Chapter 2: Operating-System
Structures

Operating System Concepts — 8t Edition Silberschatz, Galvin and Gagne ©2009

o
Operating System Services

user and other system programs

GUI batch command line

user interfaces

system calls
program I/O file I resource .
execution operations systems eamonunicatien allocation degounting
error pro;encc:jtlon
detection ‘ security
services

operating system

hardware

~2

o
feiey

System operation

Operating System Concepts — 8t Edition 2.2 Silberschatz, Galvin and Gagne ©2009

) anf
“»”" A View of Operating System Services

user and other system programs
GUI batch command line
user interfaces
system calls
program /O file I resource .
execution operations systems eamonunicatien allocation degounting
error pro;?]%tion
detection ‘ security
services
operating system
hardware
v o
& =)
@, L fores
"(Mg%\f/: =7 =
User System operation

Operating System Concepts — 8t Edition 213 Silberschatz, Galvin and Gagne ©2009

user and other system programs

GUI batch command line

interfaces

@ Grab File Edit Windov Help

fig-dic
o g E

L B e S M Gan §F O O A 4 1506EDTMon2Jul 2 K @

- Pcuese Datkos- Apolicatons~ ZPSG- ZPRGE- iDisk-

© Cmower [© tu-dr |

s

B3

% Dozuments

[T
* hg-z0a * fe-2ta
L ta-an
[osaair
1) seck
L
@ 26
| ® [0S [Csuems 10F € ters selected - 7333 G3 sveacie 5.1 G3 use: 7
= - Address Book =
- - — a0e Dictionary and Theszurus
o= (s QI [<:)=a e rra——
Groua hem Y
— — | aople Computerin .~ Apple Computer Inc. D N
= £ Aaple Computer In - b
n & Lastimpot opsereatsing sysetem
the software (121 supporis a computer s i si
e e ke, exe: 1 ting applic: tions. ac
Ll 1-B0-MV-APPLE cantralling peripherals
800275 2273
h hitp: v appie.co=
1 Infivte Loop
C_pert 00 TA 93014
Uritea Sistes v
= [R=TH) Zoouns

Operating System Concepts — 8th Edition

24

resource

. accountin
allocation g

protection
and
security

operation

Silberschatz, Galvin and Gagne ©2009

K

program
execution

I/O
operations

error
detection

Operating System Concepts — 8th Edition

25

pts/3
pts/4
(root@pbg-nv64-vm)-(14/pts)-(16:07 02-IJul-2007)-(global)
—(/var/tnp/systen-contents/scr1pts)#

tty
console

View Terminal Tabs Help

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 O A
0.0 0.2 0.0 0.2 0.0 0.0 0.4 0 ©0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0

extended device statistics

r/s w/s kr/s kw/s wait actv svc_t %w %b

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 ©

0.6 0.0 38.4 0.0 0.0 0.0 8.2 0 O

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 m

t(root@pbg nv64-vm) - (11/pts)-(00:53 15-Jun-2007)-(global)

-(/var/tmp/systen-contents/scripts)# swap -sh
total: 1.1C allocated + 190M reserved =
| (root@pbg-nv64-vm)-(12/pts)-(00:53 15-Jun-2007)-(global)
-(/var/tmp/systen-contents/scripts)# uptime
12:53am up 9 min(s), 3 users, Tload average:
(root@pbg-nv64-vm)-(13/pts)-(00:53 15-Jun-2007)-(global)
-(/var/tmp/systen-contents/scripts)# w
4:07pm up 17 day(s), 15:24, 3 users, Tload average: 0.09, 0.11, 8.66
PCPU what

login@ idle JCPU
15Jun0718days 1

15Jun07
15Jun0718days

18

1.3G used, 1.6GC available

33.29, 67.68, 36.81

/usr/bin/ssh-agent -- /fusr/bi

4 w
W

Silberschatz, Galvin and Gagne ©2009

program
executio

Operating System Concepts — 8th Edition

SO Oy = B [SH

Open “a.txt”
Find “batch”
Remove “batch”
Go to line 10
Insert “Hello”
Close “a.txt”
Print “"done”

