
Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Chapter 6: Process
Synchronization

3.2! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Semaphore

■  Synchronization tool that does not require busy waiting !
■  Semaphore S – integer variable"
■  Two standard operations modify S: wait() and signal()"

●  Originally called P() and V()"
■  Less complicated"
■  Can only be accessed via two indivisible (atomic) operations"

●  wait (S) { "
 while S <= 0"
" " ; // no-op"

 S--;"
 }"
●  signal (S) { "
 S++;"
 }"

3.3! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Semaphore as
General Synchronization Tool

■  Counting semaphore – integer value can range over an unrestricted domain"
■  Binary semaphore – integer value can range only between 0  

and 1; can be simpler to implement"
●  Also known as mutex locks!

■  Can implement a counting semaphore S as a binary semaphore"
■  Provides mutual exclusion"

Semaphore mutex; // initialized to 1"
do {"
"wait (mutex);"

 // Critical Section"
 signal (mutex);"
" "// remainder section"

} while (TRUE);"
"

3.4! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Implementation	

■  Continual Loop in entry code: waste of CPU resource"
●  Busy-waiting semaphore: called spinlock!

■  How can we modify wait() and signal() without busy waiting?"
■  In wait(), when semaphore value is non-positive, block instead of busy-waiting"
■  blocking "

●  adds the process into the waiting queue for the semaphore"
●  and sets process state to waiting"

■  When signal() is called"
●  wakeup() the blocked process in the waiting queue"
●  wakeup() changes the process from waiting to ready, put in ready queue!

3.5! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Semaphore Implementation
with no Busy waiting

■  Semaphore data structure:"
●  typedef struct {  

"int value; 
"struct process *list;  

} semaphore;"
"

■  Two system calls:"
●  block() – place the process invoking the operation on the appropriate

waiting queue"
●  wakeup() – remove one of processes in the waiting queue and place it

in the ready queue"
 "

3.6! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Semaphore Implementation with
no Busy waiting (Cont.)

■  Implementation of wait:"
 wait(semaphore *S) { "
" " "S->value--; "
" " "if (S->value < 0) { "
" " " "add this process to S->list; "
" " " "block(); "
" " "} "
" "}"

3.7! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Semaphore Implementation with
no Busy waiting (Cont.)

■  Implementation of signal:"
"
" "signal(semaphore *S) { "
" " "S->value++; "
" " "if (S->value <= 0) { "
" " " "remove a process P from S->list; "
" " " "wakeup(P); "
" " "}"
" "} "

3.8! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Semaphore without busy-waiting	

■  Negative semaphore: # of processes waiting"
■  Semaphore waiting list"

●  list of PCBs"
●  FIFO queue for bounded-waiting, but…"

■  wait() and signal() are critical section"

3.9! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Deadlock and Starvation

■  Deadlock – two or more processes are waiting indefinitely for an event that
can be caused by only one of the waiting processes"

■  Let S and Q be two semaphores initialized to 1"
! ! P0 " P1"

" " wait (S); " wait (Q);"
" " wait (Q); " wait (S);"
" ". " "."
" ". " "."
" ". " "."
" " signal (S); " signal (Q);"
" " signal (Q); " signal (S);"

■  Starvation – indefinite blocking "
●  A process may never be removed from the semaphore queue in which

it is suspended"
■  Priority Inversion – Scheduling problem when lower-priority process holds

a lock needed by higher-priority process"
●  Solved via priority-inheritance protocol!

