
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 7: Deadlocks

7.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Safe, Unsafe, Deadlock State

7.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of Banker’s Algorithm

7.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example: P1 Request (1,0,2)

■  P1 requests (0, 0, 3), grant or not?
■  P2 requests (1, 0, 1), grant or not?
■  P3 requests (0, 0, 1), grant or not?

●  check Request ≤ Need
●  check Request ≤ Available
●  check safe state

7.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Deadlock Detection

■  Allow system to enter deadlock state  

■  Detection algorithm 

■  Recovery scheme

7.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Single Instance of Each Resource Type

■  Maintain wait-for graph
●  Nodes are processes
●  Pi → Pj if Pi is waiting for Pj  

■  Periodically invoke an algorithm that searches for a cycle in the
graph. If there is a cycle, there exists a deadlock

■  An algorithm to detect a cycle in a graph requires an order of n2
operations, where n is the number of vertices in the graph

7.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Resource-Allocation Graph and
Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

7.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Several Instances of a Resource Type

■  Available: A vector of length m indicates the number of available
resources of each type. 

■  Allocation: An n x m matrix defines the number of resources of each
type currently allocated to each process. 

■  Request: An n x m matrix indicates the current request of each
process. If Request [i][j] = k, then process Pi is requesting k more
instances of resource type.Rj.

7.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Detection Algorithm

1. Let Work and Finish be vectors of length m and n, respectively
Initialize:
(a) Work = Available
(b) For i = 1,2, …, n, if Allocationi ≠ 0, then  

Finish[i] = false; otherwise, Finish[i] = true

2. Find an index i such that both:
(a) Finish[i] == false
(b) Requesti ≤ Work 

If no such i exists, go to step 4

7.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Detection Algorithm (Cont.)

3. Work = Work + Allocationi  
Finish[i] = true  
go to step 2  

4. If Finish[i] == false, for some i, 1 ≤ i ≤ n, then the system is in deadlock
state. Moreover, if Finish[i] == false, then Pi is deadlocked

Algorithm requires an order of O(m x n2) operations to detect
whether the system is in deadlocked state

7.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of Detection Algorithm

■  Five processes P0 through P4; three resource types  
A (7 instances), B (2 instances), and C (6 instances)

■  Snapshot at time T0:
 Allocation Request Available

A B C A B C A B C
 P0 0 1 0 0 0 0 0 0 0

 P1 2 0 0 2 0 2
 P2 3 0 3 0 0 0
 P3 2 1 1 1 0 0

 P4 0 0 2 0 0 2

■  Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i

7.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example (Cont.)

■  P2 requests an additional instance of type C
Request

A B C
 P0 0 0 0
 P1 2 0 2
 P2 0 0 1
 P3 1 0 0
 P4 0 0 2

■  State of system?
●  Can reclaim resources held by process P0, but insufficient

resources to fulfill other processes; requests
●  Deadlock exists, consisting of processes P1, P2, P3, and P4

7.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Detection-Algorithm Usage

■  When, and how often, to invoke depends on:
●  How often a deadlock is likely to occur?
●  How many processes will need to be rolled back?

! one for each disjoint cycle  

■  If detection algorithm is invoked arbitrarily, there may be many cycles
in the resource graph and so we would not be able to tell which of the
many deadlocked processes “caused” the deadlock.

7.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Recovery from Deadlock:
Process Termination

■  Abort all deadlocked processes 

■  Abort one process at a time until the deadlock cycle is eliminated  

■  In which order should we choose to abort?
●  Priority of the process
●  How long process has computed, and how much longer to

completion
●  Resources the process has used
●  Resources process needs to complete
●  How many processes will need to be terminated
●  Is process interactive or batch?

7.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Recovery from Deadlock:
Resource Preemption

■  Selecting a victim – minimize cost 

■  Rollback – return to some safe state, restart process for that state  

■  Starvation – same process may always be picked as victim,
include number of rollback in cost factor

