
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 6: Process
Synchronization

3.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Semaphore

■  Synchronization tool that does not require busy waiting
■  Semaphore S – integer variable
■  Two standard operations modify S: wait() and signal()

●  Originally called P() and V()
■  Less complicated
■  Can only be accessed via two indivisible (atomic) operations

●  wait (S) {
 while S <= 0

 ; // no-op
 S--;
 }
●  signal (S) {
 S++;
 }

3.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Semaphore as
General Synchronization Tool

■  Counting semaphore – integer value can range over an unrestricted domain
■  Binary semaphore – integer value can range only between 0  

and 1; can be simpler to implement
●  Also known as mutex locks

■  Can implement a counting semaphore S as a binary semaphore
■  Provides mutual exclusion

Semaphore mutex; // initialized to 1
do {

wait (mutex);
 // Critical Section
 signal (mutex);

// remainder section
} while (TRUE);

3.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Bounded Buffer Problem	

■  Producer cannot write when full, but wait until not full
■  Consumer cannot read when empty, but wait until not empty
■  Producer and Consumer cannot write/read simultaneously	

Producer	
 Consumer	

0	

1	

2	

N	

write	
 read	

3.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

BBP v3

Producer
do { 

// produce an item
wait (empty);
wait (mutex);
// add the item to the buffer
signal (mutex);
signal (full);

} while (TRUE);

Consumer	

do {

wait (full);
 wait (mutex);

// remove an item from buffer
signal (mutex);

 signal (empty);
// consume the item

} while (TRUE);	

3.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Classical Problems of Synchronization

■  Classical problems used to test newly-proposed synchronization schemes

●  Bounded-Buffer Problem

●  Readers and Writers Problem

●  Dining-Philosophers Problem

3.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Readers-Writers Problem

■  A data set is shared among a number of concurrent processes
●  Readers – only read the data set; they do not perform any updates
●  Writers – can both read and write

■  Concurrency
●  Allow multiple readers to read at the same time
●  Only one single writer can access the shared data at the same time

3.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

First Reader-Writer problem	

R	
 W	
 R	
 R	
 R	
 R	
 W	
 W	

W	
R	
R	
R	
R	

R	
First Reader	

R	
 Last Reader	

3.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

First Reader-Writer problem	

■  What are shared resources?
●  What shared variable is needed?

■  Who are competing for which resources?
●  Binary semaphore for mutual exclusion

■  How can we decide if I am the first reader or the last reader?

3.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Writer	

■  Writer’s algorithm
●  if another writer is writing or readers are reading (lock is held)

!  then wait
●  otherwise, lock and write
●  release lock and notify when done	

3.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Writer

■  The structure of a writer process

 do {
 wait (wrt) ;

 // writing is performed

 signal (wrt) ;
 } while (TRUE);

3.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Reader	

■  Reader’s algorithm
●  If I am the first reader

!  if a writer is writing, wait
!  or hold writing lock

●  read data
●  If I am the last reader

!  release writing lock

do {
 if (I am the first reader)
 wait (wrt) ;

 // read data

 if (I am the last reader)
 signal (wrt) ;

} while (TRUE);
	

3.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Reader	

■  Decide if I am the first/last reader
■  Count the number of readers in database
■  Share the counting variable
■  Mutex	

3.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Readers-Writers Problem (Cont.)

 do {
 wait (mutex) ;
 readcount ++ ;
 if (readcount == 1)

 wait (wrt) ;
 signal (mutex)

// Read data

 wait (mutex) ;
readcount - - ;

 if (readcount == 0)
 signal (wrt) ;

 signal (mutex) ;

 } while (TRUE);

■  //WRITER

do {
 wait (wrt) ;

// writing is performed
signal (wrt) ;

} while (TRUE);

3.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

■  Writer Starvation?

■  No Writer Starvation code?

3.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Readers/Writers/No starvation

 do {
 wait(r);

 wait (mutex) ;
 readcount ++ ;
 if (readcount == 1)

 wait (wrt) ;
 signal (mutex)
 signal(r);

 // Read data
 wait (mutex) ;

readcount - - ;
 if (readcount == 0)

 signal (wrt) ;
 signal (mutex) ;

 } while (TRUE);

■  //WRITER

do {
 wait(r)
 wait (wrt) ;

// writing is performed
signal (wrt) ;
signal(r);

} while (TRUE);

3.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition 17	

Sleeping	
 Barber	
 Problem	

•  There is one barber, and n chairs for
waiting customers
• If there are no customers, then the
barber sits in his chair and sleeps
• When a new customer arrives and the
barber is sleeping, then he will wakeup
the barber
• When a new customer arrives, and the
barber is busy, then he will sit on the
chairs if there is any available,
otherwise (when all the chairs are full)
he will leave.

3.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition 18	

Barber	
 Shop	
 Hints	

Consider	
 the	
 following:	

■  Customer	
 threads	
 should	
 invoke	
 a	
 func7on	
 named	
 getHairCut.	

■  If	
 a	
 customer	
 thread	
 arrives	
 when	
 the	
 shop	
 is	
 full,	
 it	
 can	
 invoke	
 balk,	
 which	
 exits.	

■  Barber	
 threads	
 should	
 invoke	
 cutHair.	

■  When	
 the	
 barber	
 invokes	
 cutHair	
 there	
 should	
 be	
 exactly	
 one	
 thread	
 invoking	

getHairCut concurrently.	

3.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition
19	

Sleeping	
 Barber	
 Solu5on	

void	
 customer	
 (void){	

semWait(mutex);	
 	

if	
 (customers==n+1)	
 {	

	
 	
 semSignal(mutex);	

	
 	
 balk();	
 	

}	

customers	
 +=1;	
 	

semSignal(mutex);	
 	

	

semSignal(customer);	
 	

semWait(barber);	
 	

getHairCut();	
 	

	

semWait(mutex);	
 	

customers	
 -­‐=1;	
 	

semSignal(mutex);	

}	

void	
 barber	
 (void){	

	
 semWait(customer);	

	
 semSignal(barber);	
 	

	
 cutHair();	
 	

}	

int customers = 0;
mutex = Semaphore(1);
customer = Semaphore(0);
barber = Semaphore(0);

3.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Dining-Philosophers Problem
■  Philosophers spend their lives thinking and eating
■  Don’t interact with their neighbors, occasionally try to pick up 2

chopsticks (one at a time) to eat from bowl
●  Need both to eat, then release both when done

■  In the case of 5 philosophers
●  Shared data

!  Bowl of rice (data set)
!  Semaphore chopstick [5] initialized to 1

