Chapter 6: Process
Synchronization

Operating System Concepts — 8t Edition Silberschatz, Galvin and Gagne ©2009

Xl Semaphore
B Synchronization tool that does not require busy waiting

Semaphore S — integer variable
Two standard operations modify S: wait() and signal()

® Oiriginally called P() and V()
Less complicated
Can only be accessed via two indivisible (atomic) operations

® wait (S){
while S<=0
; [/ no-0p

S--;

¥
® signal (S){
S++;

}

Ve

Operating System Concepts — 8t Edition 3.2 Silberschatz, Galvin and Gagne ©200

w &

" Semaphore as
General Synchronization Tool

B Counting semaphore — integer value can range over an unrestricted domain

B Binary semaphore — integer value can range only between O
and 1; can be simpler to implement

® Also known as mutex locks
B Can implement a counting semaphore S as a binary semaphore
B Provides mutual exclusion
Semaphore mutex; // initialized to 1
do{
wait (mutex);
// Critical Section
signal (mutex);
// remainder section
} while (TRUE);

Ve

Operating System Concepts — 8t Edition 3.3 Silberschatz, Galvin and Gagne ©200

w &

g
ot Bounded Buffer Problem

B Producer cannot write when full, but wait until not full
B Consumer cannot read when empty, but wait until not empty
B Producer and Consumer cannot write/read simultaneously

=

Producer write read

22 e M)
7 WS,
A 29X

Operating System Concepts — 8" Edition 3.4 Silberschatz, Galvin and Gagne ©2009

s

o BBP v3
Producer Consumer
do { do {

/[produce an item
wait (empty);
wait (mutex);
// add the item to the buffer
signal (mutex);
signal (full);
} while (TRUE);

Operating System Concepts — 8t Edition

3.5

wait (full);
wait (mutex);

/I remove an item from buffer

signal (mutex);
signal (empty);

/l consume the item

Y while (TRUE);

7 = M
4 29X

Silberschatz, Galvin and Gagne ©2009

=

“3%7 Classical Problems of Synchronization

B Classical problems used to test newly-proposed synchronization schemes

® Bounded-Buffer Problem

® Readers and Writers Problem

® Dining-Philosophers Problem

Operating System Concepts — 8" Edition 3.6 Silberschatz, Galvin and Gagne ©2009

& Readers-Writers Problem

B A data set is shared among a number of concurrent processes
® Readers — only read the data set; they do not perform any updates
® Writers — can both read and write
B Concurrency
® Allow multiple readers to read at the same time
® Only one single writer can access the shared data at the same time

U m&\v P\

Operating System Concepts — 8t Edition 3.7 Silberschatz, Galvin and Gagne ©200

w &

Last Reader

780D N
Operating System Concepts — 8t Edition 3.8 Silberschatz, Galvin and Gagne ©2009

/%

“%77 First Reader-Writer problem

L

B What are shared resources?
® What shared variable is needed?
B Who are competing for which resources?
® Binary semaphore for mutual exclusion
B How can we decide if | am the first reader or the last reader?

Operating System Concepts — 8" Edition 3.9 Silberschatz, Galvin and Gagne ©2009

o Writer

B Writer’s algorithm
@ if another writer is writing or readers are reading (lock is held)
» then wait
® otherwise, lock and write
® release lock and notify when done

A X
Operating System Concepts — 8" Edition 3.10 Silberschatz, Galvin and Gagne ©2009

ot Writer

L \

B The structure of a writer process

do{
wait (wrt) ;

/[writing is performed

signal (wrt) ;
} while (TRUE);

Operating System Concepts — 8t" Edition 3.11

Silberschatz, Galvin and Gagne ©2009

P

v

I Reader
B Reader’s algorithm do {
® If I am the first reader if (I am the first reader)
» if a writer is writing, wait wait (wrt) ;
» or hold writing lock // read data

® read data
if (I am the last reader)

signal (wrt) ;
}» while (TRUE);

