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Paging

B Partition physical memory into equal size frames

M Divide logical memory into same-size pages

B Each page can go to any free frame

B OS knows the mapping
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g T Addressing with Paging
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Paging With TLB
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r Structure of the Page Table

B Memory structures for paging can get huge using straight-forward
methods

® Consider a 32-bit logical address space as on modern computers
® Page size of 4 KB (21?)

® Page table would have 1 million entries (232 / 212)

O

If each entry is 4 bytes -> 4 MB of physical address space / memory
for page table alone

» That amount of memory used to cost a lot
» Don’t want to allocate that contiguously in main memory

B Hierarchical Paging
B Hashed Page Tables
B Inverted Page Tables
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~#7 Two-Level Page-Table Scheme
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.o Two-Level Paging Example

B A logical address (on 32-bit machine with 1K page size) is divided into:
® a page number consisting of 22 bits
® a page offset consisting of 10 bits

B Since the page table is paged, the page number is further divided into:
® a 12-bit page number
® a 10-bit page offset

B Thus, a logical address is as follows:

page number page offset
P4 P2 d
12 10 10

B where p, is an index into the outer page table, and p, is the displacement
within the page of the inner page table

B Known as forward-mapped page table
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ar o Address-Translation Scheme
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~“$%7  64-bit Logical Address Space

B Even two-level paging scheme not sufficient

B If page size is 4 KB (2'?)
® Then page table has 2% entries
@ If two level scheme, inner page tables could be 21° 4-byte entries
® Address would look like

outer page inner page page offset
P; P> d
42 10 12

@ Outer page table has 242 entries or 244 bytes
@ One solution is to add a 2" outer page table
@ But in the following example the 2"9 outer page table is still 234 bytes in size
» And possibly 4 memory access to get to one physical memory location™ -
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Three-level Paging Scheme

outer page Inner page offset
P1 P2 d
42 10 12

2nd outer page , outer page | innerpage offset

P1 P> Ps d
32 10 10 12

A \
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v o User’s View of a Program

B A program is a collection of segments

subroutine

symbol
table
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main
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Operating System Concepts — 8" Edition 8.1 Silberschatz, Galvin and Gagne ©2009



T Logical View of Segmentation

tL\b

user space physical memory space
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37 Example of Segmentation

subroutine stack
1400
segment 3 segment 0
2400
symbol
segment 0 table
limit | base
Sqrt segment 4 0| 1000 | 1400
1| 400 | 6300 3200
main 2| 400 | 4300
program 3| 1100 | 3200 segment 3
4| 1000 | 4700

segment table 4300

segment 1 segment 2

segment 2
4700

logical address space segment 4

5700
6300

segment 1

6700
physical memory
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Chapter 9: Virtual Memory
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B Virtual memory — separation of user logical memory
from physical memory

® Only part of the program needs to be in memory for
execution

® Logical address space can therefore be much larger
than physical address space

B Virtual memory can be implemented via:
® Demand paging

® Demand segmentation
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) ™ Virtual Memory That is
oy .
" Larger Than Physical Memory
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S St Demand Paging
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M Bring a page into memory only when it is needed
® Less I/O needed, no unnecessary I/O
® Less memory needed
® Faster response

® More users
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&«gw Valid-Invalid Bit

B With each page table entry a valid—invalid bit is associated
(v = in-memory — memory resident, i = not-in-memory)

B Example of a page table snapshot:

Frame # valid-invalid bit
\'/

\'J
\'J
\'

. . Pbage table O Le
B During address translation, if valid—invalid bit in page table entry

is | = page fault
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I Page Table When Some Pages
(o - .
@ Are Not in Main Memory
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B If thereis a reference to a page, first reference to that page will
trap to operating system:

page fault
1. Operating system looks at another table to decide:
® Invalid reference = abort
® Just not in memory
2. Get empty frame
3. Swap page into frame via scheduled disk operation

4. Reset tables to indicate page now in memory
Set validation bit =v

5. Restart the instruction that caused the page fault
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Steps in Handling a Page Fault

@ page is on
backing store

load M
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operating
system @
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What Happens if There is no Free Frame?

