Chapter 7: Deadlocks

Operating System Concepts — 8t Edition Silberschatz, Galvin and Gagne ©2009

v o The Deadlock Problem

B A set of blocked processes each holding a resource and waiting to
acquire a resource held by another process in the set

B Example
® System has 2 disk drives
® P, and P, each hold one disk drive and each needs another one

Operating System Concepts — 8t Edition 7.2 Silberschatz, Galvin and Gagne ©2009

& System Model
B Resource types Ry, R,, .. ., R,

CPU cycles, memory space, I/O devices
B Each resource type R has W instances.
B Each process utilizes a resource as follows:
® request

® use
® release

Operating System Concepts — 8th Edition 7.3

Silberschatz, Galvin and Gagne ©2009

A
A
2,

r Deadlock Characterization

Deadlock can arise if four conditions hold simultaneously.

B Mutual exclusion: only one process at a time can use a
resource

B Hold and wait: a process holding at least one resource is waiting
to acquire additional resources held by other processes

B No preemption: aresource can be released only voluntarily by
the process holding it, after that process has completed its task

B Circular wait: there exists a set {P,, P, ..., P} of waiting
processes such that P, is waiting for a resource that is held by P;,
P, is waiting for a resource that is held by P,, ..., P, is waiting
for a resource that is held by P,, and P, is waiting for a resource
that is held by P,

N 1‘\\‘\
S \':X\ ‘\%
£ <
W,
AU AN

Operating System Concepts — 8" Edition 7.4 Silberschatz, Galvin and Gagne ©2009

r.al Resource-Allocation Graph

A set of vertices V and a set of edges E.

B Vis partitioned into two types:

e P={P,, P, ..., P}, the set consisting of all the processes in
the system

e R={R,, R,, ..., R}, the set consisting of all resource types in
the system

B request edge — directed edge P,— R;

B assignment edge — directed edge R, — P,

Operating System Concepts — 8t Edition 7.5 Silberschatz, Galvin and Gagne ©2009

Resource-Allocation Graph (Cont.)

B Process

B Resource Type with 4 instances

B P, requests instance of R;

B P;is holding an instance of R, R

Operating System Concepts — 8th Edition 7.6

. (=
S -
‘#”" Example of a Resource Allocation Graph

|8

R, R,
~ *\
@
\¢
® [}
R, :
R,

N
Operating System Concepts — 8t Edition 7.7 Silberschatz, Galvin and Gagne ©2009

£ : :
‘#”" Resource Allocation Graph With A Deadlock

R, R,
® @
\ \

Q []
®

R, o
Ry

. N
Operating System Concepts — 8t Edition 7.8 Silberschatz, Galvin and Gagne ©2009

N@s
ﬁ% * Graph With A Cycle But No Deadlock

Operating System Concepts — 8t Edition 7.9 Silberschatz, Galvin and Gagne ©2009

; ,«;«ﬂ""ﬁj
"S5
L. 7

Basic Facts

M If graph contains no cycles = no deadlock

M If graph contains a cycle =
@ if only one instance per resource type, then deadlock
® if several instances per resource type, possibility of deadlock

Operating System Concepts — 8t Edition 7.10 Silberschatz, Galvin and Gagne ©2009

=
>

M{ ; Dealing with Deadlock

B Three general approaches exist for dealing with deadlock.
® Prevent deadlock
® Avoid deadlock
® Detect Deadlock

Operating System Concepts — 8t Edition 7.1 Silberschatz, Galvin and Gagne ©2009

Deadlock Prevention

12

Operating System Concepts — 8th Edition 712

Idea: invalidate one of the four conditions for
deadlock

Mutual exclusion condition
Hold-and-wait condition

No preemption condition

W

Circular wait condition

Operating System Concepts — 8t Edition 7.13 Siﬁnsrschatz, Galvin and Gagne ©2009

gg:“f Attacking the Mutual Exclusion
Condition

B Some devices (such as printer) can be spooled
® only the printer daemon uses printer resource

® thus deadlock for printer eliminated
B Not all devices can be spooled
M Principle:
® avoid assigning resource when not absolutely necessary

® as few processes as possible actually claim the resource

AN \\\
L B .
}\ gt

w82 ”\\f*i\
/D' 3

Operating System Concepts — 8t Edition 7.14 SiMrschatz, Galvin and Gagne ©2009

.~ Attacking the Hold and Wait
!$’w/ e, ®
Condition

B Require processes to request resources before starting

® a process never has to wait for what it needs

M Problems
® may not know required resources at start of run
® may wait for long to acquire all resources

® ties up resources other processes could be using

M Variation: before requesting a new resource,
® process must give up all resources

® then request all immediately needed

Operating System Concepts — 8t Edition 7.15 Sillngrschatz, Galvin and Gagne ©2009

- _~ATtacKking the NO Preempuion
Qc”f.;y/ ap 8
Condition

B In general this is not a viable option
B Consider a process given the printer
® halfway through its job

® now forcibly take away printer

e !1?7?

