Chapter 3: Processes

‘ ««mj%]
o Five-state Process Model

{ Ready) Running

Dispatch

I/0 or Event Occur Wait for I/O or Event

A 2
Operating System Concepts — 8" Edition 3.2 Silberschatz, Galvin and Gagne ©2009

=

,ﬂ-_---»i e, 0 .
~%77 UNIX Process State Transition Diagram

fork

Created
Preempted
return ~ enough not enough memory
to user e memory, (swapping system only)
~,
s\
User " ~\‘
Running preemp! ~
swap out N
return reschedule Reat‘lyl fo Run™ PReady to ltun
In v & — PP
process, swap in
system call, /
interrupt Kernel
Running
wakeu wakeu
interrupt, Sleep P P
interrupt return exit
3 Asleep in swap out . Sleep,
Eumbie Memory 7" Swapped

Figure 3.17 UNIX Process State Transition Diagram

Operating System Concepts — 8'" Edition 3.3 Silberschatz, Galvin and Gagne ©2009
)\1\
il Process Scheduling

B Maximize CPU use, quickly switch processes onto CPU for
time sharing

B Process scheduler selects among available processes for
next execution on CPU

B Maintains scheduling queues of processes
@ Job queue — set of all processes in the system

@ Ready queue — set of all processes residing in main
memory, ready and waiting to execute

® Device queues — set of processes waiting for an 1/0
device

@ Processes migrate among the various queues

B
A DA I

Operating System Concepts — 8" Edition 3.4 Silberschatz, Galvin and Gagne ©2009

New
process

\ 4

Timer
Tnterrupts

Load PCB() <—

CPU

{} Save PCB() —>

e

Release
Resources

Devices Device Queues

Operating System Concepts — 8" Edition

3.5

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition

Load PCB() <—

-

j_Save_PCB() —>

:Running
(",PU
1

1

Release _ _ _ _ _ _

.~ Resources 3
1

1 1
1 > 1
1 1
1 1
\)

Terminated

Silberschatz, Galvin and Gagne ©2009

»

x“”’"’“'k,
7 Schedulers

B Scheduler: determines the change of process state
B long-term scheduler (or job scheduler)
B Short-term scheduler (or CPU scheduler)

® Sometimes the only scheduler in a system

)
) Ly |) {
D A/
Long-term - Short-term
scheduler h_ g scheduler
JOEI[S)IC()O| Memory CPU
(Ready Queue)
Operating System Concepts — 8" Edition 3.7 Silberschatz, Galvin and Gagne ©2009
=
(@7, oy 2
< " il
r Schedulers (Cont.)

B Short-term scheduler is invoked very frequently
® When a process leaves CPU
@ in milliseconds
@ must be fast
B Long-term scheduler is invoked very infrequently
® When a process leaves memory
@ in seconds/ minutes
® may be slow
B Types of processes
@ I/O-bound process — spends more time doing /O
® CPU-bound process — spends more time doing computations

Operating System Concepts — 8" Edition 3.8 Silberschatz, Galvin and Gagne ©2009

Challenge of LT-scheduler

M I/O-bound processes: fills up device queues

Ready Queue

v

CPU
All I/O bound
processes
I/0 I/0 Device
Devices Queues
Operating System Concepts — 8" Edition 3.9 Silberschatz, Galvin and Gagne ©2009

Challenge of LT-scheduler

B CPU-bound processes: fills up ready queue

Ready Queue

CPU

All CPU-bound
processes

—0 (N ——

I/0 I/0 Device
Devices Queues

Operating System Concepts — 8" Edition 3.10 Silberschatz, Galvin and Gagne ©2009

“gﬁ;ﬁ Challenge of LT-scheduler

M LT-scheduler: mix I/O-bound and CPU-bound processes
® Good system utility

Ready Queue

v

CPU
All CPU-bound
processes
I/0 I/0 Device
Devices Queues
Operating System Concepts — 8" Edition 3.1 Silberschatz, Galvin and Gagne ©2009

“‘?{ﬁ Medium Scheduling: Swapping

B Move some process from memory into disk temporarily
® Swap out
B Later, reloads the process from disk to memory

Ready Queue

S e By M
Be]er ==

I/0 Device I/0O Device Queue

® Swap in

v 5

Operating System Concepts — 8" Edition 3.12 Silberschatz, Galvin and Gagne ©2009

>,

s

.

57 Context Switch

B When CPU switches to another process, the system must
save the state of the old process and load the saved state
for the new process via a context switch.

B Context of a process represented in the PCB

Load PCB() <—

CPU U

Save PCB() —>

L 7
SVRH ‘\
S 7 / wf‘%
A WK
Operating System Concepts — 8" Edition 3.13 Silberschatz, Galvin and Gagne ©2009

=

mii Context Switch

B Context-switch time is pure overhead
® memory speed
® number of registers
@ special instruction for context switch
@ a few milliseconds

® Some hardware provides multiple sets of registers per
CPU - no register copy needed

Operating System Concepts — 8" Edition 3.14 Silberschatz, Galvin and Gagne ©2009

ol

57 Process Creation

B Parent process creates children processes, which, in turn
create other processes, forming a tree of processes

pageout
pid =2

Netscape
pid = 7785

S ‘\“l
P
“l ABN

Operating System Concepts — 8" Edition 3.15 Silberschatz, Galvin and Gagne ©2009

=

T i
55 Process Creation

B Generally, process identified and managed via a process
identifier (pid)

B Resource sharing
@ Parent and children share all resources
@ Children share subset of parent’s resources
@ Parent and child share no resources
B Execution
@ Parent and children execute concurrently
@ Parent waits until children terminate

_—
4 C
A AP% ™

Operating System Concepts — 8" Edition 3.16 Silberschatz, Galvin and Gagne ©2009

o Process Creation (Cont.)