B Page replacement

® Find some page in memory, but not really in use,
page it out

® Performance — want an algorithm which will result
in minimum number of page faults

, .\"' ::E‘\ \
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[ Need For Page Replacement

valid—invalid

0 H frame bit O | monitor
o R
PC —> 3 |V
o Gl 2| D
5 |v
3 M : 3| H 5
logical memory page table 4| load M
for user 1 for user 1
5 dJ
6 A
s . M
valid—invalid ri E
0 A frame bit
N / physical
1 B 6 v memory v
2 D i
2 |v
3 E 7 v
logical memory page table
for user 2 for user 2

Operating System Concepts — 8" Edition 8.23 Silberschatz, Galvin and Gagne ©2009



Page Replacement

frame valid—invalid bit
N ¥
change
0 |i to invalid
flv
reset page
page table table for
new page
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Page Replacement Algorithms

B Page-replacement algorithm

® Want lowest page-fault rate on both first access and
re-access

B Optimal
B FIFO (First In First Out)
B Least Recently Used (LRU)

74
A AN
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55 Optimal Algorithm

B Replace page that will not be used for longest period of
time

B How do you know this?
® Can’t read the future

B Used for measuring how well your algorithm performs
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Optimal Page Replacement

reference string
7 01 2 0 38 0 4 2 3 0321 2 01 7 0 1

. A .g\
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2 Optimal Page Replacement

€

reference string
7 01 2 0 383 0 4 2 3 03 21 2 017 0 1

71 7] 7] l2] 2] e Bl B 7
BEEOE EH E Y 1Y Y
1 3 3 3 1 1

page frames
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 a FIFO Algorithm

B Replace page that is oldest
B How do you know this?

® FIFO queue

A N
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T FIFO Page Replacement

€

reference string
7 01 2 0 38 0 4 2 3 0321 2 01 7 0 1
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FIFO Page Replacement

reference string
2 0 83 0 4 2 3 0 8 2

page frames
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r ol Least Recently Used (LRU) Algorithm

B Use past knowledge rather than future

B Replace page that has not been used in the most
amount of time

B Associate time of last use with each page
B Generally good algorithm and frequently used

B But how to implement?
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T LRU Page Replacement

€

reference string
7 01 2 0 38 0 4 2 3 0321 2 01 7 0 1
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~#7" Least Recently Used (LRU) Algorithm

tL\b
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x;";x LRU Algorithm (Cont.)

B Counter implementation

® Every page entry has a counter; every time page is referenced through
this entry, copy the clock into the counter

® When a page needs to be changed, look at the counters to find smallest
value

» Search through table needed
M Stack implementation
® Keep a stack of page numbers in a double link form:
® Page referenced:
» move it to the top
» requires 6 pointers to be changed
® But each update more expensive

® No search for replacement
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(™ Use Of A Stack to Record The

o Most Recent Page References

@ \

reference string
4 7 o 7 1 0 1 2 1 2 7 1 2
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&iw Clock Policy

B Uses and additional bit called a “use bit”

B When a page is first loaded in memory or referenced, the use bit is
settol

B When itis time to replace a page, the OS scans the set flipping all
1’sto0

B The first frame encountered with the use bit already set to O is
replaced.

B When a page is revisited, setto 1
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When a page fault occurs,
the page the hand is
1 5 pointing to is inspected.

The action taken depends
on the R bit:
R = O: Evict the page
R = 1: Clear R and advance hand

implementation is different.
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Clock Algorithm: Example

First frame in

circular buffer of
frames that are 2% =] 0
candidates for replacement

P Page 19
e 1| Use = 1

Page 222

Page 556
Use =0

(a) State of buffer just prior to a page replacement

39
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T Clock Page Replacement

€

reference string
7 01 2 0 38 0 4 2 3 0321 2 01 7 0 1
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