
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 7: Deadlocks

7.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Bounded Buffer Problem	

■  Producer cannot write when full, but wait until not full
■  Consumer cannot read when empty, but wait until not empty
■  Producer and Consumer cannot write/read simultaneously	

Producer	
 Consumer	

0	

1	

2	

N	

write	
 read	

7.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

BBP v3

Producer
do { 

// produce an item
wait (empty);
wait (mutex);
// add the item to the buffer
signal (mutex);
signal (full);

} while (TRUE);

Consumer	

do {

wait (full);
 wait (mutex);

// remove an item from buffer
signal (mutex);

 signal (empty);
// consume the item

} while (TRUE);	

7.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

First Reader-Writer problem	

■  Writer’s problem
●  Cannot write if a writer is writing or a reader is reading

■  Reader’s problem
●  Cannot read if a writer is writing
●  First reader holds the lock
●  Last reader releases the lock

R	
 W	
 R	
 R	
 R	
 R	
 W	
 W	

W	
R	
R	
R	
R	

7.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Readers-Writers Problem (Cont.)
■  Reader process
 do {

wait (mutex) ;
readcount ++ ;
if (readcount == 1)

wait (wrt) ;
signal (mutex)

// Read data

wait (mutex) ;
readcount - - ;
if (readcount == 0)

signal (wrt) ;
signal (mutex) ;

} while (TRUE);

■  Writer process

do {
wait (wrt) ;

// writing is performed

signal (wrt) ;
} while (TRUE);

7.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Cigarette Smokers Problem

■  A cigarette requires
●  Tobacco
●  Smoking Paper
●  Match

■  Three chain smokers sitting around the table, one has Tobacco, one has
paper, and the other has a match

■  One non-smoking arbiter do
●  When table is empty, pick two smokers at random, put their ingredients

on the table, and let the third smoker to know ready
●  The third smoker makes a cigarette, and smoke the cigarette

7.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Cigarette Smokers Problem

■  Arbiter
●  wait until table is empty
●  pick two smokers at random
●  notify the third smoker

■  Smoker
●  wait until notified
●  make a cigarette
●  smoke cigarette

7.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Cigarette Smokers Problem

■  Arbiter
●  wait(T)
●  pick two smokers at random
●  k = third smoker
●  signal(A[k])

■  Smoker-i
●  wait(A[i])
●  make a cigarette
●  signal(T)
●  smoke cigarette

7.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Dining-Philosophers Problem

■  Philosophers spend their lives thinking and eating
■  Don’t interact with their neighbors, occasionally try to pick up 2

chopsticks (one at a time) to eat from bowl
●  Need both to eat, then release both when done

■  Shared data
●  Bowl of rice (data set)
●  Semaphore chopstick [5] initialized to 1

7.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

 Dining-Philosophers Problem
Algorithm

■  The structure of Philosopher i:
do {
 wait (chopstick[i]);

 wait (chopStick[(i + 1) % 5]);
 // eat
 signal (chopstick[i]);
 signal (chopstick[(i + 1) % 5]);

 // think
} while (TRUE);

■  What is the problem with this algorithm?

7.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Solutions

■  At least one person is not hungry
■  Pick if all the two chopsticks are free
■  Asymmetric solution

7.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

The Deadlock Problem

■  A set of blocked processes each holding a resource and waiting to
acquire a resource held by another process in the set

■  Example
●  System has 2 disk drives
●  P1 and P2 each hold one disk drive and each needs another one

7.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

System Model

■  Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

■  Each resource type Ri has Wi instances.

■  Each process utilizes a resource as follows:
●  request
●  use
●  release

7.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Deadlock Characterization

■  Mutual exclusion: only one process at a time can use a
resource

■  Hold and wait: a process holding at least one resource is waiting
to acquire additional resources held by other processes

■  No preemption: a resource can be released only voluntarily by
the process holding it, after that process has completed its task

■  Circular wait: there exists a set {P0, P1, …, Pn} of waiting
processes such that P0 is waiting for a resource that is held by P1,
P1 is waiting for a resource that is held by P2, …, Pn–1 is waiting
for a resource that is held by Pn, and Pn is waiting for a resource
that is held by P0.

Deadlock can arise if four conditions hold simultaneously.

7.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Resource-Allocation Graph

■  V is partitioned into two types:
●  P = {P1, P2, …, Pn}, the set consisting of all the processes in

the system 

●  R = {R1, R2, …, Rm}, the set consisting of all resource types in
the system

■  request edge – directed edge Pi → Rj

■  assignment edge – directed edge Rj → Pi

A set of vertices V and a set of edges E.

7.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Resource-Allocation Graph (Cont.)

■  Process 
 
 

■  Resource Type with 4 instances

■  Pi requests instance of Rj

■  Pi is holding an instance of Rj

Pi

Pi

Rj

Rj

7.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of a Resource Allocation Graph

