<html><head></head><body><pre style="word-wrap: break-word; white-space: pre-wrap;">/**
* Simple program demonstrating shared memory in POSIX systems.

This is the producer process that writes to the shared memory region.
Figure 3.17

@author Silberschatz, Galvin, and Gagne

Operating System Concepts - Ninth Edition

Copyright John Wiley & Sons - 2013
/

* %k ok *F *F * * * *

#include <stdio.h>
#include <stdlib.hé>
#include <string.h>
#include <fcntl.h>
#include <sys/shm.h>
#include <sys/stat.h>
#include <sys/mman.h>

int main()
{
const int SIZE = 4096;
const char *name = "0S";
const char *message0= "Studying ";
const char *messagel= "Operating Systems ";
const char *message2= "Is Fun!";

int shm fd;
void *ptr;

/* create the shared memory segment */
shm fd = shm open(name, O CREAT | O RDWR, 0666);

/* configure the size of the shared memory segment */
ftruncate(shm fd,SIZE);

/* now map the shared memory segment in the address space of the process */
ptr = mmap(0,SIZE, PROT READ | PROT WRITE, MAP SHARED, shm fd, 0);
if (ptr == MAP FAILED) {

printf("Map failed\n");

return -1;

}

[**
* Now write to the shared memory region.
*

* Note we must increment the value of ptr after each write.
*/

sprintf (ptr,"%s",messagel);

ptr += strlen(message0);

sprintf (ptr,"%s",messagel);

ptr += strlen(messagel);

sprintf (ptr,"%s",message?);

ptr += strlen(message2);

return 0;

}
</pre></body></html>

