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Semaphore 

■  Synchronization tool that does not require busy waiting 
■  Semaphore S – integer variable
■  Two standard operations modify S: wait() and signal()

●  Originally called P() and V()
■  Less complicated
■  Can only be accessed via two indivisible (atomic) operations

●  wait (S) { 
           while S <= 0

          ; // no-op
              S--;
      }
●  signal (S) { 
        S++;
     }
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Semaphore as  
General Synchronization Tool 

■  Counting semaphore – integer value can range over an unrestricted domain
■  Binary semaphore – integer value can range only between 0  

and 1; can be simpler to implement
●  Also known as mutex locks

■  Can implement a counting semaphore S as a binary semaphore
■  Provides mutual exclusion

Semaphore mutex;    //  initialized to 1
do {

wait (mutex);
         // Critical Section
     signal (mutex);

// remainder section
} while (TRUE);
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Bounded Buffer Problem	


■  Producer cannot write when full, but wait until not full
■  Consumer cannot read when empty, but wait until not empty
■  Producer and Consumer cannot write/read simultaneously	
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BBP v3 

Producer
do  { 

//   produce an item
wait (empty);
wait (mutex);
//  add the item to the  buffer
signal (mutex);
signal (full);

} while (TRUE);

Consumer	

do {

wait (full);
     wait (mutex);

//  remove an item from  buffer
signal (mutex);

     signal (empty);
//  consume the item

} while (TRUE);	
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Classical Problems of Synchronization 

■  Classical problems used to test newly-proposed synchronization schemes

●  Bounded-Buffer Problem

●  Readers and Writers Problem

●  Dining-Philosophers Problem
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Readers-Writers Problem 

■  A data set is shared among a number of concurrent processes
●  Readers – only read the data set; they do not perform any updates
●  Writers   – can both read and write

■  Concurrency
●  Allow multiple readers to read at the same time
●  Only one single writer can access the shared data at the same time
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First Reader-Writer problem	
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First Reader-Writer problem	


■  What are shared resources?
●  What shared variable is needed?

■  Who are competing for which resources?
●  Binary semaphore for mutual exclusion

■  How can we decide if I am the first reader or the last reader?
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Writer	


■  Writer’s algorithm
●  if another writer is writing or readers are reading (lock is held)

!  then wait
●  otherwise, lock and write
●  release lock and notify when done	
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Writer 

■  The structure of a writer process
        
              do {
                        wait (wrt) ;
                
                             //    writing is performed

                        signal (wrt) ;
             } while (TRUE);
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Reader	


■  Reader’s algorithm
●  If I am the first reader

!  if a writer is writing, wait
!  or hold writing lock

●  read data
●  If I am the last reader

!  release writing lock

do { 
 if (I am the first reader) 
  wait (wrt) ; 

                 
 // read data 

 
 if (I am the last reader) 
  signal (wrt) ; 

 
} while (TRUE); 
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Reader	


■  Decide if I am the first/last reader
■  Count the number of readers in database
■  Share the counting variable
■  Mutex	
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Readers-Writers Problem (Cont.) 

        do {
                       wait (mutex) ;
                       readcount ++ ;
                      if (readcount == 1)  

          wait (wrt) ;
                       signal (mutex)
                

// Read data

                       wait (mutex) ;
readcount  - - ;

                        if (readcount  == 0)  
         signal (wrt) ;

                       signal (mutex) ;

              } while (TRUE);

       

■  //WRITER

do {
     wait (wrt) ;           

//    writing is performed
signal (wrt) ;

} while (TRUE);
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■  Writer Starvation?

■  No Writer Starvation code?
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Readers/Writers/No starvation 

        do {
       wait(r);

                       wait (mutex) ;
                       readcount ++ ;
                      if (readcount == 1)  

          wait (wrt) ;
                       signal (mutex)
                       signal(r);

        // Read data
                       wait (mutex) ;

readcount  - - ;
                       if (readcount  == 0)  

         signal (wrt) ;
                       signal (mutex) ;

              } while (TRUE);

       

■  //WRITER

do {
     wait(r)
     wait (wrt) ;           

//    writing is performed
signal (wrt) ;
signal(r);

} while (TRUE);
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Sleeping	
  Barber	
  Problem	
  

•  There is one barber, and n chairs for 
waiting customers 
• If there are no customers, then the 
barber sits in his chair and sleeps 
• When a new customer arrives and the 
barber is sleeping, then he will wakeup 
the barber 
• When a new customer arrives, and the 
barber is busy, then he will sit on the 
chairs if there is any available, 
otherwise (when all the chairs are full) 
he will leave. 
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Barber	
  Shop	
  Hints	
  

Consider	
  the	
  following:	
  
■  Customer	
  threads	
  should	
  invoke	
  a	
  func7on	
  named	
  getHairCut.	
  
■  If	
  a	
  customer	
  thread	
  arrives	
  when	
  the	
  shop	
  is	
  full,	
  it	
  can	
  invoke	
  balk,	
  which	
  exits.	
  
■  Barber	
  threads	
  should	
  invoke	
  cutHair.	
  
■  When	
  the	
  barber	
  invokes	
  cutHair	
  there	
  should	
  be	
  exactly	
  one	
  thread	
  invoking	
  

getHairCut concurrently.	
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Sleeping	
  Barber	
  Solu5on	
  

void	
  customer	
  (void){	
  
semWait(mutex);	
  	
  
if	
  (customers==n+1)	
  {	
  

	
   	
  semSignal(mutex);	
  
	
   	
  balk();	
  	
  

}	
  
customers	
  +=1;	
  	
  
semSignal(mutex);	
  	
  
	
  

semSignal(customer);	
  	
  
semWait(barber);	
  	
  
getHairCut();	
  	
  
	
  

semWait(mutex);	
  	
  
customers	
  -­‐=1;	
  	
  
semSignal(mutex);	
  

}	
  

void	
  barber	
  (void){	
  
	
  semWait(customer);	
  
	
  semSignal(barber);	
  	
  
	
  cutHair();	
  	
  

}	
  

int customers = 0;   
mutex = Semaphore(1);  
customer = Semaphore(0);  
barber = Semaphore(0); 
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Dining-Philosophers Problem 
■  Philosophers spend their lives thinking and eating
■  Don’t interact with their neighbors, occasionally try to pick up 2 

chopsticks (one at a time) to eat from bowl
●  Need both to eat, then release both when done

■  In the case of 5 philosophers
●  Shared data 

!  Bowl of rice (data set)
!  Semaphore chopstick [5] initialized to 1


