
Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Chapter 2: Operating-System
Structures

2.2! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Operating System Services

User	
 System operation	

2.3! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

A View of Operating System Services

User	
 System operation	

2.4! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

A View of Operating System Services

User	
 System operation	

2.5! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

A View of Operating System Services

User	
 System operation	

2.6! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

A View of Operating System Services

User	
 System operation	

Batch File	

1.  Open “a.txt”
2.  Find “batch”
3.  Remove “batch”
4.  Go to line 10
5.  Insert “Hello”
6.  Close “a.txt”
7.  Print “done”	

2.7! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

A View of Operating System Services

User	
 System operation	

2.8! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

System call and API	

OS services	

System calls	

User programs	

API	

•  Win32 API
•  POSIX API
•  Java API	

CreateProcess()	

NTCreateProcess()	

  Why do we need API (Application Programming Interface)?"
l  Portability"
l  Ease of use	

2.9! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

API – System Call – OS Relationship

2.10! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Standard C Library Example
  C program invoking printf() library call, which calls write() system call"

2.11! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Parameter Passing: Register

NTCreateProcess(Parameter)	

NTCreateProcess(Parameter) {"
 …"
 …"
}	

Parameter	

•  Only small parameters can be passed	

2.12! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Parameter Passing: Memory

NTCreateProcess(Parameter)	

NTCreateProcess(Parameter) {"
 …"
 …"
}	

Parameter	
 Address	
 Memory	

Parameter	

•  Large parameters can be passed	

2.13! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Parameter Passing: Stack

NTCreateProcess(Parameter)	

NTCreateProcess(Parameter) {"
 …"
 …"
}	

Address	
 Memory	

Stack	

Parameter	

Parameter	

Parameter	

•  Large parameters can be passed	

2.14! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Examples of Windows and
Unix System Calls

2.15! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Example: MS-DOS

  Single-tasking"
  Shell invoked when system booted"
  Simple method to run program"

l No process created"
  Single memory space"
  Loads program into memory, overwriting all but the

kernel"
  Program exit -> shell reloaded"

2.16! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

MS-DOS execution
"
"
"
"
"
"
"
"
"
"
"

After boot Program running

2.17! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Example: FreeBSD

  Unix variant"
  Multitasking"
  User login -> invoke user’s choice of shell"
  Shell executes fork() system call to create process"

l  Executes exec() to load program into process"
l  Shell waits for process to terminate or continues with user

commands"
  Process exits with code of 0 – no error or > 0 – error code"

2.18! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

FreeBSD Running Multiple Programs

2.19! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

OS Design: Simple Structure

  MS-DOS – written to provide the most functionality in the least
space"
l  Not divided into modules"
l  Although MS-DOS has some structure, its interfaces and levels

of functionality are not well separated"
l  Program can access I/O routines directly"
l  No dual mode (8088 didn’t have dual mode either)"

2.20! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

MS-DOS Layer Structure

2.21! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

UNIX

  UNIX – limited by hardware functionality, the original UNIX operating
system had limited structuring. The UNIX OS consists of two
separable parts"
l  Systems programs"
l  The kernel"

•  Consists of everything below the system-call interface and
above the physical hardware"

•  Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a large
number of functions for one level"

2.22! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Traditional UNIX System Structure

2.23! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

OS Design: Layered Approach

  The operating system is divided into a number of layers
(levels), each built on top of lower layers. The bottom layer
(layer 0), is the hardware; the highest (layer N) is the user
interface."

  With modularity, layers are selected such that each uses
functions (operations) and services of only lower-level layers"

  Not clear which layer goes above"
  Less efficient"

2.24! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Layered Operating System

2.25! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Microkernel System Structure

  Moves as much from the kernel into “user” space"

  Communication takes place between user modules using message
passing"

  Benefits:"
l  Easier to extend a microkernel"
l  Easier to port the operating system to new architectures"
l  More reliable (less code is running in kernel mode)"
l  More secure"

  Detriments:"
l  Performance overhead of user space to kernel space

communication"

2.26! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Modules

  Most modern operating systems implement kernel modules"
l  Uses object-oriented approach"
l  Each core component is separate"
l  Each talks to the others over known interfaces"
l  Each is loadable as needed within the kernel"

  Overall, similar to layers but with more flexible"

2.27! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Solaris Modular Approach

2.28! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Virtual Machines

  A virtual machine takes the layered approach to its logical
conclusion. It treats hardware and the operating system kernel as
though they were all hardware."

  A virtual machine provides an interface identical to the underlying bare
hardware."

  The operating system host creates the illusion that a process has its
own processor and (virtual memory)."

  Each guest provided with a (virtual) copy of underlying computer."

2.29! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Virtual Machines History and Benefits

  First appeared commercially in IBM mainframes in 1972"
  Fundamentally, multiple execution environments (different operating

systems) can share the same hardware"
  Protect from each other"
  Some sharing of file can be permitted, controlled"
  Commutate with each other, other physical systems via networking"
  Useful for development, testing"
  Consolidation of many low-resource use systems onto fewer busier

systems"
  “Open Virtual Machine Format”, standard format of virtual machines,

allows a VM to run within many different virtual machine (host)
platforms"

"

2.30! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Virtual Machines (Cont.)

"
"
"
"
"
"
"
"
"
"
"
"

 Nonvirtual machine Virtual machine"

2.31! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Para-virtualization

  Presents guest with system similar but not identical to hardware"

  Guest must be modified to run on paravirtualized hardware"

  Guest can be an OS, or in the case of Solaris 10 applications running in
containers!

2.32! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Virtualization Implementation

  Difficult to implement – must provide an exact duplicate of underlying
machine"
l  Typically runs in user mode, creates virtual user mode and virtual kernel

mode"
  Timing can be an issue – slower than real machine"
  Hardware support needed"

l  More support-> better virtualization"
l  i.e. AMD provides “host” and “guest” modes"

2.33! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

VMware Architecture

2.34! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

The Java Virtual Machine

2.35! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Operating-System Debugging

  Debugging is finding and fixing errors, or bugs!
  OSes generate log files containing error information"
  Failure of an application can generate core dump file capturing

memory of the process"
  Operating system failure can generate crash dump file containing

kernel memory"
  Beyond crashes, performance tuning can optimize system performance"
  Kernighan’s Law: “Debugging is twice as hard as writing the code in the

first place. Therefore, if you write the code as cleverly as possible, you
are, by definition, not smart enough to debug it.”"

  DTrace tool in Solaris, FreeBSD, Mac OS X allows live instrumentation
on production systems"
l  Probes fire when code is executed, capturing state data and

sending it to consumers of those probes  
"

Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

End of Chapter 2

