Chapter 3: Processes
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Figure 3.17 UNIX Process State Transition Diagram
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il Process Scheduling

B Maximize CPU use, quickly switch processes onto CPU for
time sharing

B Process scheduler selects among available processes for
next execution on CPU

B Maintains scheduling queues of processes
@ Job queue — set of all processes in the system

@ Ready queue — set of all processes residing in main
memory, ready and waiting to execute

® Device queues — set of processes waiting for an 1/0
device

@ Processes migrate among the various queues
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7 Schedulers

B Scheduler: determines the change of process state
B long-term scheduler (or job scheduler)
B Short-term scheduler (or CPU scheduler)

® Sometimes the only scheduler in a system
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r Schedulers (Cont.)

B Short-term scheduler is invoked very frequently
® When a process leaves CPU
@ in milliseconds
@ must be fast
B Long-term scheduler is invoked very infrequently
® When a process leaves memory
@ in seconds/ minutes
® may be slow
B Types of processes
@ I/O-bound process — spends more time doing /O
® CPU-bound process — spends more time doing computations
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Challenge of LT-scheduler

M I/O-bound processes: fills up device queues
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Challenge of LT-scheduler

B CPU-bound processes: fills up ready queue
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“gﬁ;ﬁ Challenge of LT-scheduler

M LT-scheduler: mix I/O-bound and CPU-bound processes
® Good system utility
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“‘?{ﬁ Medium Scheduling: Swapping

B Move some process from memory into disk temporarily
® Swap out
B Later, reloads the process from disk to memory

Ready Queue

S e By M
Be]er ==

I/0 Device I/0O Device Queue

® Swap in

v 5

Operating System Concepts — 8" Edition 3.12 Silberschatz, Galvin and Gagne ©2009




>,

s

.

57 Context Switch

B When CPU switches to another process, the system must
save the state of the old process and load the saved state
for the new process via a context switch.

B Context of a process represented in the PCB
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mii Context Switch

B Context-switch time is pure overhead
® memory speed
® number of registers
@ special instruction for context switch
@ a few milliseconds

® Some hardware provides multiple sets of registers per
CPU - no register copy needed
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57 Process Creation

B Parent process creates children processes, which, in turn
create other processes, forming a tree of processes

pageout
pid =2
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pid = 7785

S ‘\“l
P
“l ABN

Operating System Concepts — 8" Edition 3.15 Silberschatz, Galvin and Gagne ©2009

=

T i
55 Process Creation

B Generally, process identified and managed via a process
identifier (pid)

B Resource sharing
@ Parent and children share all resources
@ Children share subset of parent’s resources
@ Parent and child share no resources
B Execution
@ Parent and children execute concurrently
@ Parent waits until children terminate
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o Process Creation (Cont.)

B Address space
@ Child duplicate of parent
@ Child has a program loaded into it

B UNIX examples
@ fork system call creates new process

@ exec system call used after a fork to replace the process’
memory space with a new program
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7 Process Creation in Unix
int mainQ)
{
pid_t pid;

/* fork another process */

pid = fork(Q);

if (pid < @) { /* error occurred */
fprintf(stderr, "Fork Failed");
return 1;

}

else if (pid == @) { /* child process */
execlp("/bin/1s", "1s", NULL);

}

else { /* parent process */
/* parent will wait for the child */
wait (NULL);
printf ("Child Complete");

3

return 0;
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o Process Creation in Unix

int main() {

pid = fork();

Jeyy
parent /ey
processl Procesy T Lcess
// pid is 1234 // pid is 0@
if (pid < @) { if (pid < @) {
__fprintf(stderr, "Fork fprintf(stderr, "Fork
Failed"); Failed");
return 1; return 1;
} }
else if (pid = 0) { else if (pid = 0) {
execlp("/bin/1s™, "1s", execlp("/bin/1s", "l1s",
NULL); NULL);
} }
else { else {
wait (NULL); wait (NULL);
printf ("Child Complete™); printf ("Child Complete™);
3 } S
return 0; return 0; ~—~4ﬁiﬁi§§§
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ot Process Creation
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7 Process Creation in Win32

int main(VOID) {
8

/7 create child process

if (!CreateProcess(NULL, // use command line
"C:\\WINDOWS\\system32\\mspaint.exe”
NULL, //inherit process handle
NULL, //don't inherit thread handle
FALSE, //disable handle inheritance
@, // no creation flags
NULL, //use parent's environment block
NULL, //use parent's existing directory
&si, &pi)) {
fprintf(stderr, "Create Process Failed");

return -1;

}
WaitForSingleObject(pi.hProcess, INFINITE);
printf("Child Complete");
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&“/T;/\,—“/ Quiz: fork()

int main()

B What are the outputs? ! ) ) b 31
(parent pid: 2600 pid-t pid, pidi;
child pid: 2603) /* fork a child process */

pid = fork();

if (pid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed");
return 1;

else if (pid == 0) { /* child process */
pidl = getpid();
printf("child: pid = %d",pid); /* A */
printf("child: pidl = %d",pidl); /* B */

else { /* parent process */
pidl = getpid();
printf("parent: pid = %d",pid); /* C */
printf("parent: pidl = %d",pidl); /* D */
wait (NULL) ;

}

return 0;
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%7 Process Termination

B Process executes last statement and asks the operating system
to delete it (exit)

@ Output data from child to parent (via wait)

® Process’ resources are deallocated by operating system
B Parent may terminate execution of children processes (abort)

@ Child has exceeded allocated resources

® Task assigned to child is no longer required

@ If parent is exiting

» Some operating systems do not allow child to continue if
its parent terminates

All children terminated - cascading termination
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7 Interprocess Communication

B Processes within a system may be independent or
cooperating

B Reasons for cooperating processes:
@ Information sharing
@ Computation speedup
@ Modularity
@ Convenience

B Cooperating processes need interprocess communication
(IPC)

B Two models of IPC
@ Shared memory

® Message passing
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"“%ﬁ Shared Memory & Message Passing

- Message Passing| Shared Memory
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Shared Memory Systems

Process A

Process B

Memory
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B Process-A creates a shared memory

® Shared memory in Process-A’s
address space

B Allow Process B to access the shared
memory

B No predefined data format
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