Chapter 6: Process
Synchronization
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Xl Semaphore
B Synchronization tool that does not require busy waiting

Semaphore S — integer variable
Two standard operations modify S: wait() and signal()

® Oiriginally called P() and V()
Less complicated
Can only be accessed via two indivisible (atomic) operations

® wait (S){
while S<=0
; [/ no-0p

S--;

¥
® signal (S){
S++;

}
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" Semaphore as
General Synchronization Tool

B Counting semaphore — integer value can range over an unrestricted domain

B Binary semaphore — integer value can range only between O
and 1; can be simpler to implement

® Also known as mutex locks
B Can implement a counting semaphore S as a binary semaphore
B Provides mutual exclusion
Semaphore mutex; // initialized to 1
do{
wait (mutex);
// Critical Section
signal (mutex);
// remainder section
} while (TRUE);
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g
ot Bounded Buffer Problem

B Producer cannot write when full, but wait until not full
B Consumer cannot read when empty, but wait until not empty
B Producer and Consumer cannot write/read simultaneously

=

Producer write read
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o BBP v3
Producer Consumer
do { do {

/[ produce an item
wait (empty);
wait (mutex);
// add the item to the buffer
signal (mutex);
signal (full);
} while (TRUE);
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wait (full);
wait (mutex);

/I remove an item from buffer

signal (mutex);
signal (empty);

/l consume the item

Y while (TRUE);
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“3%7 Classical Problems of Synchronization

B Classical problems used to test newly-proposed synchronization schemes

® Bounded-Buffer Problem

® Readers and Writers Problem

® Dining-Philosophers Problem
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& Readers-Writers Problem

B A data set is shared among a number of concurrent processes
® Readers — only read the data set; they do not perform any updates
® Writers — can both read and write
B Concurrency
® Allow multiple readers to read at the same time
® Only one single writer can access the shared data at the same time
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Last Reader
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“%77  First Reader-Writer problem

L

B What are shared resources?
® What shared variable is needed?
B Who are competing for which resources?
® Binary semaphore for mutual exclusion
B How can we decide if | am the first reader or the last reader?
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o Writer

B Writer’s algorithm
@ if another writer is writing or readers are reading (lock is held)
» then wait
® otherwise, lock and write
® release lock and notify when done
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ot Writer

L \

B The structure of a writer process

do{
wait (wrt) ;

/[ writing is performed

signal (wrt) ;
} while (TRUE);
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I Reader
B Reader’s algorithm do {
® If I am the first reader if (I am the first reader)
» if a writer is writing, wait wait (wrt) ;
» or hold writing lock // read data

® read data
if (I am the last reader)

signal (wrt) ;
}» while (TRUE);

® If | am the last reader
» release writing lock

Ve
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=7 Reader

Decide if | am the first/last reader
Count the number of readers in database
Share the counting variable

Mutex
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~“$¥7  Readers-Writers Problem (Cont.)

do{
wait (mutex) ;
readcount ++ ;
if (readcount == 1)

wait (wrt) ;
signal (mutex)
/l Read data
wait (mutex) ;
readcount - - ;
if (readcount == 0)

signal (wrt) ;
signal (mutex) ;

} while (TRUE);
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B /WRITER

do {
wait (wrt) ;
/[ writing is performed
signal (wrt) ;

} while (TRUE);
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B Writer Starvation?

B No Writer Starvation code?
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~%77 Readers/Writers/No starvation
do { B /WRITER
wait(r);

wait (mutex) ;

readcount ++ ; do{
if (readcount == 1) wait(r)
wait (wrt) ; wait (wrt) ;
signal (mutex) /I writing is performed
signal(r); :
// Read data signal (wrt) ;
wait (mutex) ; signal(r);
readcount - - ; } while (TRUE);
if (readcount == 0)
signal (wrt) ;

signal (mutex) ;

} while (TRUE);
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P Sleeping Barber Problem
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* There is one barber, and n chairs for
waiting customers

*If there are no customers, then the
barber sits in his chair and sleeps
\When a new customer arrives and the
barber is sleeping, then he will wakeup
the barber

\When a new customer arrives, and the
barber is busy, then he will sit on the
chairs if there is any available,
otherwise (when all the chairs are full)
he will leave.
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G Barber Shop Hints

Consider the following:
B Customer threads should invoke a function named getHairCut.
If a customer thread arrives when the shop is full, it can invoke balk, which exits.

Barber threads should invoke cutHair.

When the barber invokes cutHair there should be exactly one thread invoking
getHairCut concurrently.
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P> Sleeping Barber Solution
void customer (void){ void barber (void){

semWait(mutex); semWait(customer);

if (customers==n+1) {

semSignal(mutex); )
balk(); cutHair();

} }

customers +=1;

semSignal(barber);

semSignal(mutex);

semSignal(customer);
semWait(barber);
getHairCut();

int customers = 0;
mutex = Semaphore(1);
customer = Semaphore(0);

semWait(mutex); barber = Semaphore(0);

customers -=1;

semSignal(mutex); = V\
19 <
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~“%$¥/  Dining-Philosophers Problem
B Philosophers spend their lives thinking and eating

B Don'tinteract with their neighbors, occasionally try to pick up 2
chopsticks (one at a time) to eat from bowl

® Need both to eat, then release both when done
B Inthe case of 5 philosophers
® Shared data
» Bowl of rice (data set)
» Semaphore chopstick [5] initialized to 1
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