Chapter 3: Processes-IPC

Operating System Concepts — 8t Edition Silberschatz, Galvin and Gagne ©2009

4

g o e
7 Interprocess Communication

L\

B Processes within a system may be independent or cooperating
B Reasons for cooperating processes:

® Information sharing

® Computation speedup

® Modularity

® Convenience
B Cooperating processes need interprocess communication (IPC)
B Two models of IPC

® Shared memory

® Message passing

A

Operating System Concepts — 8" Edition 3.2 Silberschatz, Galvin and Gagne ©2009

5= Communications Models

process A

process B

kernel

(@)

Operating System Concepts — 8t" Edition

3.3

process A
Pl &
shared é
i 2
process B d
kernel
(b)

P

v

Silberschatz, Galvin and Gagne ©2009

(i
i

“%7’Shared Memory & Message Passing

- Message Passing Shared Memory

Implementation

Speed

Kernel interventi
on

Data size

Operating System Concepts — 8t Edition 3.4 Silberschatz, Galvin and Gagne ©2009

)
Lek*
<

\ \as
4

‘'Shared Memory & Message Passing

- Message Passing Shared Memory

Difficult

Implementation Easier

Speed Slower

Kernel interventi

on A lot, via system calls

Data size Good for small amount

Operating System Concepts — 8t Edition 3.5

Faster

No system calls except set
up

Good for large amount

Shared Memory Systems

B Process-A creates a shared memory

® Shared memory in Process-A’s
address space

B Allow Process B to access the
Process A shared memory

adress B No predefined data format

Process B

Memory

Operating System Concepts — 8t Edition 3.6 Silberschatz, Galvin and Gagne ©2009

AN

4

o
ot Producer-Consumer Model

S\

B Producer-Consumer Model

® Producer only produces (writes) information
and Consumer only consumes (reads) the
information

Producer Consumer

® Use Buffer to deliver information from
producer to consumer

Operating System Concepts — 8" Edition 3.7 Silberschatz, Galvin and Gagne ©2009

4

g Shared Buffer Model

&\

B Unbounded Buffer

® There is no limit in the buffer size

® Producer can always create data

® Consumer cannot consume data if the buffer is empty
B Bounded Buffer

® There is a limit in the buffer size

® Producer cannot create data if the buffer is full

® Consumer cannot consume data if the buffer is empty
B In practice, we have only bounded buffer

Operating System Concepts — 8" Edition 3.8 Silberschatz, Galvin and Gagne ©2009

>~ Shared Buffer by Circular Array

P
out
ﬁu_uu
N f
in
@
(#define BS 100 | [= Buffer is empty if

typedef struct {...} item; i ==
* Buffer is full if

item buf[BS] (in+1)%BS == out
intin=20 * Maximum items count
intout =0 BS-1

Ve

Operating System Concepts — 8t Edition 3.9 Silberschatz, Galvin and Gagne ©200

w &

7 Bounded-Buffer — Producer

while (true) {
/* Produce an item */

while (((in = (in + 1) % BUFFER SIZE
count) == out)

; /* do nothing -- no free buffers */
buffer[in] = 1item;
in = (in + 1) % BUFFER SIZE;

¥

AU ,
Silberschatz, Galvin and Gagne ©200

©

Operating System Concepts — 8" Edition 3.10

~$7’ Bounded Buffer — Consumer

while (true) {
while (in == out)

; // do nothing --
nothing to consume

// remove an item from the buffer

1tem = buffer[out];

out = Cout + 1) % BUFFER SIZE;
return item;

}

2 = ”"\/)

Operating System Concepts — 8t Edition 3.11 Silberschatz, Galvin and Gagne ©200

\
\\\
N
>'d

Message Passing Systems

B |PC provides two operations:
® send(message) — message size fixed or variable
® receive(message)
m If Pand Q wish to communicate,
® establish a communication link between them
® exchange messages via send/receive
B Methods
® Direct / Indirect Communication
® Synchronous / Asynchronous Communication

2 \‘V' ““"“.\
7‘;}“\\
7 il
A }:\“Y p

Operating System Concepts — 8" Edition 3.12 Silberschatz, Galvin and Gagne ©2009

4

P ,‘:my.,l

~SF7 Direct Communication

B Processes must name each other explicitly:
® send (P, message) — send a message to process P
® receive(Q, message) — receive a message from process Q

B Properties of communication link
® Links are established automatically

® Alink is associated with exactly one pair of communicating
processes

® Between each pair there exists exactly one link
® The link may be unidirectional, but is usually bi-directional

Operating System Concepts — 8" Edition 3.13 Silberschatz, Galvin and Gagne ©2009

4

‘“'}f’f Indirect Communication

B Messages are directed and received from mailboxes (also referred
to as ports)

® Each mailbox has a unique id
® Processes can communicate only if they share a mailbox

B Properties of communication link
® Link established only if processes share a common mailbox
® A link may be associated with many processes
® Each pair of processes may share several communication links
® Link may be unidirectional or bi-directional

