Chapter 3: Processes

Operating System Concepts — 8t Edition Silberschatz, Galvin and Gagne ©2009

Five-state Process Model

Dispatch
I/O or Event Occur Wait for I/O or Event

Operating System Concepts — 8t" Edition 3.2 Silberschatz, Galvin and Gagne ©2009

S

“4%7 UNIX Process State Transition Diagram
fm A ﬂ Created
return N enousn / not enough memory
to user A o memory, (swapping system only)
swap in e
|I Zombie 1"{) ..AS'“P in swap out ‘ Sleep,

. Memory " Swapped

Figure 3.17 UNIX Process State Transition Diagram

Operating System Concepts — 8t" Edition 3.3 Silberschatz, Galvin and Gagne ©2009

557 Process Scheduling

B Maximize CPU use, quickly switch processes onto CPU for
time sharing

B Process scheduler selects among available processes for
next execution on CPU

B Maintains scheduling queues of processes
® Job queue — set of all processes in the system

® Ready queue — set of all processes residing in main
memory, ready and waiting to execute

® Device queues — set of processes waiting for an 1/0
device

® Processes migrate among the various queues

<RR%
2 SR\
S

> =

£ ,/‘S"‘?\\\\

£ <

/ D,

A PV

Operating System Concepts — 8" Edition 3.4 Silberschatz, Galvin and Gagne ©2009

Lifecycle of Processes

~ERD

New

Load PCB()

process

CPU

Save_ _PCB()

Events

Event Waiting /

Release

R@urc;ea
A\ e

Operating System Concepts — 8t Edition 3.5 Silberschatz, Galvin and Gagne ©2009

Devicedevice Queues

(1
I{:)'MM

New !
| Tl | e __ Load PCB
_process _Load_ ()
New 'Running
PU

4
Events Save_PCB()

- o o my,

Event Waltlﬂga’t’”g /

Lii e,
- : ﬁ
L2 o

\ Devicedevice Quetes

Operating System Concepts — 8t Edition 3.6 Silberschatz, Galvin and Gagne ©2009

e Schedulers

B Scheduler: determines the change of process state
B long-term scheduler (or job scheduler)
B Short-term scheduler (or CPU scheduler)

® Sometimes the only scheduler in a system

— 5 | —
v Long-term v Short-term

=l) scheduler A 5 Scheduler

J EiSk | Memory CPU
ob poo (Ready Queue)

Operating System Concepts — 8" Edition 3.7 Silberschatz, Galvin and Gagne ©2009

S5 Schedulers (Cont.)

B Short-term scheduler is invoked very frequently
® When a process leaves CPU
® in milliseconds
® must be fast
B Long-term scheduler is invoked very infrequently
® When a process leaves memory
® in seconds/ minutes
® may be slow
B Types of processes
® I/0-bound process — spends more time doing I/O

® CPU-bound process — spends more time doing
computations

Operating System Concepts — 8" Edition 3.8 Silberschatz, Galvin and Gagne ©2009

Challenge of LT-scheduler

M I/O-bound processes: fills up device queues

Read ueue
A

CPU

All I/0 bound
processes

—E AL AAA T—

I/O 1/0 Device
Devices Queues

Operating System Concepts — 8t" Edition 3.9 Silberschatz, Galvin and Gagne ©2009

Challenge of LT-scheduler

B CPU-bound processes: fills up ready queue

Read ueue
A

CPU

All CPU-bound
processes

— (—

I/O 1/0 Device
Devices Queues

Operating System Concepts — 8t Edition 3.10

Challenge of LT-scheduler

B LT-scheduler: mix I/O-bound and CPU-bound processes
® Good system utility

Read ueue
A

CPU

All CPU-bound
processes

—EALA S —

I/O 1/0 Device
Devices Queues

Operating System Concepts — 8t" Edition 3.11

“$% Medium Scheduling: Swapping

LA\

B Move some process from memory into disk temporarily
® Swap out
B Later, reloads the process from disk to memory

Read ueue
A CPU

— Ao

I/0 I/O Device
Device Queue

Operating System Concepts — 8t" Edition 3.12

® Swap in

4

| *”m'k i
o Context Switch

&\

B When CPU switches to another process, the system must
save the state of the old process and load the saved state
for the new process via a context switch.

B Context of a process represented in the PCB

Load PCB() V

CPU Mem

Save PCB() ¢

Operating System Concepts — 8" Edition 3.13 Silberschatz, Galvin and Gagne ©2009

4

. '
T Context Switch

W
S\

B Context-switch time is pure overhead
® memory speed
® number of registers
® special instruction for context switch
® a few milliseconds

® Some hardware provides multiple sets of registers per
CPU - no register copy needed

Operating System Concepts — 8" Edition 3.14 Silberschatz, Galvin and Gagne ©2009

L _
ot Process Creation

B Parent process creates children processes, which, in turn
create other processes, forming a tree of processes

Sched
pid =0

pageout
pld =2

dtlogin

inetd

Xsession

telnetdaemon
pid =7776

Csh
pid =7778

sdt_shel

9,
T

Csh
pid = 1400

cat
pid = 2536 I
U m&\v N

Operating System Concepts — 8t Edition 3.15 Silberschatz, Galvin and Gagne ©200

Netscape emacs
pid = 7785 pid = 8105

"

’
E

w &

. Process Creation

B Generally, process identified and managed via a process
identifier (pid)

B Resource sharing
® Parent and children share all resources
@ Children share subset of parent’s resources
® Parent and child share no resources
B Execution
® Parent and children execute concurrently
® Parent waits until children terminate

Operating System Concepts — 8" Edition 3.16 Silberschatz, Galvin and Gagne ©2009

BN

=

e '
- Process Creation (Cont.)