26 Silberschatz, Galvin and Gagne ©2009

. (=
% ,‘,fﬂw-.s

“»”" A View of Operating System Services

user and other system programs

GUI

batch command line

user interfaces

system calls

program /O
execution operations

— resource
communication allocation

error
detection

services

protection

and
securit

operating system

hardware
~ 5 gy
¥ o)
&, L
T
e~
User System operation
27 Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8th Edition

System call and API

« Win32 API
API [CreateProcess()] * POSIX API
| « Java API

ixiiﬁm ii”i l NTCreateProcess()l

B Why do we need API (Application Programming Interface)?
e Portability
® Ease of use

Operating System Concepts — 8" Edition 28 Silberschatz, Galvin and Gagne ©2009

Vms
API — System Call — OS Relationship

user application

open ()
user
mode
system call interface
kernel
mode A
| open ()
. Implementation
i » of open ()
. system call
return

Operating System Concepts — 8t Edition 2.9 Silberschatz, Galvin and Gagne ©2009

“$¥ Standard C Library Example

B C program invoking printf() library call, which calls write() system call

#include <stdio.h>
int main ()

{

printf ("Greetings"); |«

return O;
}
user
node -
standard C library
ernel

node
<vrite ()

Operating System Concepts — 8th Edition 2.10

write ()
system call

‘(‘&/ N
Silberschatz, Galvin and Gagne ©2009

=
Parameter Passing: Register

[NTCreateProcess(Parameter)]

Parameter

™S

NTCreateProcess(Parameter) {

* Only small parameters can be passed

‘42.'/ N
Operating System Concepts — 8t Edition 2.11 Silberschatz, Galvin and Gagne ©2009

Parameter Passing: Memory

[NTCreateProcess(Parameter)]

Parameter ‘l

Parameter

2

NTCreateProcess(Parameter) {

« Large parameters can be passed

VA

Operating System Concepts — 8t Edition 2.12 Silberschatz, Galvin and Gagne ©2009

o ot Parameter Passing: Stack

[NTCreateProcess(Parameter)]

Memor
Parameter Address y
~ v
Parameter
Parameter
Stack

NTCreateProcess'(Pa/rameter) {

« Large parameters can be passed

‘(‘&/ N
Operating System Concepts — 8t Edition 2.13 Silberschatz, Galvin and Gagne ©2009

m}g : Examples of Windows and
g Unix System Calls

Process
Control

File
Manipulation

Device
Manipulation

Information
Maintenance

Communication

Protection

Operating System Concepts — 8th Edition

Windows

CreateProcess()
ExitProcess()
WaitForSingleObject()

CreateFile()
ReadFile()
WriteFile()
CloseHandle()

SetConsoleMode ()
ReadConsole()
WriteConsole()

GetCurrentProcessID()
SetTimer()
Sleep()

CreatePipe()
CreateFileMapping()
MapViewOfFile ()

SetFileSecurity()

InitlializeSecurityDescriptor()
SetSecurityDescriptorGroup()

214

Unix

fork()
exit()
wait()

open()
read()
write()
close()

ioctl()
read()
write()

getpid()
alarm()
sleep()

pipe)
shmget ()
mmap ()

chmod ()
umask ()
chown()

Silberschatz, Galvin and Gagne ©2009

55 Example: MS-DOS

B Single-tasking
B Shell invoked when system booted
B Simple method to run program
® No process created
B Single memory space

B Loads program into memory, overwriting all but the
kernel

B Program exit -> shell reloaded

Operating System Concepts — 8t Edition 215 Silberschatz, Galvin and Gagne ©2009

ot MS-DOS execution

free memory

free memory

process
command
interpreter command
Interpreter
>
kernel kernel
(@) (b)

