Chapter 6: Process
Synchronization
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Xl Semaphore
B Synchronization tool that does not require busy waiting

Semaphore S — integer variable
Two standard operations modify S: wait() and signal()

® Oiriginally called P() and V()
Less complicated
Can only be accessed via two indivisible (atomic) operations

® wait (S){
while S<=0
; [/ no-0p

S--;

¥
® signal (S){
S++;

}
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" Semaphore as
General Synchronization Tool

B Counting semaphore — integer value can range over an unrestricted domain

B Binary semaphore — integer value can range only between O
and 1; can be simpler to implement

® Also known as mutex locks
B Can implement a counting semaphore S as a binary semaphore
B Provides mutual exclusion
Semaphore mutex; // initialized to 1
do{
wait (mutex);
// Critical Section
signal (mutex);
// remainder section
} while (TRUE);

Ve
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sv.?_.f Implementation

B Continual Loop in entry code: waste of CPU resource
® Busy-waiting semaphore: called spinlock
B How can we modify wait() and signal() without busy waiting?

In wait(), when semaphore value is non-positive, block instead of busy-waiting
B blocking
® adds the process into the waiting queue for the semaphore
® and sets process state to waiting
B When signal() is called
® wakeup() the blocked process in the waiting queue
® wakeup() changes the process from waiting to ready, put in ready queue
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™ Semaphore Implementation
C with no Busy waiting

B Semaphore data structure:

® typedef struct {
int value;
struct process *list;
} semaphore;

B Two system calls:
® block() — place the process invoking the operation on the appropriate
waiting queue

® wakeup() — remove one of processes in the waiting queue and place it
in the ready queue

Ve
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vmﬁ Semaphore Implementation with
0 no Busy waiting (Cont.)

B Implementation of wait:
wait(semaphore *S) {
S->value--;
if (S->value < 0) {
add this process to S->list;
block();
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g/_,_‘ﬁ Semaphore Implementation with
K no Busy waiting (Cont.)

€\

B Implementation of signal:

signal(semaphore *S) {
S->value++;
if (S->value <=0){
remove a process P from S->list;
wakeup(P);
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“%77 Semaphore without busy-waiting

L\

B Negative semaphore: # of processes waiting
B Semaphore waiting list

® list of PCBs

® FIFO queue for bounded-waiting, but...
B wait() and signal() are critical section
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Deadlock and Starvation

&\

B Deadlock —two or more processes are waiting indefinitely for an event that
can be caused by only one of the waiting processes

B LetS and Q be two semaphores initialized to 1

P, P,
wait (S); wait (Q);
wait (Q); wait (S);
sigr.1al (S); siénal (Q);
signal (Q); signal (S);

B Starvation — indefinite blocking

® A process may never be removed from the semaphore queue in which
it is suspended

B Priority Inversion — Scheduling problem when lower-priority process holds
a lock needed by higher-priority process

. - - - . e 7
® Solved via priority-inheritance protocol VN
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g
ot Bounded Buffer Problem

B Producer cannot write when full, but wait until not full
B Consumer cannot read when empty, but wait until not empty
B Producer and Consumer cannot write/read simultaneously

=

Producer write read
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ot BBP v1

Producer Consumer
do { do{

/[ produce an item
wait (empty);

/I remove an item from buffer
// add the item to the buffer

signal (empty);

/I consume the item
y while (TRUE); } while (TRUE);
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o Bounded-Buffer Problem

B N buffers, each can hold one item

B Semaphore mutex initialized to the value 1

B Semaphore full initialized to the value 0

B Semaphore empty initialized to the value N
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¥ BBP v2

Producer

do {
/[ produce an item

wait (empty);

// add the item to the buffer

signal(full);
} while (TRUE);
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Consumer
do {
wait (full);

/I remove an item from buffer

signal (empty);

/l consume the item

Y while (TRUE);
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o BBP v3
Producer Consumer
do { do {

/[ produce an item
wait (empty);
wait (mutex);
// add the item to the buffer
signal (mutex);
signal (full);
} while (TRUE);
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wait (full);
wait (mutex);

/I remove an item from buffer

signal (mutex);
signal (empty);

/l consume the item

Y while (TRUE);
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“3%7 Classical Problems of Synchronization

B Classical problems used to test newly-proposed synchronization schemes

® Bounded-Buffer Problem

® Readers and Writers Problem

® Dining-Philosophers Problem
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& Readers-Writers Problem

B A data set is shared among a number of concurrent processes
® Readers — only read the data set; they do not perform any updates
® Writers — can both read and write
B Concurrency
® Allow multiple readers to read at the same time
® Only one single writer can access the shared data at the same time

U m&\v P\
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Last Reader
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“%77  First Reader-Writer problem

L

B What are shared resources?
® What shared variable is needed?
B Who are competing for which resources?
® Binary semaphore for mutual exclusion
B How can we decide if | am the first reader or the last reader?
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o Writer

B Writer’s algorithm
@ if another writer is writing or readers are reading (lock is held)
» then wait
® otherwise, lock and write
® release lock and notify when done

A X
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ot Writer

L \

B The structure of a writer process

do {
wait (wrt) ;

/[ writing is performed

signal (wrt) ;
} while (TRUE);
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I Reader
B Reader’s algorithm do {
® If I am the first reader if (I am the first reader)
» if a writer is writing, wait wait (wrt) ;
» or hold writing lock // read data

® read data
if (I am the last reader)

signal (wrt) ;
}» while (TRUE);

® If | am the last reader
» release writing lock

Ve
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=7 Reader

Decide if | am the first/last reader
Count the number of readers in database
Share the counting variable

Mutex
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“$¥7  Readers-Writers Problem (Cont.)
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do {
wait (mutex) ;
readcount ++ ;
if (readcount == 1)
wait (wrt) ;
signal (mutex)

// Read data

wait (mutex) ;
readcount - - ;
if (readcount == 0)
signal (wrt) ;
signal (mutex) ;

} while (TRUE);
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B Dining-Philosophers Problem

B Philosophers spend their lives thinking and eating

B Don'tinteract with their neighbors, occasionally try to pick up 2
chopsticks (one at a time) to eat from bowl

® Need both to eat, then release both when done
B Inthe case of 5 philosophers
® Shared data

» Bowl of rice (data set) Ve
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