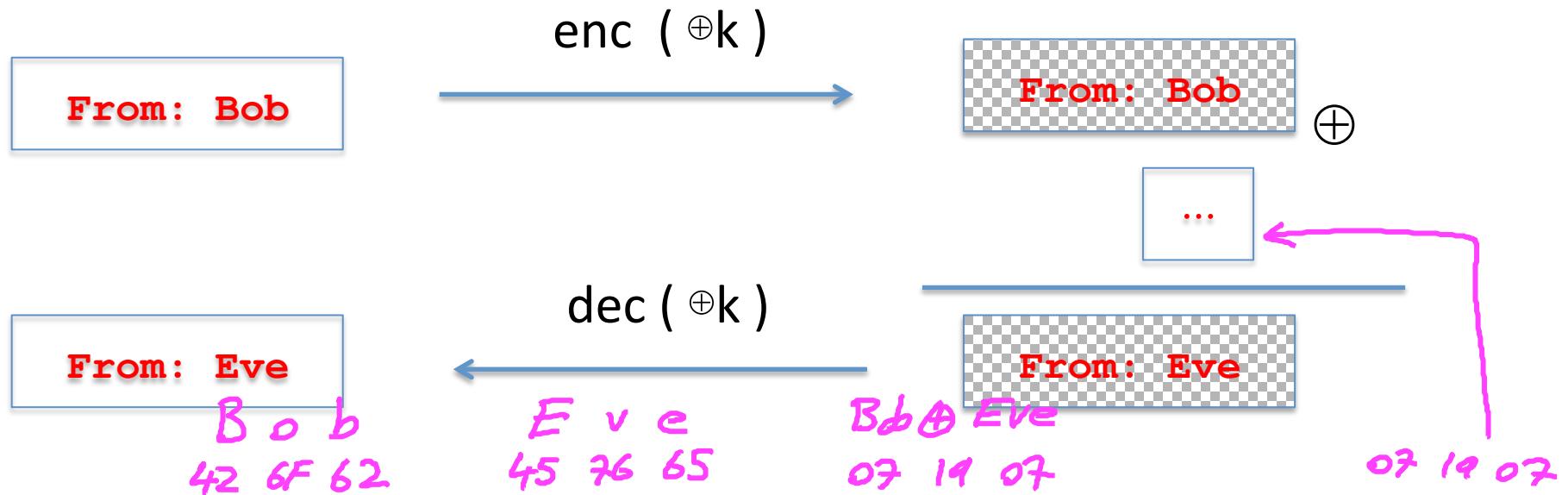
A better construction

⇒ now each frame has a pseudorandom key


better solution: use stronger encryption method (as in WPA2)

Two time pad: summary

Never use stream cipher key more than once !!


- Network traffic: negotiate new key for every session (e.g. TLS)
- Disk encryption: typically do not use a stream cipher

Attack 2: no integrity (OTP is malleable)

Modifications to ciphertext are undetected and have **predictable** impact on plaintext

Attack 2: no integrity (OTP is malleable)

Modifications to ciphertext are undetected and have predictable impact on plaintext

Codebook Cipher

- Literally, a book filled with “codewords”
- [Zimmerman Telegram](#) encrypted via codebook

Februar 13605

fest 13732

finanzielle 13850

folgender 13918

Frieden 17142

Friedenschluss 17149

: :

- Modern block ciphers are codebooks!
- More about this later...

Early 20th Century

- WWI — Zimmerman Telegram
- “Gentlemen do not read each other’s mail”
 - Henry L. Stimson, Secretary of State, 1929
- WWII — **golden age of cryptanalysis**
 - Midway/Coral Sea
 - Japanese **Purple** (codename **MAGIC**)
 - German **Enigma** (codename **ULTRA**)

Post-WWII History

- Claude Shannon — father of the science of information theory
- Computer revolution — lots of data to protect
- Data Encryption Standard (DES), 70's
- Public Key cryptography, 70's
- CRYPTO conferences, 80's
- Advanced Encryption Standard (AES), 90's
- The crypto genie is out of the bottle...

Claude Shannon

- The founder of Information Theory
- 1949 paper: *Comm. Thy. of Secrecy Systems*
- Fundamental concepts
 - **Confusion** — obscure relationship between plaintext and ciphertext
 - **Diffusion** — spread plaintext statistics through the ciphertext
- Proved one-time pad is secure
- One-time pad is confusion-only, while double transposition is diffusion-only

Taxonomy of Cryptography

- **Symmetric Key**
 - Same key for encryption and decryption
 - Two types: Stream ciphers, Block ciphers
- **Public Key** (or asymmetric crypto)
 - Two keys, one for encryption (public), and one for decryption (private)
 - And digital signatures — nothing comparable in symmetric key crypto
- **Hash algorithms**
 - Can be viewed as “one way” crypto

Taxonomy of Cryptanalysis

- From perspective of info available to Trudy
 - Ciphertext only
 - Known plaintext
 - Chosen plaintext
 - “Lunchtime attack”
 - Protocols might encrypt chosen data
 - Adaptively chosen plaintext
 - Related key
 - Forward search (public key crypto)
 - And others...