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Five-state Process Model

Dispatch
I/O or Event Occur Wait for I/O or Event
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Figure 3.17 UNIX Process State Transition Diagram

Operating System Concepts — 8t" Edition 3.3 Silberschatz, Galvin and Gagne ©2009



557 Process Scheduling

B Maximize CPU use, quickly switch processes onto CPU for
time sharing

B Process scheduler selects among available processes for
next execution on CPU

B Maintains scheduling queues of processes
® Job queue — set of all processes in the system

® Ready queue — set of all processes residing in main
memory, ready and waiting to execute

® Device queues — set of processes waiting for an 1/0
device

® Processes migrate among the various queues
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Lifecycle of Processes
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e Schedulers

B Scheduler: determines the change of process state
B long-term scheduler (or job scheduler)
B Short-term scheduler (or CPU scheduler)

® Sometimes the only scheduler in a system
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S5 Schedulers (Cont.)

B Short-term scheduler is invoked very frequently
® When a process leaves CPU
® in milliseconds
® must be fast
B Long-term scheduler is invoked very infrequently
® When a process leaves memory
® in seconds/ minutes
® may be slow
B Types of processes
® I/0-bound process — spends more time doing I/O

® CPU-bound process — spends more time doing
computations
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Challenge of LT-scheduler

M I/O-bound processes: fills up device queues
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Challenge of LT-scheduler

B CPU-bound processes: fills up ready queue
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Challenge of LT-scheduler

B LT-scheduler: mix I/O-bound and CPU-bound processes
® Good system utility
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“$% Medium Scheduling: Swapping
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B Move some process from memory into disk temporarily
® Swap out
B Later, reloads the process from disk to memory
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B When CPU switches to another process, the system must
save the state of the old process and load the saved state
for the new process via a context switch.

B Context of a process represented in the PCB

Load PCB() V

CPU Mem

Save PCB() ¢
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B Context-switch time is pure overhead
® memory speed
® number of registers
® special instruction for context switch
® a few milliseconds

® Some hardware provides multiple sets of registers per
CPU - no register copy needed
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ot Process Creation

B Parent process creates children processes, which, in turn
create other processes, forming a tree of processes
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. Process Creation

B Generally, process identified and managed via a process
identifier (pid)

B Resource sharing
® Parent and children share all resources
@ Children share subset of parent’s resources
® Parent and child share no resources
B Execution
® Parent and children execute concurrently
® Parent waits until children terminate
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- Process Creation (Cont.)

B Address space
® Child duplicate of parent
® Child has a program loaded into it

B UNIX examples
o fork system call creates new process

® exec system call used after a fork to replace the process’
memory space with a new program
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v Process Creation in Unix
int main()
1
pid_t pid;

/* fork another process */

pid = fork();

if (pid < @) { /* error occurred */
fprintf(stderr, "Fork Failed");
return 1;

hy

else 1f (pid == 0) { /* child process */
execlp("/bin/1s", "1s", NULL);

hy

else { /* parent process */
/* parent will wait for the child */
wait (NULL);
printf ("Child Complete");

hy

return 0;
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r & Process Creation in Unix

int main() {

Eid = forkQ);

22ey,
parent ﬁ”b Dty
process Cess T Rcess
// pid is 1234 // pid is @
if (pid < @) { if (pid < 0) {
fprintf(stderr, "Fork fprintf(stderr, "Fork
Failed p) Falledp) (
return 1; return 1;
} }
else if (pid == 0) { else if (pid == 0) {
execlp("/bin/1s", "1s", execlp("/b1n/ls" "1ls",
LL); NULL);
} }
else { else {
wait (NULL); wait (NULL);
prlqtf ("Child printf ("Child
Complete™); Complete™);
} }
return—9; return 0,
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Process Creation

parent resumes

wait

child i exec() »
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g7 Process Creation in Win32
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int main(VOID) {
/..

// create child process
1f (!CreateProcess(NULL, // use command line
"C:\\WINDOWS\\system32\\mspaint.exe”
NULL, //inherit process handle
NULL, //don't inherit thread handle
FALSE, //disable handle inheritance
@, // no creation flags
NULL, //use parent's environment block
NULL, //use parent's existing directory
&si, &p1)) {
fprintf(stderr, "Create Process Failed");
return -1;

ks
WaitForSingleObject(pi.hProcess, INFINITE);

printf("Child Complete");
¥
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=57 Process Termination

B Process executes last statement and asks the operating system
to delete it (exit)

@ Output data from child to parent (via wait)

® Process’ resources are deallocated by operating system
B Parent may terminate execution of children processes (abort)

® Child has exceeded allocated resources

® Task assigned to child is no longer required

@ If parent is exiting

» Some operating systems do not allow child to continue if
its parent terminates

All children terminated - cascading termination
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B Processes within a system may be independent or
cooperating

B Reasons for cooperating processes:
® Information sharing
® Computation speedup
® Modularity
® Convenience

B Cooperating processes need interprocess communication
(IPC)

B Two models of IPC
® Shared memory

® Message passing
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5= Communications Models

process A

process B

kernel
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Shared Memory Systems

B Process-A creates a shared memory

® Shared memory in Process-A’s
address space

B Allow Process B to access the
Process A shared memory

adress B No predefined data format

Process B

Memory
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