Chapter 3: Processes-
Threads

Operating System Concepts — 8t Edition Silberschatz, Galvin and Gagne ©2009

4

o
ot Producer-Consumer Model

S\

B Producer-Consumer Model

® Producer only produces (writes) information
and Consumer only consumes (reads) the
information

Producer Consumer

® Use Buffer to deliver information from
producer to consumer

Operating System Concepts — 8" Edition 3.2 Silberschatz, Galvin and Gagne ©2009

>~ Shared Buffer by Circular Array

P
out
ﬁu_uu
N f
in
@
(#define BS 100 | [= Buffer is empty if

typedef struct {...} item; i ==
* Buffer is full if

item buf[BS] (in+1)%BS == out
intin=20 * Maximum items count
intout =0 BS-1

Ve

Operating System Concepts — 8t Edition 3.3 Silberschatz, Galvin and Gagne ©200

w &

B Threads run within application

B Multiple tasks with the application can be implemented by separate
threads

® Update display
® Fetch data
® Spell checking
® Answer a network request
B Process creation is heavy-weight while thread creation is light-weight

Can simplify code, increase efficiency
B Kernels are generally multithreaded

Operating System Concepts — 8" Edition 3.4 Silberschatz, Galvin and Gagne ©2009

4

_
7 Examples

L

B Web browser

® Thread 1: display images

® Thread 2: show text

® Thread 3: retrieve data from the network
B Word processor

® Thread 1: display graphics

® Thread 2: respond to key strokes

® Thread 3: spelling and grammar checking
B Web server

® use thread instead of process
B Kernel

Operating System Concepts — 8" Edition 3.5

Silberschatz, Galvin and Gagne ©2009

~“%¥7 Single and Multithreaded Processes

¢

o

=R

Operating System Concepts — 8t Edition

code

data

files

registers

stack

thread —> ;

single-threaded process

3.6

code data files
registers ||| registers ||| registers
stack stack stack

;4—— thread

multithreaded process

Silberschatz, Galvin and Gagne ©2009

4

o '
ST Benefits

B Responsiveness

B Easy Resource Sharing
® Threads use the same address space
B Economy
® Cheaper creation, context switch
B Scalability
® Threads running on different processors

\\\W‘L
2 L . gl
- - J%\\‘\
7 W
, e
X

AU

Operating System Concepts — 8" Edition 3.7 Silberschatz, Galvin and Gagne ©2009

.«::ﬂ""l -

IL\\J

Vs
4

Parallel Execution on a Multicore System

single core T4 To Ta Ta T4 To Ta Ty T4

time

multi-core

core 1 T4 Ta T4 Ta T4

core 2 To 1 To Ty To

time

Operating System Concepts — 8" Edition 3.8 Silberschatz, Galvin and Gagne ©2009

o Multicore Programming

B Multicore systems putting pressure on programmers, challenges
include:

@ Dividing activities

@ Balance

@ Data splitting

@ Data dependency

® Testing and debugging

> e M)
7 WS,
4 ‘AY“

Operating System Concepts — 8t Edition 3.9 Silberschatz, Galvin and Gagne ©200

@ ALz

f =
G : -
P Multithreading Models

IL\L\J.

B Many-to-One
B One-to-One

B Many-to-Many

P

v

Operating System Concepts — 8t" Edition 3.10 Silberschatz, Galvin and Gagne ©2009

P
o Many-to-O
y-to-One

L\

B Many user-level threads mapped to single kernel thread

B Examples:
® Solaris Green Threads
® GNU Portable Threads

Operating System Concepts — 8t" Edition 3.11 Silberschatz, Galvin and Gagne ©2009

P

v

Many-to-One Model

Operating System Concepts — 8t" Edition

«+«— User thread

«—— kernel thread

3.12

Silberschatz, Galvin and Gagne ©2009

P

v

!
v One-to-One

B Each user-level thread maps to kernel thread

B Examples
® Windows NT/XP/2000
® Linux
® Solaris 9 and later

Operating System Concepts — 8" Edition 3.13 Silberschatz, Galvin and Gagne ©2009

& One-to-one Model

«—— User thread

;
® O G O

Operating System Concepts — 8t" Edition 3.14 Silberschatz, Galvin and Gagne ©2009

4

]
&\

Many-to-Many Model

Allows many user level threads to be mapped to many kernel
threads

Allows the operating system to create a sufficient number of
kernel threads

Solaris prior to version 9

Windows NT/2000 with the ThreadFiber package

Operating System Concepts — 8t Edition

3.15

> ;\\“ l:‘t
7 <
Silberschatz, Galvin and Gagne ©2009

Many-to-Many Model

<«—— user thread

<«—— Kkernel thread

Operating System Concepts — 8t" Edition 3.16 Silberschatz, Galvin and Gagne ©2009

7 Two-level Model

B Similar to M:M, except that it allows a user thread to be bound
to kernel thread