Operating System Concepts — 8" Edition 3.14 Silberschatz, Galvin and Gagne ©2009

4

PO
7

{

Indirect Communication

Y

B Operations
® create a new mailbox
® send and receive messages through mailbox
® destroy a mailbox

B Primitives are defined as:
send(A, message) — send a message to mailbox A
receive(A, message) — receive a message from mailbox A

.(‘Q/)
Operating System Concepts — 8" Edition 3.15 Silberschatz, Galvin and Gagne ©2009

4

) izati
sf.-?f_—f Synchronization

B Message passing may be either blocking or non-blocking

B Blocking is considered synchronous
® Blocking send has the sender block until the message is received
® Blocking receive has the receiver block until a message is available

B Non-blocking is considered asynchronous
® Non-blocking send has the sender send the message and continue

® Non-blocking receive has the receiver receive a valid message or
null

Operating System Concepts — 8" Edition 3.16 Silberschatz, Galvin and Gagne ©2009

4

.]
g7 Buffering

S\

B Queue of messages attached to the link; implemented in one of
three ways

1. Zero capacity — 0 messages
Sender must wait for receiver (rendezvous)

2. Bounded capacity — finite length of n messages
Sender must walit if link full

3. Unbounded capacity — infinite length
Sender never waits

Operating System Concepts — 8" Edition 3.17 Silberschatz, Galvin and Gagne ©2009

2 Pipes
B Acts as a conduit allowing two processes to
communicate
M Issues

® Is communication unidirectional or bidirectional?

® In the case of two-way communication, is it half or
full-duplex?

® Must there exist a relationship (i.e. parent-child)
between the communicating processes?

® Can the pipes be used over a network?

S
7‘;}“\\
7 el
A }:\“Y p

Operating System Concepts — 8" Edition 3.18 Silberschatz, Galvin and Gagne ©2009

4

_covm)

rdd Ordinary Pipes

S\

Ordinary Pipes allow communication in standard producer-
consumer style

Producer writes to one end (the write-end of the pipe)
Consumer reads from the other end (the read-end of the pipe)
Ordinary pipes are therefore unidirectional

Only between parent and child processes

Operating System Concepts — 8" Edition 3.19 Silberschatz, Galvin and Gagne ©2009

4

(om

o Lt Ordinary Pipes: Example

.

B Parent process wants to send a message “Greetings” to a child process
B When creating a pipe, it returns two file descriptors
® One for writing, one for reading
B Parent process writes to the writing file descriptor
B Child process reads from the reading file descriptor

Fork()

Parent fdl wl r Child fdl wir

pipe() write() (read()

W r

A\
L

3 L g {
~,,}’/$;\n\\\\ ‘
i~ W
U 29% 7

Operating System Concepts — 8" Edition 3.20 Silberschatz, Galvin and Gagne ©2009

»>7 Ordinary Pipes: Code in Unix

L\

#def?ne BUFFER_SIZE 25 if (pid > 0) { /* parent process */

#define READ_END O /* close the unused end of the pipe */

#define WRITE END 1 close(fd[READ_END]) ;

int main(void) /* write to the pipe */

{ write(fd[WRITE_END], write_msg, strlen(write msg)+1);

char write_msg[BUFFER_SIZE] = "Greetings";

char read msg[BUFFER SIZE] ; /* close the write end of the pipe */

close(fd[WRITE_END]);

int £d4[2];
pid_t pid; else { /* child process */
/* close the unused end of the pipe */
/* create the pipe */ close(fd [WRITE_END]) ;
it (pipe(fd) - —1") {) . /* read from the pipe */
fprintf(stderr,"Pipe failed"); read (fd [READ_END], read_msg, BUFFER_SIZE);
return 1; printf("read %s",read msg);
}
/* close the write end of the pipe */
/* fork a child process */ close(fd[READ END]) ;
pid = fork(); }

return O;
if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");
return 1;

}

S

Operating System Concepts — 8t" Edition 3.21 Silberschatz, Galvin and Gagne ©2009

4

o [
57 Named Pipes

S\

B Ordinary pipe disappears when the process terminates

B Named Pipes are more powerful than ordinary pipes
® Communication is bidirectional
® No parent-child relationship is necessary
® Several processes can use it (ex: many writers)
® Continue to exist after a process terminates
® Provided on both UNIX and Windows systems

\\w‘

> % x " 1\ \

i~ W

L 4*2‘."2
Operating System Concepts — 8" Edition 3.22 Silberschatz, Galvin and Gagne ©2009

B,

4

PN
~SF7 Named Pipes

B Unix
@ Called FIFO
® Once created (mkfifo()), appear as a file (use open(), read(), write(),

close())

® Exists until deleted from the file system
@ Bidirectional, half-duplex
® Only within a system

B Windows

@ Bidirectional, full-duplex
® Within or between systems

® CreateNamedPipe(), ConnectNamedPipe(), ReadFile(), WriteFile()
B Is| more, dir | more

> > y\\“ A \
7 <
Operating System Concepts — 8" Edition 3.23 Silberschatz, Galvin and Gagne ©2009

End of Chapter 3

Operating System Concepts — 8t Edition Silberschatz, Galvin and Gagne ©2009

