
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 8: Main Memory-part2

8.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging	

■ Par$$on	
 physical	
 memory	
 into	
 equal	
 size	
 frames	

■ Divide	
 logical	
 memory	
 into	
 same-­‐size	
 pages	

■  Each	
 page	
 can	
 go	
 to	
 any	
 free	
 frame	

■ OS	
 knows	
 the	
 mapping	

●  page	
 table	

8.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Addressing with Paging

8.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging With TLB

8.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Structure of the Page Table

■  Memory structures for paging can get huge using straight-forward
methods
●  Consider a 32-bit logical address space as on modern computers
●  Page size of 4 KB (212)
●  Page table would have 1 million entries (232 / 212)

●  If each entry is 4 bytes -> 4 MB of physical address space / memory
for page table alone
! That amount of memory used to cost a lot
! Don’t want to allocate that contiguously in main memory

■  Hierarchical Paging
■  Hashed Page Tables
■  Inverted Page Tables

8.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Two-Level Page-Table Scheme

8.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Two-Level Paging Example

■  A logical address (on 32-bit machine with 1K page size) is divided into:
●  a page number consisting of 22 bits
●  a page offset consisting of 10 bits

■  Since the page table is paged, the page number is further divided into:
●  a 12-bit page number
●  a 10-bit page offset

■  Thus, a logical address is as follows: 
 
 
 
 

■  where p1 is an index into the outer page table, and p2 is the displacement
within the page of the inner page table

■  Known as forward-mapped page table

page number page offset

p1 p2 d

12 10 10

8.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Address-Translation Scheme

8.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

64-bit Logical Address Space

■  Even two-level paging scheme not sufficient
■  If page size is 4 KB (212)

●  Then page table has 252 entries
●  If two level scheme, inner page tables could be 210 4-byte entries
●  Address would look like

●  Outer page table has 242 entries or 244 bytes
●  One solution is to add a 2nd outer page table
●  But in the following example the 2nd outer page table is still 234 bytes in size

! And possibly 4 memory access to get to one physical memory location

outer page page offset

p1 p2 d

42 10 12

inner page

8.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Three-level Paging Scheme

8.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

User’s View of a Program

■  A program is a collection of segments

8.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

8.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of Segmentation

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 9: Virtual Memory

8.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Background

■  Virtual	
 memory	
 –	
 separa$on	
 of	
 user	
 logical	
 memory	

from	
 physical	
 memory	

● Only	
 part	
 of	
 the	
 program	
 needs	
 to	
 be	
 in	
 memory	
 for	

execu$on	

●  Logical	
 address	
 space	
 can	
 therefore	
 be	
 much	
 larger	

than	
 physical	
 address	
 space	

■  Virtual	
 memory	
 can	
 be	
 implemented	
 via:	

● Demand	
 paging	
 	

● Demand	
 segmenta$on	

8.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Virtual Memory That is
Larger Than Physical Memory

8.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Demand Paging

■  Bring	
 a	
 page	
 into	
 memory	
 only	
 when	
 it	
 is	
 needed	

● Less	
 I/O	
 needed,	
 no	
 unnecessary	
 I/O	

● Less	
 memory	
 needed	
 	

● Faster	
 response	

● More	
 users	

	

8.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Valid-Invalid Bit
■  With	
 each	
 page	
 table	
 entry	
 a	
 valid–invalid	
 bit	
 is	
 associated	

(v	
 ⇒	
 in-­‐memory	
 –	
 memory	
 resident,	
 i	
 ⇒	
 not-­‐in-­‐memory)	

■  Example	
 of	
 a	
 page	
 table	
 snapshot:	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

■  During	
 address	
 transla$on,	
 if	
 valid–invalid	
 bit	
 in	
 page	
 table	
 entry	

	
 	
 	
 	
 	
 	
 is	
 I	
 ⇒	
 page	
 fault	

v
v
v
v
i

i
i

….

Frame # valid-invalid bit

page table

8.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Table When Some Pages
Are Not in Main Memory

8.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Fault

■  If	
 there	
 is	
 a	
 reference	
 to	
 a	
 page,	
 first	
 reference	
 to	
 that	
 page	
 will	

trap	
 to	
 opera$ng	
 system:	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 page	
 fault	

1.  Opera$ng	
 system	
 looks	
 at	
 another	
 table	
 to	
 decide:	

●  Invalid	
 reference	
 ⇒	
 abort	

●  Just	
 not	
 in	
 memory	

2.  Get	
 empty	
 frame	

3.  Swap	
 page	
 into	
 frame	
 via	
 scheduled	
 disk	
 opera$on	

4.  Reset	
 tables	
 to	
 indicate	
 page	
 now	
 in	
 memory	

Set	
 valida$on	
 bit	
 =	
 v	

5.  Restart	
 the	
 instruc$on	
 that	
 caused	
 the	
 page	
 fault	

8.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Steps in Handling a Page Fault

8.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

What Happens if There is no Free Frame?

