Chapter 3: Processes

Operating System Concepts — 8t Edition Silberschatz, Galvin and Gagne ©2009

g _
ot Process Creation

B Parent process creates children processes, which, in turn
create other processes, forming a tree of processes

Sched
pid =0

pageout
pld =2

dtlogin

inetd

Xsession

telnetdaemon
pid =7776

Csh
pid =7778

sdt_shel

9,
T

Csh
pid = 1400

cat
pid = 2536 I
U m&\v N

Operating System Concepts — 8t Edition 3.2 Silberschatz, Galvin and Gagne ©200

Netscape emacs
pid = 7785 pid = 8105

"

’
E

w &

. Process Creation

B Generally, process identified and managed via a process
identifier (pid)

B Resource sharing
® Parent and children share all resources
® Children share subset of parent’s resources
® Parent and child share no resources
B Execution
® Parent and children execute concurrently
® Parent waits until children terminate

Operating System Concepts — 8" Edition 3.3 Silberschatz, Galvin and Gagne ©2009

BN

=

e '
- Process Creation (Cont.)

B Address space
® Child duplicate of parent
® Child has a program loaded into it

B UNIX examples
@ fork system call creates new process

® exec system call used after a fork to replace the process’
memory space with a new program

Operating System Concepts — 8" Edition 3.4 Silberschatz, Galvin and Gagne ©2009

v Process Creation in Unix
int main()
1
pid_t pid;

/* fork another process */

pid = fork();

if (pid < @) { /* error occurred */
fprintf(stderr, "Fork Failed");
return 1;

by

else 1if (pid == 0) { /* child process */
execlp("/bin/1s", "1s", NULL);

hy

else { /* parent process */
/* parent will wait for the child */
wait (NULL);
printf ("Child Complete");

ks

return 0;

7 = N
VA N
4 29X

Operating System Concepts — 8" Edition 3.5 Silberschatz, Galvin and Gagne ©2009

N = = =
r & Process Creation in Unix

int main() {

Eid = forkQ);

22ey,
parent ﬁ”b Dty
process Cess T Rcess
// pid is 1234 // pid is @
if (pid < @) { if (pid < 0) {
fprintf(stderr, "Fork fprintf(stderr, "Fork
Failed p) Falledp) (
return 1; return 1;
} }
else if (pid == 0) { else if (pid == 0) {
execlp("/bin/1s", "1s", execlp("/b1n/ls" "1ls",
LL); NULL);
} }
else { else {
wait (NULL); wait (NULL);
prlqtf ("Child printf ("Child
Complete™); Complete™);
} }
return—9; return 0,

Operating System}Concepts — 8th Edition 3.6 } Silberschatz, Galvin and Gagne ©2009

Process Creation

parent resumes

wait

child i exec() »

Operating System Concepts — 8t" Edition 3.7 Silberschatz, Galvin and Gagne ©2009

4

g7 Process Creation in Win32

||
G\

int main(VOID) {
/..

// create child process
1f (!CreateProcess(NULL, // use command line
"C:\\WINDOWS\\system32\\mspaint.exe”
NULL, //inherit process handle
NULL, //don't inherit thread handle
FALSE, //disable handle inheritance
@, // no creation flags
NULL, //use parent's environment block
NULL, //use parent's existing directory
&si, &p1)) {
fprintf(stderr, "Create Process Failed");
return -1;

ks
WaitForSingleObject(pi.hProcess, INFINITE);

printf("Child Complete");
¥

Operating System Concepts — 8" Edition 3.8 Silberschatz, Galvin and Gagne ©2009

7
("’

Quiz: fork()

B What are the outputs?
(parent pid: 2600
child pid: 2603)

Operating System Concepts — 8t Edition

int main()

{

pid_t pid, pidi;

/* fork a child process */
pid = fork();

if (pid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed");
return 1;

}

else if (pid == 0) { /* child process x*/
pidl = getpid();
printf("child: pid = %d",pid); /* A */
printf("child: pidl = %d",pidl); /* B */

}

else { /* parent process */
pidl = getpid();
printf ("parent: pid = %d",pid); /* C */
printf ("parent: pidl = %d",pidl); /* D */
wait (NULL) ;

}

return 0;

a

3.9 Silberschatz, Galvin and Gagne ©2009

/ «w~11§
. ot Quiz: fork()

LA\

_ int value = 5;
B What is the outp!

int main()

{

pid_t pid;
pid = fork();

if (pid == 0) { /* child process */
value += 15; t E
return 0;

}

else if (pid > 0) { /* parent process */
wait (NULL) ;
printf ("PARENT: value = %d",value); /* LINE A */
return 0;

}
}

Operating System Concepts — 8t" Edition 3.10 Silberschatz, Galvin and Gagne ©2009

Quiz: cascading fork()s

B How many processes are created?

#include <stdio.h>
#include <unistd.h>

int main()

{
/* fork a child process */
() fork();

/* fork another child process */
(2) fork();

return O;

Operating System Concepts — 8t" Edition 3.11 Silberschatz, Galvin and Gagne ©2009

main () {
int a, x, y;
a=-5; Current process ID = 100
x=-15;
y=-20;
a=fork () ;

New process ID = parent process ID +
1

if (a==0)
y=fork() ;

printf (“x=%d y=%d a=%d\n”, x, y,
a);

12

Operating System Concepts — 8t Edition 3.12 Silberschatz, Galvin and Gagne ©200

L -3
© EA(C 2=
=< AN
oy

4

)
7 Quiz: fork()
e\, ”

main () {
int a, x, y, n;
a=-5;
n=1;
x=-15;
y=-20;
a=fork () ;

if (a==0)
y=fork () ;

while (n<3) {
if (y==0)
x=fork () ;
n++;
}

Current process ID = 100
New process ID = parent process ID +
1

pyintf ("x=%d y=% a=%d\n”, x, y,

Operating System Concepts — 8t Edition

3.13

:\\\
2

Sk “li‘}.
7 (%
13 4 W

Silberschatz, Galvin and Gagne ©2009

=57 Process Termination

B Process executes last statement and asks the operating system
to delete it (exit)

@ Output data from child to parent (via wait)

® Process’ resources are deallocated by operating system
B Parent may terminate execution of children processes (abort)

@ Child has exceeded allocated resources

® Task assigned to child is no longer required

@ If parent is exiting

» Some operating systems do not allow child to continue if
its parent terminates

All children terminated - cascading termination

S ‘\\
A 'M,_\\
>
2 3
€ ‘/-‘%}“\‘\\
P
4 P\ 3

Operating System Concepts — 8" Edition 3.14 Silberschatz, Galvin and Gagne ©2009

