
Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Chapter 7: Deadlocks

7.2! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

The Deadlock Problem

■  A set of blocked processes each holding a resource and waiting to
acquire a resource held by another process in the set"

■  Example "
●  System has 2 disk drives"
●  P1 and P2 each hold one disk drive and each needs another one"

7.3! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

System Model

■  Resource types R1, R2, . . ., Rm"

CPU cycles, memory space, I/O devices!
!

■  Each resource type Ri has Wi instances."

■  Each process utilizes a resource as follows:"
●  request !
●  use !
●  release!

7.4! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Deadlock Characterization

■  Mutual exclusion: only one process at a time can use a
resource"

■  Hold and wait: a process holding at least one resource is waiting
to acquire additional resources held by other processes"

■  No preemption: a resource can be released only voluntarily by
the process holding it, after that process has completed its task"

■  Circular wait: there exists a set {P0, P1, …, Pn} of waiting
processes such that P0 is waiting for a resource that is held by P1,
P1 is waiting for a resource that is held by P2, …, Pn–1 is waiting
for a resource that is held by Pn, and Pn is waiting for a resource
that is held by P0."

Deadlock can arise if four conditions hold simultaneously."

7.5! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Resource-Allocation Graph

■  V is partitioned into two types:"
●  P = {P1, P2, …, Pn}, the set consisting of all the processes in

the system 
"

●  R = {R1, R2, …, Rm}, the set consisting of all resource types in
the system"

■  request edge – directed edge Pi → Rj!

■  assignment edge – directed edge Rj → Pi"

A set of vertices V and a set of edges E."

7.6! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Resource-Allocation Graph (Cont.)

■  Process 
 
 
"

■  Resource Type with 4 instances"
"

■  Pi requests instance of Rj"

"
■  Pi is holding an instance of Rj!

Pi"

Pi!
Rj!

Rj!

7.7! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Example of a Resource Allocation Graph

7.8! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Resource Allocation Graph With A Deadlock

7.9! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Graph With A Cycle But No Deadlock

7.10! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Basic Facts

■  If graph contains no cycles ⇒ no deadlock 
"

■  If graph contains a cycle ⇒"
●  if only one instance per resource type, then deadlock"
●  if several instances per resource type, possibility of deadlock"

7.11! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Dealing	
 with	
 Deadlock	

■  Three	
 general	
 approaches	
 exist	
 for	
 dealing	
 with	
 deadlock.	

●  Prevent	
 deadlock	

●  Avoid	
 deadlock	

●  Detect	
 Deadlock	

7.12! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!
12	

Deadlock	
 Preven3on	

7.13! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition! 13	

Idea:	
 invalidate	
 one	
 of	
 the	
 four	
 condi3ons	
 for	

deadlock	

1.  Mutual	
 exclusion	
 condi=on	

2.  Hold-­‐and-­‐wait	
 condi=on	

3.  No	
 preemp=on	
 condi=on	

4.  Circular	
 wait	
 condi=on	

7.14! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition! 14	

A:acking	
 the	
 Mutual	
 Exclusion	

Condi3on	

■  Some	
 devices	
 (such	
 as	
 printer)	
 can	
 be	
 spooled	

●  only	
 the	
 printer	
 daemon	
 uses	
 printer	
 resource	

●  thus	
 deadlock	
 for	
 printer	
 eliminated	

■ Not	
 all	
 devices	
 can	
 be	
 spooled	

■ Principle:	

●  avoid	
 assigning	
 resource	
 when	
 not	
 absolutely	
 necessary	

●  as	
 few	
 processes	
 as	
 possible	
 actually	
 claim	
 the	
 resource	

7.15! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition! 15	

A:acking	
 the	
 Hold	
 and	
 Wait	

Condi3on	

■ Require	
 processes	
 to	
 request	
 resources	
 before	
 star=ng	

●  a	
 process	
 never	
 has	
 to	
 wait	
 for	
 what	
 it	
 needs	

■ Problems	

● may	
 not	
 know	
 required	
 resources	
 at	
 start	
 of	
 run	

● may	
 wait	
 for	
 long	
 to	
 acquire	
 all	
 resources	
 	

●  =es	
 up	
 resources	
 other	
 processes	
 could	
 be	
 using	

■ Varia=on:	
 before	
 reques=ng	
 a	
 new	
 resource,	
 	

●  process	
 must	
 give	
 up	
 all	
 resources	

●  then	
 request	
 all	
 immediately	
 needed	

7.16! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition! 16	

A:acking	
 the	
 No	
 Preemp3on	

Condi3on	

■  In	
 general	
 this	
 is	
 not	
 a	
 viable	
 op=on	

■  Consider	
 a	
 process	
 given	
 the	
 printer	

●  halfway	
 through	
 its	
 job	

●  now	
 forcibly	
 take	
 away	
 printer	

●  !!??	