B Examples
e IRIX
e HP-UX
® Tru64 UNIX
® Solaris 8 and earlier

Operating System Concepts — 8" Edition 3.17 Silberschatz, Galvin and Gagne ©2009

Two-level Model

; ; <«—— user thread

Operating System Concepts — 8t" Edition 3.18 Silberschatz, Galvin and Gagne ©2009

4

e ' '
g Thread Libraries

L

B Thread library provides programmer with API for creating and

managing threads
B Two primary ways of implementing
® Library entirely in user space
® Kernel-level library supported by the OS
B Three primary thread libraries:
® POSIX Pthreads: user or kernel level
® Win32 threads: kernel level
® Java threads: depends on the host system

Operating System Concepts — 8" Edition 3.19

Silberschatz, Galvin and Gagne ©2009

Example program

main thread
B Compute
N
SUmM = E 1
new thread
1=0
_ Compute
B Execution sum
® a.out N

Operating System Concepts — 8t Edition 3.20

o
&l Pthreads Example

#include <p
#include <stdio.h>

/* this data is shared by the thread(s) */
v

oid *runner(void *param); /* the thread */

int main(int argc, char *argv[])

{

pthread t tid; /* the thread identifier */
pthread_attr t attr; /* set of thread attributes */

/* get the default attributes */ void *runner(void *param)
pthread attr_init (&attr); {
/* create the thread */ int j_’ upper = a‘toi(para_m);
pthread create(&tid,&attr,runner,argv(1]); sum = 0;
/* wait for the thread to exit */
pthread_join(tid,NULL); for (i = 1; i <= upper; i++)
sum += 1;
printf ("sum = %d\n",sum) ;
} pthread exit(0);
}

A)
Operating System Concepts — 8t" Edition 3.21 Silberschatz, Galvin and Gagne ©2009

,«

')’,Wm32 APl Multithreaded C Program

L\

#include ?@Mb
#include <stdio.h>

/* data is shared by the thread(s) */
/* The thread runs in this separate function */

znt main(int argc, char *argv[]) printf("sum = %d\n",Sum) ;
DWORD ThreadId; }
HANDLE ThreadHandle; ¥
int Param;
// create the thread

ThreadHandle = CreateThread(
NULL, // default security attributes

0, // default stack size DWORD WINAPI Summation(LPVOID Param)
Summation, // thread function f
&Param, // parameter to thread function DWORD Upper = * (DWORD*)Param;

0, // default creation flags

A e
%ThreadId); // returns the thread identifier for (DWORD i = 0; i <= Upper; it++)

Sum += i;

if (ThreadHandle != NULL) { return 0;

// now wait for the thread to finish }
WaitForSingleObject (ThreadHandle, INFINITE) ;

// close the thread handle
CloseHandle (ThreadHandle) ;

Operating System Concepts — 8t" Edition 3.22 Silberschatz, Galvin and Gagne ©2009

BN

:ﬁ"""“’“i)
&r.--?;—(Java Threads

B Java threads are managed by the JVM
® based on the thread model of the host machine
B Rich support for threads
B All Java program is run as a thread in JVM
B Java threads may be created by
® Thread Class
» Extend Thread class
» Implement run() function
® Runnable interface
» Implement Runnable interface,
» Implement run() function

Operating System Concepts — 8" Edition 3.23 Silberschatz, Galvin and Gagne ©2009

“$¥7 Java Multithreaded Program

class Sum . .
{ public class Driver

{

public static void main(String([] args) {
if (args.length > 0) {

private int sum;

public int getSum() { if (Integer.parselnt(args[0]) < 0)
return sum; System.err.println(args([0] + " must be >= 0.");
} else {
// create the object to be shared
public void setSum(int sum) { Sum sumCbject = new Sum();
this.sum = sum; int upper = Integer.parselnt (args(0]);
} Thread thrd = new Thread{new Summation (upper, sumObject));
} thrd.start () ;
try {

class Summation implements Runnable thrd.join();
{ System.out.println

("The sum of "+upper+" is "+sumObject.getSum({));

rivate int upper; . .
P i } catch (InterruptedException ie) { }

private Sum sumValue; }
. L }
public Summation(int upper, Sum sumValue) else
this.upper = upper; System.err.println("Usage: Summation <integer value>"); }

this.sumValue = sumValue; }

}

public void run() {
int sum = 0;
for (int i = 0; i1 <= upper; i++)
sum += 1;
sumValue.setSum(sum) ;

}

Operating System Concepts — 8" Edition 3.24

. o Threading Issues

B Semantics of fork() and exec() system calls
B Thread cancellation of target thread
® Asynchronous or deferred
B Signal handling
® Synchronous and asynchronous
B Thread pools
B Thread-specific data
B Create Facility needed for data private to thread
B Scheduler activations

