
Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Chapter 3: Processes-IPC

3.2! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Interprocess Communication

■  Processes within a system may be independent or cooperating!
■  Reasons for cooperating processes:"

●  Information sharing"
●  Computation speedup"
●  Modularity"
●  Convenience ""

■  Cooperating processes need interprocess communication (IPC)"
■  Two models of IPC"

●  Shared memory"
●  Message passing"

3.3! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Communications Models

3.4! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Shared Memory & Message Passing	

Message Passing	
 Shared Memory	

Implementation	

Speed	

Kernel interventi
on	

Data size	

3.5! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Shared Memory & Message Passing	

Message Passing	
 Shared Memory	

Implementation	
 Easier	
 Difficult	

Speed	
 Slower	
 Faster	

Kernel interventi
on	
 A lot, via system calls	
 No system calls except set

up	

Data size	
 Good for small amount	
 Good for large amount	

3.6! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Shared Memory Systems	

■  Process-A creates a shared memory"
●  Shared memory in Process-A’s

address space"
■  Allow Process B to access the

shared memory"
■  No predefined data format	

Process A	

Process B	

Memory	

Shared memory	

access	

3.7! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Producer-Consumer Model

■  Producer-Consumer Model"
●  Producer only produces (writes) information

and Consumer only consumes (reads) the
information"

●  Use Buffer to deliver information from
producer to consumer"

	

	

Producer	
 Consumer	

3.8! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Shared Buffer Model	

■  Unbounded Buffer"
●  There is no limit in the buffer size"
●  Producer can always create data"
●  Consumer cannot consume data if the buffer is empty"

■  Bounded Buffer"
●  There is a limit in the buffer size"
●  Producer cannot create data if the buffer is full!
●  Consumer cannot consume data if the buffer is empty!

■  In practice, we have only bounded buffer	

3.9! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Shared Buffer by Circular Array	

P
	

C	

in	

out	

#define BS 100
typedef struct {…} item;

item buf[BS]
int in = 0
int out = 0	

* Buffer is empty if
 i == j
* Buffer is full if
 (in+1)%BS == out
* Maximum items count
 BS-1	

3.10! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Bounded-Buffer – Producer

	
	while (true) {  
 /* Produce an item */	

 while (((in = (in + 1) % BUFFER SIZE
count) == out)	
	 ; /* do nothing -- no free buffers */	
	 buffer[in] = item;	
	 in = (in + 1) % BUFFER SIZE;	

 }	
	
"

""
"

3.11! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Bounded Buffer – Consumer

	while (true) {	
 while (in == out)	
 ; // do nothing --

nothing to consume	
	
	 // remove an item from the buffer	
	 item = buffer[out];	
	 out = (out + 1) % BUFFER SIZE;	
	return item;	

 }	

3.12! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Message Passing Systems

■  IPC provides two operations:"
●  send(message) – message size fixed or variable "
●  receive(message)"

■  If P and Q wish to communicate, "
●  establish a communication link between them"
●  exchange messages via send/receive"

■  Methods"
●  Direct / Indirect Communication"
●  Synchronous / Asynchronous Communication"

3.13! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Direct Communication

■  Processes must name each other explicitly:"
●  send (P, message) – send a message to process P"
●  receive(Q, message) – receive a message from process Q"

■  Properties of communication link"
●  Links are established automatically"
●  A link is associated with exactly one pair of communicating

processes"
●  Between each pair there exists exactly one link"
●  The link may be unidirectional, but is usually bi-directional"

3.14! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Indirect Communication

■  Messages are directed and received from mailboxes (also referred
to as ports)"
●  Each mailbox has a unique id"
●  Processes can communicate only if they share a mailbox"

■  Properties of communication link"
●  Link established only if processes share a common mailbox"
●  A link may be associated with many processes"
●  Each pair of processes may share several communication links"
●  Link may be unidirectional or bi-directional"

3.15! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Indirect Communication

■  Operations"
●  create a new mailbox"
●  send and receive messages through mailbox"
●  destroy a mailbox"

■  Primitives are defined as:"
"send(A, message) – send a message to mailbox A"
"receive(A, message) – receive a message from mailbox A"

3.16! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Synchronization

■  Message passing may be either blocking or non-blocking"

■  Blocking is considered synchronous!
●  Blocking send has the sender block until the message is received"
●  Blocking receive has the receiver block until a message is available"

■  Non-blocking is considered asynchronous!
●  Non-blocking send has the sender send the message and continue"
●  Non-blocking receive has the receiver receive a valid message or

null"

3.17! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Buffering

■  Queue of messages attached to the link; implemented in one of
three ways"
1."Zero capacity – 0 messages 

Sender must wait for receiver (rendezvous)"
2."Bounded capacity – finite length of n messages 

Sender must wait if link full"
3."Unbounded capacity – infinite length  

Sender never waits"

3.18! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Pipes

■  Acts as a conduit allowing two processes to
communicate"

■  Issues!
●  Is communication unidirectional or bidirectional?"
●  In the case of two-way communication, is it half or

full-duplex?"
●  Must there exist a relationship (i.e. parent-child)

between the communicating processes?"
●  Can the pipes be used over a network?"

3.19! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Ordinary Pipes

■  Ordinary Pipes allow communication in standard producer-
consumer style"

■  Producer writes to one end (the write-end of the pipe)"
■  Consumer reads from the other end (the read-end of the pipe)"
■  Ordinary pipes are therefore unidirectional"
■  Only between parent and child processes"

3.20! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Ordinary Pipes: Example	

■  Parent process wants to send a message “Greetings” to a child process"
■  When creating a pipe, it returns two file descriptors"

●  One for writing, one for reading"
■  Parent process writes to the writing file descriptor"
■  Child process reads from the reading file descriptor	

	

	

Parent	
 Child	
w	
 r	
fd	

w	
 r	

pipe()	

w	
 r	
fd	

Fork()	

write()	
 read()	

3.21! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Ordinary Pipes: Code in Unix	

3.22! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Named Pipes

■  Ordinary pipe disappears when the process terminates"

■  Named Pipes are more powerful than ordinary pipes"
●  Communication is bidirectional"
●  No parent-child relationship is necessary"
●  Several processes can use it (ex: many writers)"
●  Continue to exist after a process terminates"
●  Provided on both UNIX and Windows systems"

3.23! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Named Pipes	

■  Unix"
●  Called FIFO"
●  Once created (mkfifo()), appear as a file (use open(), read(), write(),

close())"
●  Exists until deleted from the file system"
●  Bidirectional, half-duplex"
●  Only within a system"

■  Windows"
●  Bidirectional, full-duplex"
●  Within or between systems"
●  CreateNamedPipe(), ConnectNamedPipe(), ReadFile(), WriteFile()"

■  ls | more, dir | more	

Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

End of Chapter 3