7.17! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition! 17	

A:acking	
 the	
 Circular	
 Wait	
 Condi3on	

■  Every	
 resource	
 has	
 a	
 unique	
 number	

■  A	
 process	
 must	
 request	
 resources	
 in	
 increasing	
 number	
 order	
 	

7.18! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Deadlock	
 Avoidance	

18	

7.19! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Deadlock	
 Avoidance	

■  A	
 decision	
 is	
 made	
 dynamically	
 whether	
 the	
 current	
 resource	
 alloca=on	
 request	

will,	
 if	
 granted,	
 poten=ally	
 lead	
 to	
 a	
 deadlock	

■  Requires	
 knowledge	
 of	
 future	
 process	
 requests	

7.20! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Two	
 Approaches	
 to	
 	

Deadlock	
 Avoidance	

■  Process	
 Ini=a=on	
 Denial	

●  Do	
 not	
 start	
 a	
 process	
 if	
 its	
 demands	
 might	
 lead	
 to	
 deadlock	

■  Resource	
 Alloca=on	
 Denial	

●  Do	
 not	
 grant	
 an	
 incremental	
 resource	
 request	
 to	
 a	
 process	
 if	
 this	
 alloca=on	

might	
 lead	
 to	
 deadlock	

7.21! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Process	
 Ini3a3on	
 Denial	

■  A	
 process	
 is	
 only	
 started	
 if	
 the	
 maximum	
 claim	
 of	
 all	
 current	
 processes	
 plus	
 those	

of	
 the	
 new	
 process	
 can	
 be	
 met.	
 	

■  Not	
 op=mal:	
 	

●  Assumes	
 the	
 worst:	
 that	
 all	
 processes	
 will	
 make	
 their	
 maximum	
 claims	

together.	

7.22! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Resource	
 Alloca3on	
 Denial	

■  Referred	
 to	
 as	
 the	
 Banker’s	
 algorithm	

●  A	
 strategy	
 of	
 resource	
 alloca=on	
 denial	

■  Consider	
 a	
 system	
 with	
 fixed	
 number	
 of	
 resources	

●  State	
 of	
 the	
 system	
 is	
 the	
 current	
 alloca=on	
 of	
 resources	
 to	
 process	

●  Safe	
 state	
 is	
 where	
 there	
 is	
 at	
 least	
 one	
 sequence	
 that	
 does	
 not	
 result	
 in	

deadlock	

●  Unsafe	
 state	
 is	
 a	
 state	
 that	
 is	
 not	
 safe	

7.23! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Safe State

■  When a process requests an available resource, system must decide
if immediate allocation leaves the system in a safe state  
"

■  System is in safe state if there exists a sequence <P1, P2, …, Pn> of
ALL the processes in the systems such that for each Pi, the
resources that Pi can still request can be satisfied by currently
available resources + resources held by all the Pj, with j < I!

■  That is:"
●  If Pi resource needs are not immediately available, then Pi can

wait until all Pj have finished"
●  When Pj is finished, Pi can obtain needed resources, execute,

return allocated resources, and terminate"
●  When Pi terminates, Pi +1 can obtain its needed resources, and so

on "

7.24! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Basic Facts

■  If a system is in safe state ⇒ no deadlocks 
"

■  If a system is in unsafe state ⇒ possibility of deadlock 
"

■  Avoidance ⇒ ensure that a system will never enter an unsafe state."

7.25! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Safe, Unsafe, Deadlock State

7.26! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Avoidance algorithms

■  Single instance of a resource type"
●  Use a resource-allocation graph"

■  Multiple instances of a resource type"
●  Use the banker’s algorithm"

7.27! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Resource-Allocation Graph Scheme

■  Claim edge Pi → Rj indicated that process Pj may request resource
Rj; represented by a dashed line  
"

■  Claim edge converts to request edge when a process requests a
resource  
"

■  Request edge converted to an assignment edge when the resource
is allocated to the process"

"
■  When a resource is released by a process, assignment edge

reconverts to a claim edge  
"

■  Resources must be claimed a priori in the system"

7.28! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Resource-Allocation Graph

7.29! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Unsafe State In Resource-Allocation Graph

7.30! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Resource-Allocation Graph Algorithm

■  Suppose that process Pi requests a resource Rj!