After boot Program running

Operating System Concepts — 8 Edition 2.16 Silberschatz, Galvin and Gagne ©2009

v o Example: FreeBSD

Unix variant
Multitasking
User login -> invoke user’s choice of shell

Shell executes fork() system call to create process
® Executes exec() to load program into process

® Shell waits for process to terminate or continues with user
commands

B Process exits with code of O — no error or > 0 — error code

Operating System Concepts — 8t Edition 2.17 Silberschatz, Galvin and Gagne ©2009

R

“$”” FreeBSD Running Multiple Programs

L\

process D

free memory

process C

interpreter

process B

kernel

‘42.'/ N
Opstating System Concspts — 8% Edition 218 Silberschatz, Galvin and Gagne ©2009

»”7 OS Design: Simple Structure

B MS-DOS — written to provide the most functionality in the least
space

® Not divided into modules

® Although MS-DOS has some structure, its interfaces and levels
of functionality are not well separated

® Program can access /O routines directly
® No dual mode (8088 didn’t have dual mode either)

Operating System Concepts — 8t Edition 219 Silberschatz, Galvin and Gagne ©2009

MS-DOS Layer Structure

application program

resident system program

MS-DOS device drivers

e :
[|

ROM BIOS device drivers '

Operating System Concepts — 8t Edition 2.20 Silberschatz, Galvin and Gagne ©2009

;”—z UNIX

B UNIX - limited by hardware functionality, the original UNIX operating
system had limited structuring. The UNIX OS consists of two
separable parts

® Systems programs
® The kernel

» Consists of everything below the system-call interface and
above the physical hardware

* Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a large
number of functions for one level

Operating System Concepts — 8t Edition 2.21 Silberschatz, Galvin and Gagne ©2009

P
277 Traditional UNIX System Structure
(the users)
shells and commands
compilers and interpreters
system libraries
system-call interface to the kernel
— signals terminal file system CPU scheduling
8) handling swapping block /O page replacement
N character /O system system demand paging
terminal drivers disk and tape drivers virtual memory
i kernel interface to the hardware
terminal controllers device controllers memory controllers
terminals disks and tapes physical memory

Operating System Concepts — 8th Edition

2.22

Silberschatz, Galvin and Gagne ©2009

=

=

gr ,f.—;‘w«mj

“»”" OS Design: Layered Approach

B The operating system is divided into a number of layers
(levels), each built on top of lower layers. The bottom layer
(layer 0), is the hardware; the highest (layer N) is the user
interface.

B With modularity, layers are selected such that each uses
functions (operations) and services of only lower-level layers

Not clear which layer goes above
B Less efficient

Operating System Concepts — 8t Edition 2.23 Silberschatz, Galvin and Gagne ©2009

layer N
user interface

layer O
hardware

Operating System Concepts — 8t Edition 2.24 Silberschatz, Galvin and Gagne ©2009

“»”7 Microkernel System Structure

B Moves as much from the kernel into “user” space

B Communication takes place between user modules using message
passing

B Benefits:
® Easier to extend a microkernel
® Easier to port the operating system to new architectures
® More reliable (less code is running in kernel mode)
® More secure

B Detriments:

® Performance overhead of user space to kernel space
communication

Operating System Concepts — 8t Edition 2.25 Silberschatz, Galvin and Gagne ©2009

557 Modules

B Most modern operating systems implement kernel modules
® Uses object-oriented approach
® Each core component is separate
® Each talks to the others over known interfaces
® Each is loadable as needed within the kernel

B Overall, similar to layers but with more flexible

Operating System Concepts — 8t Edition 2.26 Silberschatz, Galvin and Gagne ©2009

“$¥/ Solaris Modular Approach

scheduling
classes

device and
bus drivers

core Solaris
kernel

loadable
system calls

miscellaneous
modules

executable
formats

STREAMS
modules

A
Operating System Concepts — 8th Edition 2.27 Silberschatz, Galvin and Gagne ©2009

rdf Virtual Machines

B A virtual machine takes the layered approach to its logical
conclusion. It treats hardware and the operating system kernel as
though they were all hardware.