■  Page	
 replacement	
 	

● Find	
 some	
 page	
 in	
 memory,	
 but	
 not	
 really	
 in	
 use,	

page	
 it	
 out	

● Performance	
 –	
 want	
 an	
 algorithm	
 which	
 will	
 result	

in	
 minimum	
 number	
 of	
 page	
 faults	

8.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Need For Page Replacement

8.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Replacement

8.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Replacement Algorithms
■  Page-­‐replacement	
 algorithm	

● Want	
 lowest	
 page-­‐fault	
 rate	
 on	
 both	
 first	
 access	
 and	

re-­‐access	

■  Op:mal	

■  FIFO	
 (First	
 In	
 First	
 Out)	

■  Least	
 Recently	
 Used	
 (LRU)	

8.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Optimal Algorithm

■  Replace	
 page	
 that	
 will	
 not	
 be	
 used	
 for	
 longest	
 period	
 of	

$me	

■  How	
 do	
 you	
 know	
 this?	

● Can’t	
 read	
 the	
 future	

■  Used	
 for	
 measuring	
 how	
 well	
 your	
 algorithm	
 performs	

8.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Optimal Page Replacement

8.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Optimal Page Replacement

8.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

FIFO Algorithm

■  Replace	
 page	
 that	
 is	
 oldest	

■  How	
 do	
 you	
 know	
 this?	

● FIFO	
 queue	

8.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

FIFO Page Replacement

8.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

FIFO Page Replacement

8.32 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Least Recently Used (LRU) Algorithm

■  Use	
 past	
 knowledge	
 rather	
 than	
 future	

■  Replace	
 page	
 that	
 has	
 not	
 been	
 used	
 in	
 the	
 most	

amount	
 of	
 $me	

■  Associate	
 $me	
 of	
 last	
 use	
 with	
 each	
 page	

■  Generally	
 good	
 algorithm	
 and	
 frequently	
 used	

■  But	
 how	
 to	
 implement?	

	

8.33 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

LRU Page Replacement

8.34 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Least Recently Used (LRU) Algorithm

8.35 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

LRU Algorithm (Cont.)
■  Counter	
 implementa$on	

●  Every	
 page	
 entry	
 has	
 a	
 counter;	
 every	
 $me	
 page	
 is	
 referenced	
 through	

this	
 entry,	
 copy	
 the	
 clock	
 into	
 the	
 counter	

●  When	
 a	
 page	
 needs	
 to	
 be	
 changed,	
 look	
 at	
 the	
 counters	
 to	
 find	
 smallest	

value	

! Search	
 through	
 table	
 needed	

■  Stack	
 implementa$on	

●  Keep	
 a	
 stack	
 of	
 page	
 numbers	
 in	
 a	
 double	
 link	
 form:	

●  Page	
 referenced:	

! move	
 it	
 to	
 the	
 top	

! requires	
 6	
 pointers	
 to	
 be	
 changed	

●  But	
 each	
 update	
 more	
 expensive	

●  No	
 search	
 for	
 replacement	

8.36 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Use Of A Stack to Record The
Most Recent Page References

8.37 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Clock	
 Policy	

■  Uses	
 and	
 addi$onal	
 bit	
 called	
 a	
 “use	
 bit”	

■  When	
 a	
 page	
 is	
 first	
 loaded	
 in	
 memory	
 or	
 referenced,	
 the	
 use	
 bit	
 is	

set	
 to	
 1	

■  When	
 it	
 is	
 $me	
 to	
 replace	
 a	
 page,	
 the	
 OS	
 scans	
 the	
 set	
 flipping	
 all	

1’s	
 to	
 0	

■  The	
 first	
 frame	
 encountered	
 with	
 the	
 use	
 bit	
 already	
 set	
 to	
 0	
 is	

replaced.	

■  When	
 a	
 page	
 is	
 revisited,	
 set	
 to	
 1	

8.38 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition 38	

Clock	
 Policy	

Algorithmically identical with another algorithm called “2nd chance”. Only the
implementation is different.

8.39 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition
39	

Clock	
 Algorithm:	
 Example	

8.40 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Clock Page Replacement

