
<html><head></head><body><pre style="word-wrap: break-word; white-space: pre-wrap;">/**
 * Simple program demonstrating shared memory in POSIX systems.
 *
 * This is the producer process that writes to the shared memory region.
 *
 * Figure 3.17
 *
 * @author Silberschatz, Galvin, and Gagne
 * Operating System Concepts - Ninth Edition
 * Copyright John Wiley & Sons - 2013
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <sys/shm.h>
#include <sys/stat.h>
#include <sys/mman.h>

int main()
{
 const int SIZE = 4096;
 const char *name = "OS";
 const char *message0= "Studying ";
 const char *message1= "Operating Systems ";
 const char *message2= "Is Fun!";

 int shm_fd;
 void *ptr;

 /* create the shared memory segment */
 shm_fd = shm_open(name, O_CREAT | O_RDWR, 0666);

 /* configure the size of the shared memory segment */
 ftruncate(shm_fd,SIZE);

 /* now map the shared memory segment in the address space of the process */
 ptr = mmap(0,SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, shm_fd, 0);
 if (ptr == MAP_FAILED) {
 printf("Map failed\n");
 return -1;
 }

 /**
 * Now write to the shared memory region.
 *
 * Note we must increment the value of ptr after each write.
 */
 sprintf(ptr,"%s",message0);
 ptr += strlen(message0);
 sprintf(ptr,"%s",message1);
 ptr += strlen(message1);
 sprintf(ptr,"%s",message2);
 ptr += strlen(message2);

 return 0;
}
</pre></body></html>