SOSOAL
/7 NS
A ﬁ; ‘

Operating System Concepts — 8t Edition 7.16 Siﬁ)érschatz, Galvin and Gagne ©2009

%acking the Circular Wait Condition

B Every resource has a unique number

B A process must request resources in increasing number order

Operating System Concepts — 8t Edition 7.17 Silbérschatz, Galvin and Gagne ©2009

Deadlock Avoidance

Operating System Concepts — 8th Edition 7.18

ot Deadlock Avoidance

B A decision is made dynamically whether the current resource allocation request
will, if granted, potentially lead to a deadlock

B Requires knowledge of future process requests

Operating System Concepts — 8t Edition 719 Silberschatz, Galvin and Gagne ©2009

. Two Approaches to
> Deadlock Avoidance

B Process Initiation Denial

® Do not start a process if its demands might lead to deadlock

B Resource Allocation Denial

® Do not grant an incremental resource request to a process if this allocation
might lead to deadlock

Operating System Concepts — 8t Edition 7.20 Silberschatz, Galvin and Gagne ©2009

, =
PP e :
y o Process Initiation Denial

L\

B A process is only started if the maximum claim of all current processes plus those
of the new process can be met.

B Not optimal:

® Assumes the worst: that all processes will make their maximum claims
together.

Operating System Concepts — 8t Edition 7.21 Silberschatz, Galvin and Gagne ©2009

| an b . .
o Resource Allocation Denial

g

B Referred to as the Banker’ s algorithm
® A strategy of resource allocation denial
B Consider a system with fixed number of resources
® State of the system is the current allocation of resources to process

® Sdfe state is where there is at least one sequence that does not result in
deadlock

® Unsafe state is a state that is not safe

Operating System Concepts — 8t Edition 7.22 Silberschatz, Galvin and Gagne ©2009

B When a process requests an available resource, system must decide
if immediate allocation leaves the system in a safe state

B System is in safe state if there exists a sequence <P,, P,, ..., P> of
ALL the processes in the systems such that for each P;, the
resources that P, can still request can be satisfied by currently
available resources + resources held by all the P, with j</

B Thatis:

@ If P, resource needs are not immediately available, then P, can
wait until all P; have finished

® When P;is finished, P; can obtain needed resources, execute,
return allocated resources, and terminate

® When P;terminates, P, , can obtain its needed resources, and so
on

DA \‘%
5 <
I B

v
e

Operating System Concepts — 8t Edition 7.23 Silberschatz, Galvin and Gagne ©2009

v o Basic Facts

B If a system is in safe state = no deadlocks
B If a system is in unsafe state = possibility of deadlock

B Avoidance = ensure that a system will never enter an unsafe state.

Operating System Concepts — 8t Edition 7.24 Silberschatz, Galvin and Gagne ©2009

L4 Safe, Unsafe, Deadlock State

deadlock

Operating System Concepts — 8th Edition

7.25

unsafe

safe

‘(‘&l N
Silberschatz, Galvin and Gagne ©2009

o Avoidance algorithms

B Single instance of a resource type
® Use a resource-allocation graph

B Multiple instances of a resource type
® Use the banker’s algorithm

Operating System Concepts — 8t Edition 7.26 Silberschatz, Galvin and Gagne ©2009

=

‘* Resource-Allocation Graph Scheme

L %}\"" /
L\ ¥

B Claim edge P, — R;indicated that process P; may request resource
R; represented by a dashed line

B Claim edge converts to request edge when a process requests a
resource

B Request edge converted to an assignment edge when the resource
is allocated to the process

B When a resource is released by a process, assignment edge
reconverts to a claim edge

B Resources must be claimed a prioriin the system

Operating System Concepts — 8t Edition 7.27 Silberschatz, Galvin and Gagne ©2009

< Resource-Allocation Graph

A

Operating System Concepts — 8t Edition 7.28 Silberschatz, Galvin and Gagne ©2009

3% Unsafe State In Resource-Allocation Graph

L\

A,

"
Operating System Concepts - 8% Edition 7.29 Silberschatz, Galvin and Gagne ©2009

“%

“$% Resource-Allocation Graph Algorithm

B Suppose that process P, requests a resource R;

B The request can be granted only if converting the request edge to an
assignment edge does not result in the formation of a cycle in the
resource allocation graph

