
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 3: Processes

3.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation

■  Parent process creates children processes, which, in turn
create other processes, forming a tree of processes

3.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation

■  Generally, process identified and managed via a process
identifier (pid)

■  Resource sharing
●  Parent and children share all resources
●  Children share subset of parent’s resources
●  Parent and child share no resources

■  Execution
●  Parent and children execute concurrently
●  Parent waits until children terminate

3.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation (Cont.)

■  Address space
●  Child duplicate of parent
●  Child has a program loaded into it

■  UNIX examples
●  fork system call creates new process
●  exec system call used after a fork to replace the process’

memory space with a new program

3.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation in Unix
int main()
{
pid_t pid;

/* fork another process */
pid = fork();
if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");
return 1;

}
else if (pid == 0) { /* child process */

execlp("/bin/ls", "ls", NULL);
}
else { /* parent process */

/* parent will wait for the child */
wait (NULL);
printf ("Child Complete");

}
return 0;

}

3.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation in Unix
int main() {

…  
pid = fork();

new child process
process id = 1234	

// pid is 0
if (pid < 0) {

fprintf(stderr, "Fork
Failed");

return 1;
}
else if (pid == 0) {

execlp("/bin/ls", "ls",
NULL);
}
else {

wait (NULL);
printf ("Child

Complete");
}
return 0;

}

parent
process

// pid is 1234
if (pid < 0) {

fprintf(stderr, "Fork
Failed");

return 1;
}
else if (pid == 0) {

execlp("/bin/ls", "ls",
NULL);
}
else {

wait (NULL);
printf ("Child

Complete");
}
return 0;

}

3.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation

3.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation in Win32
int main(VOID) {

//...
// create child process
if (!CreateProcess(NULL, // use command line

"C:\\WINDOWS\\system32\\mspaint.exe”
NULL, //inherit process handle
NULL, //don't inherit thread handle
FALSE, //disable handle inheritance
0, // no creation flags
NULL, //use parent's environment block
NULL, //use parent's existing directory
&si, &pi)) {

fprintf(stderr, "Create Process Failed");
return -1;  

}
WaitForSingleObject(pi.hProcess, INFINITE);
printf("Child Complete");

}

3.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Quiz: fork()	

■  What are the outputs?
 (parent pid: 2600
 child pid: 2603)	

3.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Quiz: fork()	

■  What is the output?	

3.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Quiz: cascading fork()s	

■  How many processes are created?	

1	

2	

3.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

main(){
 int a, x, y;
 a=-5;
 x=-15;
 y=-20;
 a=fork();

 if(a==0)
 y=fork();

 printf(“x=%d y=%d a=%d\n”, x, y,
a);

}

12	

Quiz: fork()	

Current process ID = 100
New process ID = parent process ID +
1

3.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

main(){
 int a, x, y, n;
 a=-5;
 n=1;
 x=-15;
 y=-20;
 a=fork();

 if(a==0)
 y=fork();

 while (n<3){
 if(y==0)
 x=fork();
 n++;
 }
 printf(“x=%d y=%d a=%d\n”, x, y,
a);

}

13	

Quiz: fork()	

Current process ID = 100
New process ID = parent process ID +
1

3.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Termination

■  Process executes last statement and asks the operating system
to delete it (exit)
●  Output data from child to parent (via wait)
●  Process’ resources are deallocated by operating system

■  Parent may terminate execution of children processes (abort)
●  Child has exceeded allocated resources
●  Task assigned to child is no longer required
●  If parent is exiting

! Some operating systems do not allow child to continue if
its parent terminates

–  All children terminated - cascading termination