® If | am the last reader
» release writing lock

Ve

Operating System Concepts — 8t Edition 3.12 Silberschatz, Galvin and Gagne ©200

w &

=7 Reader

Decide if | am the first/last reader
Count the number of readers in database
Share the counting variable

Mutex

Operating System Concepts — 8" Edition 3.13 Silberschatz, Galvin and Gagne ©2009

g %

¢

~“$¥7 Readers-Writers Problem (Cont.)

do{
wait (mutex) ;
readcount ++ ;
if (readcount == 1)

wait (wrt) ;
signal (mutex)
/l Read data
wait (mutex) ;
readcount - - ;
if (readcount == 0)

signal (wrt) ;
signal (mutex) ;

} while (TRUE);

Operating System Concepts — 8t Edition 3.14

B /WRITER

do {
wait (wrt) ;
/[writing is performed
signal (wrt) ;

} while (TRUE);

74
A X
Silberschatz, Galvin and Gagne ©2009

B Writer Starvation?

B No Writer Starvation code?

Operating System Concepts — 8t" Edition 3.15 Silberschatz, Galvin and Gagne ©2009

v‘,:«fﬂ"hvl u -
~%77 Readers/Writers/No starvation
do { B /WRITER
wait(r);

wait (mutex) ;

readcount ++ ; do{
if (readcount == 1) wait(r)
wait (wrt) ; wait (wrt) ;
signal (mutex) /I writing is performed
signal(r); :
// Read data signal (wrt) ;
wait (mutex) ; signal(r);
readcount - - ; } while (TRUE);
if (readcount == 0)
signal (wrt) ;

signal (mutex) ;

} while (TRUE);

74
A X
Operating System Concepts — 8" Edition 3.16 Silberschatz, Galvin and Gagne ©2009

A
rjﬁi

P Sleeping Barber Problem

mimiminin
e
N

Operating System Concepts — 8t Edition

* There is one barber, and n chairs for
waiting customers

*If there are no customers, then the
barber sits in his chair and sleeps
\When a new customer arrives and the
barber is sleeping, then he will wakeup
the barber

\When a new customer arrives, and the
barber is busy, then he will sit on the
chairs if there is any available,
otherwise (when all the chairs are full)
he will leave.

£ /-‘};}m\\
4
7 B
A PAYS

3.17 éiﬁ)erschatz, Galvin and Gagnhe ©2009

G Barber Shop Hints

Consider the following:
B Customer threads should invoke a function named getHairCut.
If a customer thread arrives when the shop is full, it can invoke balk, which exits.

Barber threads should invoke cutHair.

When the barber invokes cutHair there should be exactly one thread invoking
getHairCut concurrently.

Operating System Concepts — 8t Edition 3.18 §j8erschatz, Galvin and Gagne ©2009

P> Sleeping Barber Solution
void customer (void){ void barber (void){

semWait(mutex); semWait(customer);

if (customers==n+1) {

semSignal(mutex);)
balk(); cutHair();

} }

customers +=1;

semSignal(barber);

semSignal(mutex);

semSignal(customer);
semWait(barber);
getHairCut();

int customers = 0;
mutex = Semaphore(1);
customer = Semaphore(0);

semWait(mutex); barber = Semaphore(0);

customers -=1;

semSignal(mutex); = V\
19 <

Operating System Concepts — 8" Edition 3.19 Silberschatz, Galvin and Gagne ©2009

4

~“%$¥/ Dining-Philosophers Problem
B Philosophers spend their lives thinking and eating

B Don'tinteract with their neighbors, occasionally try to pick up 2
chopsticks (one at a time) to eat from bowl

® Need both to eat, then release both when done
B Inthe case of 5 philosophers
® Shared data
» Bowl of rice (data set)
» Semaphore chopstick [5] initialized to 1

.(‘Q/)
Operating System Concepts — 8" Edition 3.20 Silberschatz, Galvin and Gagne ©2009