Operating System Concepts — 8t Edition 7.30 Silberschatz, Galvin and Gagne ©2009

Potential Deadlock

| need
quad B and
C

| need
quad A and

Operating System Concepts — 8" Edition 7.31 Silberschatz, Galvin and Gagne ©2009

f'. ’4

LA

Resource Allocation Diagram

Operating System Concepts — 8th Edition

7.32

. o
Silberschatz, Galvin and Gagne ©2009

Resource Allocation Diagram

VA

Operating System Concepts — 8t Edition 7.33 Silberschatz, Galvin and Gagne ©2009

Actual Deadlock

HALT until
D is free

HALT until
C is free

HALT until

HALT until B is free

A is free

Operating System Concepts — 8" Edition 7.34 Silberschatz, Galvin and Gagne ©2009

o Cars in Intersection, again
P1 P2 P3 P4 E
» :
[J
Ra Rb Re B

Figure 6.6 Resource Allocation Graph for Figure 6.1b

l Operating System Concepts — 8th Edition

7.35

‘42.'/ N
Silberschatz, Galvin and Gagne ©2009

G Banker’s Algorithm

B Multiple instances
B Each process must a priori claim maximum use
B When a process requests a resource it may have to wait

B When a process gets all its resources it must return them in a finite
amount of time

Operating System Concepts — 8t Edition 7.36 Silberschatz, Galvin and Gagne ©2009

=

o

)
g"}"’,,’ Data Structures for the Banker’s Algorithm

Let n = number of processes, and m = number of resources types.

B Available: Vector of length m. If available [j] = k, there are k
instances of resource type R; available

B Max: nx mmatrix. If Max [ij] = k, then process P; may request at
most k instances of resource type R;

B Allocation: nx m matrix. If Allocation[i,j] = kthen P;is currently
allocated k instances of R

B Need: nx m matrix. If Need[i,j] = k, then P, may need k more
instances of R;to complete its task

Need [i,j] = Max{i,j] — Allocation [i,j]

Operating System Concepts — 8t Edition 7.37 Silberschatz, Galvin and Gagne ©2009

S Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively.
Initialize:

Work = Available
Finish [/l = false for i=0,1, ..., n- 1

2. Find an 7/ such that both:
(a) Finish [i] = false
(b) Need, < Work
If no such J exists, go to step 4
3. Work = Work + Allocation;
Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state

Operating System Concepts — 8t Edition 7.38 Silberschatz, Galvin and Gagne ©2009

o~

a4

#”" Resource-Request Algorithm for Process P;

Request = request vector for process P, If Request;[j] = kthen
process P;wants k instances of resource type R,

1. If Request; < Need. go to step 2. Otherwise, raise error condition,
since process has exceeded its maximum claim

2. If Request; < Available, go to step 3. Otherwise P, must wait,
since resources are not available

3. Pretend to allocate requested resources to P; by modifying the
state as follows:

Available = Available — Request;
Allocation;= Allocation; + Request;
Need, = Need, — Request;

® I/f safe = the resources are allocated to Pi

® /f unsafe = Pi must wait, and the old resource-allocation state
is restored

Operating System Concepts — 8t Edition 7.39 Silberschatz, Galvin and Gagne ©2009

97/ Example of Banker’s Algorithm

B 5 processes P, through P,;
3 resource types:

A (10 instances), B (5instances), and C (7 instances)
Snapshot at time T:

Allocation Max Available
ABC ABC ABC
P, 010 753 332
P, 200 322
P, 302 902
P; 211 222
P, 002 433

Operating System Concepts — 8t Edition 7.40 Silberschatz, Galvin and Gagne ©2009

3 Example (Cont.)

B The content of the matrix Need is defined to be Max — Allocation

Need

ABC
P, 743
P, 122
P, 600
P, 011
P, 431

B The system is in a safe state since the sequence < P,, P;, P,, P,, P>
satisfies safety criteria

> \
g A\

\|

// L)
U

Operating System Concepts — 8t Edition 7.41 Silberschatz, Galvin and Gagne ©2009

A
o\
»

4 Example: P; Request (1,0,2)

B Check that Request < Available (that is, (1,0,2) < (3,3,2) = true

Allocation Need Available
ABC ABC ABC
P, 010 743 230
P, 302 020
P, 302 600
P, 211 011
P, 002 431

B Executing safety algorithm shows that sequence < P,, P;, P,, Py, P>
satisfies safety requirement

B Can request for (3,3,0) by P, be granted?

B Can request for (0,2,0) by P, be granted?

Operating System Concepts — 8t Edition 7.42 Silberschatz, Galvin and Gagne ©2009

