
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 3: Processes

3.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Five-state Process Model

New�

Ready� Running�

Waiting�

Terminated�Admitted� Timeout� Exit�

Dispatch�
Wait for I/O or Event�I/O or Event Occur�

3.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

UNIX	Process	State	Transi2on	Diagram	

3.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Scheduling

■  Maximize CPU use, quickly switch processes onto CPU for
time sharing

■  Process scheduler selects among available processes for
next execution on CPU

■  Maintains scheduling queues of processes
●  Job queue – set of all processes in the system
●  Ready queue – set of all processes residing in main

memory, ready and waiting to execute
●  Device queues – set of processes waiting for an I/O

device
●  Processes migrate among the various queues

3.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Device Queues�Devices�

Lifecycle of Processes�

Timer
Interrupts�

Device� I/O Interrupts�

Load_PCB()�

Save_PCB()�

Mem�

Ready Queue�

New
process�

Event Waiting�

Events�

Release
Resources�

CPU�

3.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Device Queues�Devices�

States of Processes�

Timer
Interrupts�

Device� I/O Interrupts�

Load_PCB()�

Save_PCB()�

Mem�

Ready Queue�

New
process�

Event Waiting�

Events�

Release
Resources�

CPU�

Ready�

Running�

Waiting�

Terminated�

New�

3.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Schedulers

■  Scheduler: determines the change of process state
■  long-term scheduler (or job scheduler)
■  Short-term scheduler (or CPU scheduler)

●  Sometimes the only scheduler in a system

�

�

�

Disk
Job pool Memory

(Ready Queue)
CPU

�

�

�

�Long-term

scheduler
Short-term
scheduler

3.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Schedulers (Cont.)

■  Short-term scheduler is invoked very frequently
●  When a process leaves CPU
●  in milliseconds
●  must be fast

■  Long-term scheduler is invoked very infrequently
●  When a process leaves memory
●  in seconds/ minutes
●  may be slow

■  Types of processes
●  I/O-bound process – spends more time doing I/O
●  CPU-bound process – spends more time doing computations

3.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Challenge of LT-scheduler�

I/O Device
Queues�

I/O
Devices�

�

�

�

Ready Queue�

CPU�

■  I/O-bound processes: fills up device queues

All I/O bound
processes

�

�

�

�

�

�

�

�

3.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Challenge of LT-scheduler�

I/O Device
Queues�

I/O
Devices�

�

�

Ready Queue�

CPU�

■ CPU-bound processes: fills up ready queue

�

All CPU-bound
processes

�

�

�

�

�

�

�

�

3.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

■  LT-scheduler: mix I/O-bound and CPU-bound processes
● Good system utility

Challenge of LT-scheduler�

I/O Device
Queues�

I/O
Devices�

�

Ready Queue�

CPU�

�

All CPU-bound
processes

�

�

�

�

�

�

�

�

�

3.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Medium Scheduling: Swapping

■  Move some process from memory into disk temporarily
●  Swap out

■  Later, reloads the process from disk to memory
●  Swap in

I/O Device Queue�I/O Device�

�

Ready Queue�

CPU�

�

swap out swap in

�

�

�

�

3.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Context Switch

■  When CPU switches to another process, the system must
save the state of the old process and load the saved state
for the new process via a context switch.

■  Context of a process represented in the PCB

Load_PCB()�

Save_PCB()�

Mem�CPU�

3.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Context Switch

■  Context-switch time is pure overhead
●  memory speed
●  number of registers
●  special instruction for context switch
●  a few milliseconds
●  Some hardware provides multiple sets of registers per

CPU à no register copy needed

3.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation

■  Parent process creates children processes, which, in turn
create other processes, forming a tree of processes

3.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation

■  Generally, process identified and managed via a process
identifier (pid)

■  Resource sharing
●  Parent and children share all resources
●  Children share subset of parent’s resources
●  Parent and child share no resources

■  Execution
●  Parent and children execute concurrently
●  Parent waits until children terminate

3.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation (Cont.)

■  Address space
●  Child duplicate of parent
●  Child has a program loaded into it

■  UNIX examples
●  fork system call creates new process
●  exec system call used after a fork to replace the process’

memory space with a new program

3.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation in Unix
int main()
{
pid_t pid;

/* fork another process */
pid = fork();
if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");
return 1;

}
else if (pid == 0) { /* child process */

execlp("/bin/ls", "ls", NULL);
}
else { /* parent process */

/* parent will wait for the child */
wait (NULL);
printf ("Child Complete");

}
return 0;

}

3.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation in Unix
int main() {

…  
pid = fork();

new child process
process id = 1234�

// pid is 0
if (pid < 0) {

fprintf(stderr, "Fork
Failed");

return 1;
}
else if (pid == 0) {

execlp("/bin/ls", "ls",
NULL);
}
else {

wait (NULL);
printf ("Child Complete");

}
return 0;

}

parent
process

// pid is 1234
if (pid < 0) {

fprintf(stderr, "Fork
Failed");

return 1;
}
else if (pid == 0) {

execlp("/bin/ls", "ls",
NULL);
}
else {

wait (NULL);
printf ("Child Complete");

}
return 0;

}

3.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation

3.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation in Win32
int main(VOID) {

//...
// create child process
if (!CreateProcess(NULL, // use command line

"C:\\WINDOWS\\system32\\mspaint.exe”
NULL, //inherit process handle
NULL, //don't inherit thread handle
FALSE, //disable handle inheritance
0, // no creation flags
NULL, //use parent's environment block
NULL, //use parent's existing directory
&si, &pi)) {
fprintf(stderr, "Create Process Failed");

return -1;  
}

WaitForSingleObject(pi.hProcess, INFINITE);
printf("Child Complete");

}

3.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Quiz: fork()�

■  What are the outputs?
 (parent pid: 2600
 child pid: 2603)�

3.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Termination

■  Process executes last statement and asks the operating system
to delete it (exit)
●  Output data from child to parent (via wait)
●  Process’ resources are deallocated by operating system

■  Parent may terminate execution of children processes (abort)
●  Child has exceeded allocated resources
●  Task assigned to child is no longer required
●  If parent is exiting

! Some operating systems do not allow child to continue if
its parent terminates
–  All children terminated - cascading termination

3.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Interprocess Communication

■  Processes within a system may be independent or
cooperating

■  Reasons for cooperating processes:
●  Information sharing
●  Computation speedup
●  Modularity
●  Convenience

■  Cooperating processes need interprocess communication
(IPC)

■  Two models of IPC
●  Shared memory
●  Message passing

3.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Communications Models

3.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Shared Memory & Message Passing�

Message Passing� Shared Memory�

Implementat
ion� Easier� Difficult�

Speed� Slower� Faster�

Kernel interv
ention�

A lot, via system c
alls�

No system calls exc
ept setup�

Data size� Good for small am
ount�

Good for large amou
nt�

3.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Shared Memory Systems�

■  Process-A creates a shared memory
●  Shared memory in Process-A’s

address space
■  Allow Process B to access the shared

memory
■  No predefined data format�

Process A�

Process B�

Memory�

Shared memory�

access�

