
Silberschatz, Galvin and Gagne ©2009Operating System Concepts  – 8th Edition

Chapter 5:  CPU Scheduling 



3.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition 2	
  

Scheduling	
  Policies	
  
■  Non-­‐preemp*ve	
  

●  First	
  Come	
  First	
  Served	
  

●  Shortest	
  Job	
  First	
  (aka	
  Shortest	
  Process	
  Next)	
  

■  Preemp*ve	
  

●  Shortest	
  remaining	
  *me	
  first	
  

●  Priority	
  

●  Round	
  Robin	
  



3.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example Process Arrivals 

■  Perform the following schedulings
●  FCFS
●  Shortest Job First (SJF)
●  Shortest Remaining-time First (SRTF)
●  Priority 
●  Round Robin (RR)

Process Arrival CPU Priority
P1 0 8 4
P2 2 4 3
P3 4 9 2
P4 8 5 1



3.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

FCFS 

1

2

3

4

Process Arrival CPU Priority
P1 0 8 4
P2 2 4 3
P3 4 9 2
P4 8 5 1

0   1   2   3   4   5   6   7    8   9  10 11 12  13 14 15  16 17 18 19  20 21 22 23 24 25  26  



3.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

SJF 

1

2

3

4

Process Arrival CPU Priority
P1 0 8 4
P2 2 4 3
P3 4 9 2
P4 8 5 1

0   1   2   3   4   5   6   7    8   9  10 11 12  13 14 15  16 17 18 19  20 21 22 23 24 25  26  



3.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

SRTF 

1

2

3

4

Process Arrival CPU Priority
P1 0 8 4
P2 2 4 3
P3 4 9 2
P4 8 5 1

0   1   2   3   4   5   6   7    8   9  10 11 12  13 14 15  16 17 18 19  20 21 22 23 24 25  26  



3.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Priority 

1

2

3

4

Process Arrival CPU Priority
P1 0 8 4
P2 2 4 3
P3 4 9 2
P4 8 5 1

0   1   2   3   4   5   6   7    8   9  10 11 12  13 14 15  16 17 18 19  20 21 22 23 24 25  26  



3.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Round Robin (q=1) 

1

2

3

4

Process Arrival CPU Priority
P1 0 8 4
P2 2 4 3
P3 4 9 2
P4 8 5 1

0   1   2   3   4   5   6   7    8   9  10 11 12  13 14 15  16 17 18 19  20 21 22 23 24 25  26  



3.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multilevel Queue 

■  Scheduling must be done between the queues:
●  Fixed priority scheduling; (i.e., serve all from foreground then 

from background).  Possibility of starvation.
●  Time slice 

! each queue gets a certain amount of CPU time which it can 
schedule amongst its processes; i.e., 80% to foreground in 
RR

! 20% to background in FCFS 



3.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multilevel Queue Scheduling 



3.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multilevel Feedback Queue 

■  A process can move between the various queues; aging can be 
implemented this way

■  Multilevel-feedback-queue scheduler defined by the following 
parameters:
●  number of queues
●  scheduling algorithms for each queue
●  when to upgrade a process
●  when to demote a process
●  which queue a new process will enter



3.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of Multilevel Feedback Queue 

■  Three queues: 
●  Q0 – RR with time quantum 8 milliseconds
●  Q1 – RR time quantum 16 milliseconds
●  Q2 – FCFS



3.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of Multilevel Feedback Queue 

■  Scheduling
●  Q1 is scheduled only when Q1 is empty
●  Q2 is scheduled only when Q1 is empty
●  Process in Q1 is preempted by process in Q0.

●  Process in Q2 is preempted by process in Q1.

●  A new job enters queue Q0

!  If it does not finish in 8 milliseconds, moved to Q1

●  A process in Q1 takes more than 16 milliseconds
!  moved to queue Q2



3.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Windows Scheduling 

■  Windows uses priority-based preemptive scheduling
■  Dispatcher is scheduler
■  Thread runs until (1) blocks, (2) uses time slice, (3) preempted by higher-priority 

thread
■  Real-time threads can preempt non-real-time
■  32-level priority scheme
■  Variable class is 1-15, real-time class is 16-31
■  Priority 0 is memory-management thread
■  Queue for each priority
■  If no run-able thread, runs idle thread



3.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Windows Priority Classes 
■  Win32 API identifies several priority classes to which a process can belong

●  REALTIME_PRIORITY_CLASS
●  HIGH_PRIORITY_CLASS
●  ABOVE_NORMAL_PRIORITY_CLASS
●  NORMAL_PRIORITY_CLASS
●  BELOW_NORMAL_PRIORITY_CLASS
●  IDLE_PRIORITY_CLASS

■  A thread within a given priority class has a relative priority
●  TIME_CRITICAL
●  HIGHEST
●  ABOVE_NORMAL
●  NORMAL
●  BELOW_NORMAL
●  LOWEST
●  IDLE



3.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Windows XP Priorities 



3.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Windows Priority Classes 
■  If quantum expires, priority lowered, but never below base
■  If wait occurs, priority boosted depending on what was waited for
■  Foreground window given 3x quantum boost



3.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Linux Scheduling 
■  Constant order O(1) scheduling time
■  Preemptive, priority based
■  Two priority ranges: time-sharing and real-time
■  Real-time range from 0 to 99 and nice value from 100 to 140
■  Higher priority gets larger quantum



3.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Priorities and Time-slice length 



3.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Linux Scheduling 
■  Each processor maintains a runqueue
■  Runqueue consists of active and expired priority array
■  Task run-able as long as time left in time slice (active)
■  If no time left (expired), not run-able until all other tasks use their slices
■  When no more active, arrays are exchanged



3.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

List of Tasks Indexed  
According to Priorities 



3.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Linux Scheduling (Cont.) 

■  Real-time tasks have static priorities
■  Other tasks have dynamic priorities, based on nice value

●  More interactive (longer I/O-related sleep): -5
●  More CPU-bound (less sleep): +5
●  Priority recalculated when task expired
●  This exchanging arrays implements adjusted priorities