Operating System Concepts — 8" Edition 3.25 Silberschatz, Galvin and Gagne ©2009

. N

=

.

o Semantics of fork() and exec()

[Process A] [Process B]

fou) d | l |

B When fork() in a multi-threaded process

® Copy all the threads?
® or only the fork-calling thread?
B exec() will replace all the threads
B So, if exec() is called after fork, no reason to copy all the threads

/

A

f\\:”
P e :‘t
297

Operating System Concepts — 8" Edition 3.26 Silberschatz, Galvin and Gagne ©2009

e Thread Cancellation

B Terminating a thread before it has finished
B EXx

@ Parallel database searching

® Stopping web browser loading
B Two general approaches:

® Asynchronous cancellation terminates the target thread
immediately

» may not free resources, abruptly stop writing shared info

® Deferred cancellation allows the target thread to
periodically check if it should be cancelled.

» check at safe cancellation points

S
7‘;}“\\
7 el
A }S

Operating System Concepts — 8" Edition 3.27 Silberschatz, Galvin and Gagne ©2009

r Signal Handling

B Signals are used in UNIX systems to notify a process that a
particular event has occurred.

B A signal handler is used to process signals
1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled
B Options:
® Deliver the signal to the thread to which the signal applies
® Deliver the signal to every thread in the process
® Deliver the signal to certain threads in the process
® Assign a specific thread to receive all signals for the process

a \‘V' ‘1\.“\
7‘;}“\\
7
A }S

Operating System Concepts — 8" Edition 3.28 Silberschatz, Galvin and Gagne ©2009

BN

=

s . :
~“$¥7 Signal to multi-threaded process

B Synchronous signal
® delivered to the thread that caused the signal
B Asynchronous signal
® delivered to some or all the threads
B Unix allows threads to choose signals to accept
@ but usually it is handled by the first class that accepts
B Signal generation in unix
@ Kkill(pid, signal)
® pthread_Kkill(tid, signal)

B Windows doesn’t support signal, but emulate using APC
(Asynchronous Procedure Call)

Operating System Concepts — 8" Edition 3.29 Silberschatz, Galvin and Gagne ©2009

. ,.Amy.,,k

sr.-/?%_.—(Thread Pools

B Create a number of threads in a pool where they await
work

B Advantages:

® Usually slightly faster to service a request with an
existing thread than create a new thread

® Allows the number of threads in the application(s) to be
bound to the size of the pool

B Pool size:
® Heuristic choice, or dynamic adjustment

‘‘‘‘‘
A

N e 2\
£

)
N
L
AU 3;“" 3

Operating System Concepts — 8" Edition 3.30 Silberschatz, Galvin and Gagne ©2009

N Thread Specific Data

B Allows each thread to have its own copy of data

B Useful when you do not have control over the thread creation
process (i.e., when using a thread pool)

Operating System Concepts — 8" Edition 3.31 Silberschatz, Galvin and Gagne ©2009

S

IL\L\J.

5T Operating System Examples

B Windows XP Threads

B Linux Thread

Operating System Concepts — 8t" Edition

3.32

Silberschatz, Galvin and Gagne ©2009

P

v

V.

”“""""l 8
~%%” Windows XP Threads Data Structures

=

ETHREAD
thread start
address
pointer to
parent process KTHREAD
scheduling
and
synchronization
information
kernel TEB
stack
thread identifier
user
stack
thread-local
storage
kernel space user space
3.33

Operating System Concepts — 8t Edition

Silberschatz, Galvin and Gagne ©2009

4

T :
7 Windows XP Threads

e\

B Implements the one-to-one mapping, kernel-level

B Each thread contains
® Athreadid
® Regqister set
® Separate user and kernel stacks
® Private data storage area

B The register set, stacks, and private storage area are known as the context
of the threads

B The primary data structures of a thread include:
® ETHREAD (executive thread block)
® KTHREAD (kernel thread block)
@ TEB (thread environment block)

Operating System Concepts — 8" Edition 3.34 Silberschatz, Galvin and Gagne ©2009

4

. :
T Linux Threads

W
S\

B Linux refers to them as tasks rather than threads

B Thread creation is done through clone () system call

M clone () allows a child task to share the address space of the
parent task (process)

B struct task struct pointsto process data structures
(shared or unique)

Operating System Concepts — 8" Edition 3.35 Silberschatz, Galvin and Gagne ©2009

ng— Linux Threads

B Doesn’t distinguish between process and thread
B Uses term task rather than thread

B clone () takes options to determine sharing on
process create

B struct task struct pointsto process data
structures (shared or unique)

flag meaning
CLONE F'S File-system information is shared.
CLONE VM The same memory space is shared.
CLONE_ SIGHAND Signal handlers are shared.
CLONE FILES The set of open files is shared.

Operating System Concepts — 8" Edition 3.36 Silberschatz, Galvin and Gagne ©2009