3.10! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Bounded Buffer Problem	

■  Producer cannot write when full, but wait until not full"
■  Consumer cannot read when empty, but wait until not empty"
■  Producer and Consumer cannot write/read simultaneously	

Producer	
 Consumer	

0	

1	

2	

N	

write	
 read	

3.11! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

BBP v1

Producer!
do { 

// produce an item"
"wait (empty);"
""
"// add the item to the buffer"
""
""

} while (TRUE);"

Consumer	

do {"
""

 "
"// remove an item from buffer"
""

 signal (empty);"
"// consume the item"

} while (TRUE);	

3.12! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Bounded-Buffer Problem

■  N buffers, each can hold one item"

■  Semaphore mutex initialized to the value 1"

■  Semaphore full initialized to the value 0"

■  Semaphore empty initialized to the value N"

3.13! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

BBP v2

Producer!
do { 

// produce an item"
"wait (empty);"
""
"// add the item to the buffer"
""
"signal(full);"

} while (TRUE);"

Consumer	

do {"
"wait (full);"

 "
"// remove an item from buffer"
""

 signal (empty);"
"// consume the item"

} while (TRUE);	

3.14! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

BBP v3

Producer!
do { 

// produce an item"
"wait (empty);"
"wait (mutex);"
"// add the item to the buffer"
"signal (mutex);"
"signal (full);"

} while (TRUE);"

Consumer	

do {"
"wait (full);"

 wait (mutex);"
"// remove an item from buffer"
"signal (mutex);"

 signal (empty);"
"// consume the item"

} while (TRUE);	

3.15! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Classical Problems of Synchronization

■  Classical problems used to test newly-proposed synchronization schemes"

●  Bounded-Buffer Problem"

●  Readers and Writers Problem"

●  Dining-Philosophers Problem"

3.16! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Readers-Writers Problem

■  A data set is shared among a number of concurrent processes"
●  Readers – only read the data set; they do not perform any updates"
●  Writers – can both read and write"

■  Concurrency"
●  Allow multiple readers to read at the same time"
●  Only one single writer can access the shared data at the same time"

3.17! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

First Reader-Writer problem	

R	
 W	
 R	
 R	
 R	
 R	
 W	
 W	

W	
R	
R	
R	
R	

R	
First Reader	

R	
 Last Reader	

3.18! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

First Reader-Writer problem	

■  What are shared resources?"
●  What shared variable is needed?"

■  Who are competing for which resources?"
●  Binary semaphore for mutual exclusion"

■  How can we decide if I am the first reader or the last reader?"

3.19! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Writer	

■  Writer’s algorithm"
●  if another writer is writing or readers are reading (lock is held)"

!  then wait"
●  otherwise, lock and write"
●  release lock and notify when done	

3.20! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Writer

■  The structure of a writer process"
 "
 do {"
 wait (wrt) ;"
 "
 // writing is performed"
"
 signal (wrt) ;"
 } while (TRUE);"
"
"
 "

3.21! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Reader	

■  Reader’s algorithm"
●  If I am the first reader"

!  if a writer is writing, wait"
!  or hold writing lock"

●  read data"
●  If I am the last reader"

!  release writing lock"

do {
 if (I am the first reader)
 wait (wrt) ;

 // read data

 if (I am the last reader)
 signal (wrt) ;

} while (TRUE);
	

3.22! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Reader	

■  Decide if I am the first/last reader"
■  Count the number of readers in database"
■  Share the counting variable"
■  Mutex	

3.23! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Readers-Writers Problem (Cont.)

 "do {"
 wait (mutex) ;"
 "readcount ++ ;"
 " "if (readcount == 1) "

" " " " "wait (wrt) ;"
 signal (mutex)"
 "

" " "// Read data"
"
 wait (mutex) ;"

" " " "readcount - - ;"
 "if (readcount == 0) "
" " " signal (wrt) ;"

 signal (mutex) ;"
"
 } while (TRUE);"
"
"
 "

3.24! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Dining-Philosophers Problem

■  Philosophers spend their lives thinking and eating"
■  Don’t interact with their neighbors, occasionally try to pick up 2

chopsticks (one at a time) to eat from bowl"
●  Need both to eat, then release both when done"

■  In the case of 5 philosophers"
●  Shared data "

!  Bowl of rice (data set)"
!  Semaphore chopstick [5] initialized to 1"

