Chapter 5: CPU Scheduling

Operating System Concepts — 8t Edition Silberschatz, Galvin and Gagne ©2009

5T Scheduling Policies

B Non-preemptive

® First Come First Served

® Shortest Job First (aka Shortest Process Next)
B Preemptive

® Shortest remaining time first

® Priority

® Round Robin

Operating System Concepts — 8" Edition 3.2 éj)lberschatz, Galvin and Gagne ©2009

Example Process Arrivals

B Perform the following schedulings
e FCFS
® Shortest Job First (SJF)
® Shortest Remaining-time First (SRTF)
® Priority
® Round Robin (RR)

_Process | Arrival | _CPU__| Priority _
P 4

0 8
P2 2 4 3
P3 4 9 2
P4 8 5 1

Operating System Concepts — 8t" Edition 3.3

4

)
5 FCFS

Y

P1 0 8 4
P2 2 4 3
P3 4 9 2
P4 8 S 1

01 2 3 45 6 7 8 9101112 131415 16171819 20 21 22 23 24 25 26

.(‘Q/)
Operating System Concepts — 8" Edition 3.4 Silberschatz, Galvin and Gagne ©2009

4

o
= SJF

L\

P1 0 8 4
P2 2 4 3
P3 4 9 2
P4 8 S 1

01 2 3 45 6 7 8 9101112 131415 16171819 20 21 22 23 24 25 26

.(‘Q/)
Operating System Concepts — 8" Edition 3.5 Silberschatz, Galvin and Gagne ©2009

4

| «.m.k

Y

P1 0 8 4
P2 2 4 3
P3 4 9 2
P4 8 S 1

01 2 3 45 6 7 8 9101112 131415 16171819 20 21 22 23 24 25 26

.(‘Q/)
Operating System Concepts — 8" Edition 3.6 Silberschatz, Galvin and Gagne ©2009

4

)
r & Priority
P1 0 8 4
P2 2 4 3
P3 4 9 2
P4 8 S 1

01 2 3 45 6 7 8 9101112 131415 16171819 20 21 22 23 24 25 26

.(‘Q/)
Operating System Concepts — 8" Edition 3.7 Silberschatz, Galvin and Gagne ©2009

4

L Round Robin (q=1)

L\

P1 0 8 4
P2 2 4 3
P3 4 9 2
P4 8 S 1

01 2 3 45 6 7 8 9101112 131415 16171819 20 21 22 23 24 25 26

.(‘Q/)
Operating System Concepts — 8" Edition 3.8 Silberschatz, Galvin and Gagne ©2009

BN

=

y
w o Multilevel Queue

B Scheduling must be done between the queues:

® Fixed priority scheduling; (i.e., serve all from foreground then
from background). Possibility of starvation.

® Time slice

» each queue gets a certain amount of CPU time which it can
schedule amongst its processes; i.e., 80% to foreground in
RR

» 20% to background in FCFS

Operating System Concepts — 8" Edition 3.9 Silberschatz, Galvin and Gagne ©2009

Multilevel Queue Scheduling

highest priority

> interactive editing processes

m— batch processes ———

— student processes E—

lowest priority

¢ B/
Operating System Concepts — 8t Edition 3.10 Silberschatz, Galvin and Gagne ©2009

4

o Multilevel Feedback Queue

||
G\

B A process can move between the various queues; aging can be

implemented this way

B Multilevel-feedback-queue scheduler defined by the following

parameters:
® number of queues
® scheduling algorithms for each queue
® when to upgrade a process
® when to demote a process
® which queue a new process will enter

Operating System Concepts — 8" Edition 3.11

Silberschatz, Galvin and Gagne ©2009

=

~%¥7 Example of Multilevel Feedback Queue

B Three queues:
® Q,— RR with time quantum 8 milliseconds
® Q, —RRtime quantum 16 milliseconds
® Q,-FCFS

- e d
>{ quantum = 8

g
—bﬁuantum =6

i L
FCFS b

74
U X
Operating System Concepts — 8" Edition 3.12 Silberschatz, Galvin and Gagne ©2009

rz?