B Address space
@ Child duplicate of parent
@ Child has a program loaded into it

B UNIX examples
@ fork system call creates new process

@ exec system call used after a fork to replace the process’
memory space with a new program

=Y
Do
Ve

Operating System Concepts — 8" Edition 3.17 Silberschatz, Galvin and Gagne ©2009

_ﬁ-.«f-v-*».ka:‘ = H M
7 Process Creation in Unix
int mainQ)
{
pid_t pid;

/* fork another process */

pid = fork(Q);

if (pid < @) { /* error occurred */
fprintf(stderr, "Fork Failed");
return 1;

}

else if (pid == @) { /* child process */
execlp("/bin/1s", "1s", NULL);

}

else { /* parent process */
/* parent will wait for the child */
wait (NULL);
printf ("Child Complete");

3

return 0;

Pa

Operating System Concepts — 8" Edition 3.18 Silberschatz, Galvin and Gagne ©2009

g . . .
o Process Creation in Unix

int main() {

pid = fork();

Jeyy
parent /ey
processl Procesy T Lcess
// pid is 1234 // pid is 0@
if (pid < @) { if (pid < @) {
__fprintf(stderr, "Fork fprintf(stderr, "Fork
Failed"); Failed");
return 1; return 1;
} }
else if (pid = 0) { else if (pid = 0) {
execlp("/bin/1s™, "1s", execlp("/bin/1s", "l1s",
NULL); NULL);
} }
else { else {
wait (NULL); wait (NULL);
printf ("Child Complete™); printf ("Child Complete™);
3 } S
return 0; return 0; ~—~4ﬁiﬁi§§§
Operating System}Concepts — 8t Edition 3.19 } Silberschatz, Galvin and Gagne ©2009.

g .
ot Process Creation

parent ‘/’/’/;;;;\\\\\ resumes

Operating System Concepts — 8" Edition 3.20 Silberschatz, Galvin and Gagne ©2009

7 Process Creation in Win32

int main(VOID) {
8

/7 create child process

if (!CreateProcess(NULL, // use command line
"C:\\WINDOWS\\system32\\mspaint.exe”
NULL, //inherit process handle
NULL, //don't inherit thread handle
FALSE, //disable handle inheritance
@, // no creation flags
NULL, //use parent's environment block
NULL, //use parent's existing directory
&si, &pi)) {
fprintf(stderr, "Create Process Failed");

return -1;

}
WaitForSingleObject(pi.hProcess, INFINITE);
printf("Child Complete");

S
<> ==
J 5
A PAn 3
Operating System Concepts — 8" Edition 3.21 Silberschatz, Galvin and Gagne ©2009

&“/T;/\,—“/ Quiz: fork()

int main()

B What are the outputs? !)) b 31
(parent pid: 2600 pid-t pid, pidi;
child pid: 2603) /* fork a child process */

pid = fork();

if (pid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed");
return 1;

else if (pid == 0) { /* child process */
pidl = getpid();
printf("child: pid = %d",pid); /* A */
printf("child: pidl = %d",pidl); /* B */

else { /* parent process */
pidl = getpid();
printf("parent: pid = %d",pid); /* C */
printf("parent: pidl = %d",pidl); /* D */
wait (NULL) ;

}

return 0;

Operating System Concepts — 8" Edition 3.22 Silberschatz, Galvin and Gagne ©2009

%7 Process Termination

B Process executes last statement and asks the operating system
to delete it (exit)

@ Output data from child to parent (via wait)

® Process’ resources are deallocated by operating system
B Parent may terminate execution of children processes (abort)

@ Child has exceeded allocated resources

® Task assigned to child is no longer required

@ If parent is exiting

» Some operating systems do not allow child to continue if
its parent terminates

All children terminated - cascading termination

2 ‘;-{
“d A% 3

Operating System Concepts — 8" Edition 3.23 Silberschatz, Galvin and Gagne ©2009

o . .
7 Interprocess Communication

B Processes within a system may be independent or
cooperating

B Reasons for cooperating processes:
@ Information sharing
@ Computation speedup
@ Modularity
@ Convenience

B Cooperating processes need interprocess communication
(IPC)

B Two models of IPC
@ Shared memory

® Message passing

£ /}—’;\” \‘\‘%
7 ‘?{
A APX

Operating System Concepts — 8" Edition 3.24 Silberschatz, Galvin and Gagne ©2009

. -
“‘?T;; Communications Models

process A process A

e '
shared =

el ®

process B process B

1
kernel kernel
(a) (b)
Operating System Concepts — 8" Edition 3.25 Silberschatz, Galvin and Gagne ©2009

"“%ﬁ Shared Memory & Message Passing

- Message Passing| Shared Memory

IS ME = o Difficult
IoNn
Speed Slower Faster

Kernel interv A lot, via system ¢ No system calls exc
ention alls ept setup

Good for small am Good for large amou

Data size
ount nt

Operating System Concepts — 8" Edition 3.26

Shared Memory Systems

Process A

Process B

Memory

Operating System Concepts — 8" Edition

CESS

B Process-A creates a shared memory

® Shared memory in Process-A’s
address space

B Allow Process B to access the shared
memory

B No predefined data format

3.27 Silberschatz, Galvin and Gagne ©2009

