
Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Chapter 3: Processes-
Threads

3.2! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Producer-Consumer Model

■  Producer-Consumer Model"
●  Producer only produces (writes) information

and Consumer only consumes (reads) the
information"

●  Use Buffer to deliver information from
producer to consumer"

	

	

Producer	
 Consumer	

3.3! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Shared Buffer by Circular Array	

P
	

C	

in	

out	

#define BS 100
typedef struct {…} item;

item buf[BS]
int in = 0
int out = 0	

* Buffer is empty if
 i == j
* Buffer is full if
 (in+1)%BS == out
* Maximum items count
 BS-1	

3.4! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Motivation

■  Threads run within application"
■  Multiple tasks with the application can be implemented by separate

threads"
●  Update display"
●  Fetch data"
●  Spell checking"
●  Answer a network request"

■  Process creation is heavy-weight while thread creation is light-weight"
■  Can simplify code, increase efficiency"
■  Kernels are generally multithreaded"

3.5! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Examples	

■  Web browser"
●  Thread 1: display images"
●  Thread 2: show text"
●  Thread 3: retrieve data from the network"

■  Word processor"
●  Thread 1: display graphics"
●  Thread 2: respond to key strokes"
●  Thread 3: spelling and grammar checking"

■  Web server"
●  use thread instead of process"

■  Kernel"

3.6! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Single and Multithreaded Processes

3.7! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Benefits

■  Responsiveness 
"

■  Easy Resource Sharing"
● Threads use the same address space"

■  Economy"
● Cheaper creation, context switch"

■  Scalability"
● Threads running on different processors"

3.8! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Parallel Execution on a Multicore System

multi-core	

3.9! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Multicore Programming

■  Multicore systems putting pressure on programmers, challenges
include:"
●  Dividing activities!
●  Balance!
●  Data splitting!
●  Data dependency!
●  Testing and debugging!

3.10! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Multithreading Models

■  Many-to-One  
"

■  One-to-One  
"

■  Many-to-Many"

3.11! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Many-to-One

■  Many user-level threads mapped to single kernel thread"

■  Examples:"
●  Solaris Green Threads!
●  GNU Portable Threads!

3.12! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Many-to-One Model

3.13! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

One-to-One

■  Each user-level thread maps to kernel thread"

■  Examples"
●  Windows NT/XP/2000"
●  Linux"
●  Solaris 9 and later"

3.14! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

One-to-one Model

3.15! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Many-to-Many Model

■  Allows many user level threads to be mapped to many kernel
threads"

■  Allows the operating system to create a sufficient number of
kernel threads"

■  Solaris prior to version 9"

■  Windows NT/2000 with the ThreadFiber package"

3.16! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Many-to-Many Model

3.17! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Two-level Model

■  Similar to M:M, except that it allows a user thread to be bound
to kernel thread"

■  Examples"
●  IRIX"
●  HP-UX"
●  Tru64 UNIX"
●  Solaris 8 and earlier"

3.18! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Two-level Model

3.19! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Thread Libraries

■  Thread library provides programmer with API for creating and
managing threads"

■  Two primary ways of implementing"
●  Library entirely in user space"
●  Kernel-level library supported by the OS"

■  Three primary thread libraries:"
●  POSIX Pthreads: user or kernel level"
●  Win32 threads: kernel level"
●  Java threads: depends on the host system"

3.20! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Example program	

■  Compute"

■  Execution"
●  a.out N	

Get N	

Create
Thread	

Compute
sum	

Wait
Thread	

Done	

new thread	

main thread	

3.21! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Pthreads Example

3.22! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Win32 API Multithreaded C Program

3.23! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Java Threads

■  Java threads are managed by the JVM"
●  based on the thread model of the host machine"

■  Rich support for threads"
■  All Java program is run as a thread in JVM"
■  Java threads may be created by"

●  Thread Class"
! Extend Thread class"
! Implement run() function"

●  Runnable interface"
! Implement Runnable interface, "
! Implement run() function  
"

3.24! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Java Multithreaded Program

3.25! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Threading Issues

■  Semantics of fork() and exec() system calls"
■  Thread cancellation of target thread!

●  Asynchronous or deferred"
■  Signal handling"

●  Synchronous and asynchronous"
■  Thread pools!
■  Thread-specific data!
■  Create Facility needed for data private to thread!

■  Scheduler activations!
"

3.26! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Semantics of fork() and exec()

■  When fork() in a multi-threaded process"
●  Copy all the threads?"
●  or only the fork-calling thread?"

■  exec() will replace all the threads"
■  So, if exec() is called after fork, no reason to copy all the threads"

Process A	

fork()	

Process B	

Process B	
?	

3.27! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Thread Cancellation

■  Terminating a thread before it has finished"
■  Ex"

●  Parallel database searching"
●  Stopping web browser loading"

■  Two general approaches:"
●  Asynchronous cancellation terminates the target thread

immediately"
! may not free resources, abruptly stop writing shared info"

●  Deferred cancellation allows the target thread to
periodically check if it should be cancelled."
! check at safe cancellation points"

"

3.28! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Signal Handling

■  Signals are used in UNIX systems to notify a process that a
particular event has occurred."

■  A signal handler is used to process signals"
1.  Signal is generated by particular event"
2.  Signal is delivered to a process"
3.  Signal is handled"

■  Options:"
●  Deliver the signal to the thread to which the signal applies"
●  Deliver the signal to every thread in the process"
●  Deliver the signal to certain threads in the process"
●  Assign a specific thread to receive all signals for the process"

3.29! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Signal to multi-threaded process	

■  Synchronous signal"
●  delivered to the thread that caused the signal"

■  Asynchronous signal"
●  delivered to some or all the threads"

■  Unix allows threads to choose signals to accept"
●  but usually it is handled by the first class that accepts"

■  Signal generation in unix"
●  kill(pid, signal)"
●  pthread_kill(tid, signal)"

■  Windows doesn’t support signal, but emulate using APC
(Asynchronous Procedure Call)"

3.30! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Thread Pools

■  Create a number of threads in a pool where they await
work"

■  Advantages:"
●  Usually slightly faster to service a request with an

existing thread than create a new thread"
●  Allows the number of threads in the application(s) to be

bound to the size of the pool"
■  Pool size:"

●  Heuristic choice, or dynamic adjustment"

3.31! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Thread Specific Data

■  Allows each thread to have its own copy of data"

■  Useful when you do not have control over the thread creation
process (i.e., when using a thread pool)"

3.32! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Operating System Examples

■  Windows XP Threads"

■  Linux Thread"

3.33! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Windows XP Threads Data Structures

3.34! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Windows XP Threads

■  Implements the one-to-one mapping, kernel-level"

■  Each thread contains"
●  A thread id"
●  Register set"
●  Separate user and kernel stacks"
●  Private data storage area"

■  The register set, stacks, and private storage area are known as the context
of the threads"

■  The primary data structures of a thread include:"
●  ETHREAD (executive thread block)"
●  KTHREAD (kernel thread block)"
●  TEB (thread environment block)"

"

3.35! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Linux Threads

■  Linux refers to them as tasks rather than threads!
"
■  Thread creation is done through clone() system call"
"
■  clone() allows a child task to share the address space of the

parent task (process)"

■  struct task_struct points to process data structures
(shared or unique)

3.36! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Linux Threads
■  Doesn’t distinguish between process and thread"

■  Uses term task rather than thread
■  clone() takes options to determine sharing on

process create"
■  struct task_struct points to process data

structures (shared or unique)