é./ ol

>’ Example of Multilevel Feedback Queue

B Scheduling

Q, is scheduled only when Q, is empty
Q. is scheduled only when Q) is empty
Process in Q, is preempted by process in Q,
Process in Q, is preempted by process in Q,
A new job enters queue Q,

» If it does not finish in 8 milliseconds, moved to Q,
A process in Q, takes more than 16 milliseconds

» moved to queue Q,

Operating System Concepts — 8" Edition 3.13

Silberschatz, Galvin and Gagne ©2009

4

g—

o Windows Scheduling

Y

B Windows uses priority-based preemptive scheduling

Dispatcher is scheduler

Thread runs until (1) blocks, (2) uses time slice, (3) preempted by higher-priority
thread

Real-time threads can preempt non-real-time
32-level priority scheme

Variable class is 1-15, real-time class is 16-31
Priority 0 is memory-management thread
Queue for each priority

If no run-able thread, runs idle thread

.(‘Q/)
Operating System Concepts — 8" Edition 3.14 Silberschatz, Galvin and Gagne ©2009

4

q ’f,‘i
o

{

| *”m'k n m m
7 Windows Priority Classes

&\

B Win32 API identifies several priority classes to which a process can belong
REALTIME_PRIORITY_CLASS

HIGH_PRIORITY_CLASS

ABOVE_NORMAL_PRIORITY_CLASS

NORMAL_PRIORITY_CLASS

BELOW_NORMAL_PRIORITY_CLASS

IDLE_PRIORITY_CLASS

B A thread within a given priority class has a relative priority
TIME_CRITICAL

HIGHEST

ABOVE_NORMAL

NORMAL

BELOW_NORMAL

LOWEST

IDLE

>

S ;:\\“‘}\
20)

V;‘V‘

Operating System Concepts — 8" Edition 3.15 Silberschatz, Galvin and Gagne ©2009

. Windows XP Priorities
= high | 200V | normal | Peow ::?rli%rity
time-critical 31 15 15 115 15 15
highest 26 15 12 10 8 6
above normal 25 14 11 9 7/ 5
normal 24 13 10 8 6 4
below normal 23 12 9 7/ 5 3
lowest 22 11 8 6 4 2
idle 16 1 1 1 1 1
Operating System Concepts — 8t Edition 3.16 Silberschatz, Galvin and Gagne ©2oogm

! ,f{rﬂ""»k

KL s

Windows Priority Classes

B If quantum expires, priority lowered, but never below base
M [f wait occurs, priority boosted depending on what was waited for
B Foreground window given 3x quantum boost

Ve

Operating System Concepts — 8t Edition 3.17 Silberschatz, Galvin and Gagne ©200

w &

.
[Linux Scheduling

B Constant order O(1) scheduling time

B Preemptive, priority based

B Two priority ranges: time-sharing and real-time

B Real-time range from 0 to 99 and nice value from 100 to 140
B Higher priority gets larger quantum

Ve

Operating System Concepts — 8t Edition 3.18 Silberschatz, Galvin and Gagne ©200

w &

""J = mEgm - -
[Priorities and Time-slice length

numeric
priority

e o O

100

140

Operating System Concepts — 8t Edition

relative
priority

highest

lowest

3.19

real-time
tasks

other
tasks

time
quantum

200 ms

10 ms

74
A X
Silberschatz, Galvin and Gagne ©2009

5 Linux Scheduling

B Each processor maintains a runqueue

B Runqueue consists of active and expired priority array

B Task run-able as long as time left in time slice (active)

B If no time left (expired), not run-able until all other tasks use their slices
B When no more active, arrays are exchanged

Operating System Concepts — 8" Edition 3.20 Silberschatz, Galvin and Gagne ©2009

P List of Tasks Indexed
.o According to Priorities
active expired
array array
priority task lists priority task lists
[0] ®—@ [0] @ —@ @
[1] @®—@ @ [1] C)
[140] O [140] o—O

Operating System Concepts — 8t Edition

3.21

Silberschatz, Galvin and Gagne ©2009

<557 Linux Scheduling (Cont.)

B Real-time tasks have static priorities
B Other tasks have dynamic priorities, based on nice value
® More interactive (longer I/O-related sleep): -5
® More CPU-bound (less sleep): +5
® Periority recalculated when task expired
® This exchanging arrays implements adjusted priorities

U m&\v A

Operating System Concepts — 8t Edition 3.22 Silberschatz, Galvin and Gagne ©200

w &