B A virtual machine provides an interface identical to the underlying bare
hardware.

B The operating system host creates the illusion that a process has its
own processor and (virtual memory).

B Each guest provided with a (virtual) copy of underlying computer.

Operating System Concepts — 8t Edition 2.28 Silberschatz, Galvin and Gagne ©2009

=
o)
‘gﬁ/*"f/“r}\ / m m [m
2”7 Virtual Machines History and Benefits

B First appeared commercially in IBM mainframes in 1972

B Fundamentally, multiple execution environments (different operating
systems) can share the same hardware

B Protect from each other

B Some sharing of file can be permitted, controlled

B Commutate with each other, other physical systems via networking

B Useful for development, testing

B Consolidation of many low-resource use systems onto fewer busier
systems

B “Open Virtual Machine Format”, standard format of virtual machines,

allows a VM to run within many different virtual machine (host)
platforms

Operating System Concepts — 8t Edition 2.29 Silberschatz, Galvin and Gagne ©2009

o Virtual Machines (Cont.)

L\
processes
processes
processes processes
‘ / P ri?]?;?frgggng kernel kernel kernel
kerrel VM1 VM2 VM3
virtual-machine
implementation
hardware Raraware
(a) (b)
Nonvirtual machine Virtual machine

Operating System Concepts — 8t Edition 2.30 Silberschatz, Galvin and Gagne ©2009

ey I - -
I Para-virtualization

LA\

B Presents guest with system similar but not identical to hardware
B Guest must be modified to run on paravirtualized hardware

B Guest can be an OS, or in the case of Solaris 10 applications running in
containers

Operating System Concepts — 8t Edition 2.31 Silberschatz, Galvin and Gagne ©2009

“#7 Virtualization Implementation

B Difficult to implement — must provide an exact duplicate of underlying
machine

® Typically runs in user mode, creates virtual user mode and virtual kernel
mode

B Timing can be an issue — slower than real machine
B Hardware support needed

® More support-> better virtualization

® i.e. AMD provides “host” and “guest” modes

Operating System Concepts — 8t Edition 2.32 Silberschatz, Galvin and Gagne ©2009

2 VMware Architecture

application application application application
guest operating guest operating guest operating
system system system
(free BSD) (Windows NT) (Windows XP)
virtual CPU virtual CPU virtual CPU

virtual memory
virtual devices

virtual memory
virtual devices

virtual memory
virtual devices

virtualization layer

| l

host operating system
(Linux)
hardware
CPU memory I/O devices
Operating System Concepts — 8t Edition 2.33 Silberschatz, Galvin and Gagne ©2009

r o The Java Virtual Machine

N

v

Java API

Java program \
.Class files

. --+-9| class loader |&-1--
.class files

!

Java
interpreter

4

host system
(Windows, Linux, etc.)

‘(‘&l N
Operating System Concepts — 8t Edition 2.34 Silberschatz, Galvin and Gagne ©2009

»

“#7/ Operating-System Debugging

B Debugging is finding and fixing errors, or bugs
B OSes generate log files containing error information

B Failure of an application can generate core dump file capturing
memory of the process

B Operating system failure can generate crash dump file containing
kernel memory

B Beyond crashes, performance tuning can optimize system performance

B Kernighan’s Law: “Debugging is twice as hard as writing the code in the
first place. Therefore, if you write the code as cleverly as possible, you
are, by definition, not smart enough to debug it.”

B DTrace tool in Solaris, FreeBSD, Mac OS X allows live instrumentation
on production systems

® Probes fire when code is executed, capturing state data and
sending it to consumers of those probes

Operating System Concepts — 8t Edition 2.35 Silberschatz, Galvin and Gagne ©2009

End of Chapter 2

Operating System Concepts — 8t Edition Silberschatz, Galvin and Gagne ©2009