■  The request can be granted only if converting the request edge to an
assignment edge does not result in the formation of a cycle in the
resource allocation graph"

7.31! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Poten3al	
 Deadlock	
 	

I need
quad A and

B"

I need
quad B and

C"

I need
quad C
and B"

I need
quad D
and A"

7.32! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Resource Allocation Diagram

7.33! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Resource Allocation Diagram

7.34! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Actual	
 Deadlock	

HALT until
B is free"

HALT until
C is free"

HALT until
D is free"

HALT until
A is free"

7.35! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Cars	
 in	
 Intersec3on,	
 again	

7.36! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Banker’s Algorithm

■  Multiple instances 
"

■  Each process must a priori claim maximum use  
"

■  When a process requests a resource it may have to wait  
"

■  When a process gets all its resources it must return them in a finite
amount of time"

7.37! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Data Structures for the Banker’s Algorithm

■  Available: Vector of length m. If available [j] = k, there are k
instances of resource type Rj available"

■  Max: n x m matrix. If Max [i,j] = k, then process Pi may request at
most k instances of resource type Rj!

■  Allocation: n x m matrix. If Allocation[i,j] = k then Pi is currently
allocated k instances of Rj!

■  Need: n x m matrix. If Need[i,j] = k, then Pi may need k more
instances of Rj to complete its task"

 
Need [i,j] = Max[i,j] – Allocation [i,j]"

Let n = number of processes, and m = number of resources types. "

7.38! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Safety Algorithm

1. "Let Work and Finish be vectors of length m and n, respectively.
Initialize:"

Work = Available!
Finish [i] = false for i = 0, 1, …, n- 1"
"

2. "Find an i such that both: "
(a) Finish [i] = false"
(b) Needi ≤ Work!
If no such i exists, go to step 4"
"

3. Work = Work + Allocationi  
Finish[i] = true  
go to step 2"

4. "If Finish [i] == true for all i, then the system is in a safe state"

7.39! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Resource-Request Algorithm for Process Pi

 Request = request vector for process Pi. If Requesti [j] = k then
process Pi wants k instances of resource type Rj"

1. "If Requesti ≤ Needi go to step 2. Otherwise, raise error condition,
since process has exceeded its maximum claim"

2. "If Requesti ≤ Available, go to step 3. Otherwise Pi must wait,
since resources are not available"

3. "Pretend to allocate requested resources to Pi by modifying the
state as follows:"

" "Available = Available – Request;!
" "Allocationi = Allocationi + Requesti;"
" "Needi = Needi – Requesti;!

●  If safe ⇒ the resources are allocated to Pi!
●  If unsafe ⇒ Pi must wait, and the old resource-allocation state

is restored!

7.40! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Example of Banker’s Algorithm

■  5 processes P0 through P4; "
 3 resource types:"
 A (10 instances), B (5instances), and C (7 instances)"
 Snapshot at time T0:"
" " "Allocation ! Max !Available!
! ! !A B C ! A B C !A B C!
" "P0 "0 1 0 " 7 5 3 "3 3 2"
" " P1 "2 0 0 " 3 2 2 "
" " P2 "3 0 2 " 9 0 2"
" " P3 "2 1 1 " 2 2 2"
" " P4 "0 0 2 " 4 3 3 """

7.41! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Example (Cont.)

■  The content of the matrix Need is defined to be Max – Allocation"
"
" " "Need"
" " "A B C!
" " P0 "7 4 3 "
" " P1 "1 2 2 "
" " P2 "6 0 0 "
" " P3 "0 1 1"
" " P4 "4 3 1  
"

■  The system is in a safe state since the sequence < P1, P3, P4, P2, P0>
satisfies safety criteria"

7.42! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Example: P1 Request (1,0,2)

■  Check that Request ≤ Available (that is, (1,0,2) ≤ (3,3,2) ⇒ true!
! ! !Allocation !Need !Available!
! ! !A B C !A B C !A B C !
" "P0 "0 1 0 "7 4 3 "2 3 0"
" "P1" 3 0 2 0 2 0 ""
" "P2 "3 0 2 " 6 0 0 "
" "P3 "2 1 1 " 0 1 1"
" "P4 "0 0 2 " 4 3 1 "

"

■  Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2>
satisfies safety requirement"

■  Can request for (3,3,0) by P4 be granted?"

■  Can request for (0,2,0) by P0 be granted?"
"