B Address space
® Child duplicate of parent
® Child has a program loaded into it

B UNIX examples
o fork system call creates new process

® exec system call used after a fork to replace the process’
memory space with a new program

Operating System Concepts — 8" Edition 3.17 Silberschatz, Galvin and Gagne ©2009

v Process Creation in Unix
int main()
1
pid_t pid;

/* fork another process */

pid = fork();

if (pid < @) { /* error occurred */
fprintf(stderr, "Fork Failed");
return 1;

hy

else 1f (pid == 0) { /* child process */
execlp("/bin/1s", "1s", NULL);

hy

else { /* parent process */
/* parent will wait for the child */
wait (NULL);
printf ("Child Complete");

hy

return 0;

7 = N
VA N
4 29X

Operating System Concepts — 8" Edition 3.18 Silberschatz, Galvin and Gagne ©2009

N = = =
r & Process Creation in Unix

int main() {

Eid = forkQ);

22ey,
parent ﬁ”b Dty
process Cess T Rcess
// pid is 1234 // pid is @
if (pid < @) { if (pid < 0) {
fprintf(stderr, "Fork fprintf(stderr, "Fork
Failed p) Falledp) (
return 1; return 1;
} }
else if (pid == 0) { else if (pid == 0) {
execlp("/bin/1s", "1s", execlp("/b1n/ls" "1ls",
LL); NULL);
} }
else { else {
wait (NULL); wait (NULL);
prlqtf ("Child printf ("Child
Complete™); Complete™);
} }
return—9; return 0,

Operating System}Concepts — 8! Edition 3.19 } Silberschatz, Galvin and Gagne ©2009

Process Creation

parent resumes

wait

child i exec() »

Operating System Concepts — 8t" Edition 3.20 Silberschatz, Galvin and Gagne ©2009

4

g7 Process Creation in Win32

||
G\

int main(VOID) {
/..

// create child process
1f (!CreateProcess(NULL, // use command line
"C:\\WINDOWS\\system32\\mspaint.exe”
NULL, //inherit process handle
NULL, //don't inherit thread handle
FALSE, //disable handle inheritance
@, // no creation flags
NULL, //use parent's environment block
NULL, //use parent's existing directory
&si, &p1)) {
fprintf(stderr, "Create Process Failed");
return -1;

ks
WaitForSingleObject(pi.hProcess, INFINITE);

printf("Child Complete");
¥

Operating System Concepts — 8" Edition 3.21 Silberschatz, Galvin and Gagne ©2009

=57 Process Termination

B Process executes last statement and asks the operating system
to delete it (exit)

@ Output data from child to parent (via wait)

® Process’ resources are deallocated by operating system
B Parent may terminate execution of children processes (abort)

® Child has exceeded allocated resources

® Task assigned to child is no longer required

@ If parent is exiting

» Some operating systems do not allow child to continue if
its parent terminates

All children terminated - cascading termination

<ale ‘\\
A 'M,_\\
>
2 3
€ ‘/-‘%}“\‘\\
P
4 P\ 3

Operating System Concepts — 8" Edition 3.22 Silberschatz, Galvin and Gagne ©2009

4

. icati
‘“f?ﬂ Interprocess Communication

B Processes within a system may be independent or
cooperating

B Reasons for cooperating processes:
® Information sharing
® Computation speedup
® Modularity
® Convenience

B Cooperating processes need interprocess communication
(IPC)

B Two models of IPC
® Shared memory

® Message passing

\\\\\

S Nl
- __4}\\\‘\
o 20% 7

Operating System Concepts — 8" Edition 3.23 Silberschatz, Galvin and Gagne ©2009

5= Communications Models

process A

process B

kernel

(@)

Operating System Concepts — 8t" Edition

3.24

process A
Pl &
shared é
i 2
process B d
kernel
(b)

P

v

Silberschatz, Galvin and Gagne ©2009

o,
_

x*‘f"““‘““‘, i
“»”’Shared Memory & Message Passing

Implementa
tion

Speed

Easier Difficult

Slower Faster

Kernel inter A lot, via system ¢ No system calls exc

vention

Data size

Operating System Concepts — 8t Edition

alls ept setup
Good for small am Good for large amo
ount unt
£
3.25 Silberschatz, Galvin and Gagne ©2009

Shared Memory Systems

B Process-A creates a shared memory

® Shared memory in Process-A’s
address space

B Allow Process B to access the
Process A shared memory

adress B No predefined data format

Process B

Memory

Operating System Concepts — 8t Edition 3.26 Silberschatz, Galvin and Gagne ©2009

AN

