Chapter 8: Main Memory-part2

Operating System Concepts — 8™ Edition Silberschatz, Galvin and Gagne ©2009

am

(.m.k

('R’“ 4) ‘w/

Paging

B Partition physical memory into equal size frames

M Divide logical memory into same-size pages

B Each page can go to any free frame

B OS knows the mapping

page O

® page table

page 1

page 2

page 3

memory

Operating System Concepts — 8" Edition 8.2

logical

N = O

NS E

3
page table

frame
number

page O

page 2

page 1

page 3 [

)

. g M)
physical ’”’"’W(
memory A’

Silberschatz, Galvin and Gagne ©2009

g T Addressing with Paging

logical physical
address address fOO00 ... 0000

cPu (e]]

p{

Y

111 o e 1994

f

physical
memory

page table

Operating System Concepts — 8" Edition 8.3 Silberschatz, Galvin and Gagne ©2009

Paging With TLB

CPU

logical

address
—'| P | d |

page frame

number number

TLB hit

ITITEY’

TLB

TLB miss

 J

physical
I address

| d—

page table

Operating System Concepts — 8" Edition

8.4

physical
memory

Silberschatz, Galvin and Gagne ©2009

=N

()

r Structure of the Page Table

B Memory structures for paging can get huge using straight-forward
methods

® Consider a 32-bit logical address space as on modern computers
® Page size of 4 KB (21?)

® Page table would have 1 million entries (232 / 212)

O

If each entry is 4 bytes -> 4 MB of physical address space / memory
for page table alone

» That amount of memory used to cost a lot
» Don’t want to allocate that contiguously in main memory

B Hierarchical Paging
B Hashed Page Tables
B Inverted Page Tables

Operating System Concepts — 8" Edition 8.5 Silberschatz, Galvin and Gagne ©2009

~#7 Two-Level Page-Table Scheme

0
—///'r
|~ |
/ . 100 °
500 N
™ 100 500
= 708
outer page -~ 929 =
table TN s0Q
900 7 :
page of 929
page table
page table .
memory

Operating System Concepts — 8" Edition 8.6 Silberschatz, Galvin and Gagne ©2009

.o Two-Level Paging Example

B A logical address (on 32-bit machine with 1K page size) is divided into:
® a page number consisting of 22 bits
® a page offset consisting of 10 bits

B Since the page table is paged, the page number is further divided into:
® a 12-bit page number
® a 10-bit page offset

B Thus, a logical address is as follows:

page number page offset
P4 P2 d
12 10 10

B where p, is an index into the outer page table, and p, is the displacement
within the page of the inner page table

B Known as forward-mapped page table

Operating System Concepts — 8" Edition 8.7 Silberschatz, Galvin and Gagne ©2009

ar o Address-Translation Scheme

tL\b

logical address
Pi | P2 | d

o

>

=

outer page d
table {

page of
page table

3

Operating System Concepts — 8" Edition 8.8 Silberschatz, Galvin and Gagne ©2009

wt

~“$%7 64-bit Logical Address Space

B Even two-level paging scheme not sufficient

B If page size is 4 KB (2'?)
® Then page table has 2% entries
@ If two level scheme, inner page tables could be 21° 4-byte entries
® Address would look like

outer page inner page page offset
P; P> d
42 10 12

@ Outer page table has 242 entries or 244 bytes
@ One solution is to add a 2" outer page table
@ But in the following example the 2"9 outer page table is still 234 bytes in size
» And possibly 4 memory access to get to one physical memory location™ -

Operating System Concepts — 8t Edition 8.9 Silberschatz, Galvin and Gagne ©2009

Three-level Paging Scheme

outer page Inner page offset
P1 P2 d
42 10 12

2nd outer page , outer page | innerpage offset

P1 P> Ps d
32 10 10 12

A \
Operating System Concepts — 8" Edition 8.10 Silberschatz, Galvin and Gagne ©2009

v o User’s View of a Program

B A program is a collection of segments

subroutine

symbol
table

Sqrt

main
program

logical address

Operating System Concepts — 8" Edition 8.1 Silberschatz, Galvin and Gagne ©2009

T Logical View of Segmentation

tL\b

user space physical memory space

Operating System Concepts — 8" Edition 8.12 Silberschatz, Galvin and Gagne ©2009

37 Example of Segmentation

subroutine stack
1400
segment 3 segment 0
2400
symbol
segment 0 table
limit | base
Sqrt segment 4 0| 1000 | 1400
1| 400 | 6300 3200
main 2| 400 | 4300
program 3| 1100 | 3200 segment 3
4| 1000 | 4700

segment table 4300

segment 1 segment 2

segment 2
4700

logical address space segment 4

5700
6300

segment 1

6700
physical memory

y <
A X

Operating System Concepts — 8" Edition 8.13 Silberschatz, Galvin and Gagne ©2009

Chapter 9: Virtual Memory

Operating System Concepts — 8™ Edition Silberschatz, Galvin and Gagne ©2009

A
o
)

B Virtual memory — separation of user logical memory
from physical memory

® Only part of the program needs to be in memory for
execution

® Logical address space can therefore be much larger
than physical address space

B Virtual memory can be implemented via:
® Demand paging

® Demand segmentation

Operating System Concepts — 8" Edition 8.15 Silberschatz, Galvin and Gagne ©2009

) ™ Virtual Memory That is
oy .
" Larger Than Physical Memory

€\

page O

page 1

page 2 //_\

R
N=m—h

memory |

[\

page v physical
: memory
virtual
memory

Operating System Concepts — 8" Edition 8.16 Silberschatz, Galvin and Gagne ©2009

S St Demand Paging

€\

M Bring a page into memory only when it is needed
® Less I/O needed, no unnecessary I/O
® Less memory needed
® Faster response

® More users

© EA(i=
=< A\
Y A

Operating System Concepts — 8t" Edition 8.17 Silberschatz, Galvin and Gagne ©200

&«gw Valid-Invalid Bit

B With each page table entry a valid—invalid bit is associated
(v = in-memory — memory resident, i = not-in-memory)

B Example of a page table snapshot:

Frame # valid-invalid bit
\'/

\'J
\'J
\'

. . Pbage table O Le
B During address translation, if valid—invalid bit in page table entry

is | = page fault

Operating System Concepts — 8" Edition 8.18 Silberschatz, Galvin and Gagne ©2009

I Page Table When Some Pages
(o - .
@ Are Not in Main Memory

X
0
1
0 A 2
' - vaIidBi_r;vaIid 5 //—\
frame !
v
2| C 0\‘4 = 4l A
3 D 1 i 5 I:l I:I I:I
2| 6 |v
‘ 3 i 6| C []
5 E 4 i 7
6 G 59 |v . @
6 i
7l H 7 i ol F
logical page table 10
memory |:| |:| |:|
11
w
12
13
14
15

physical memory

Operating System Concepts — 8" Edition 8.19 Silberschatz, Galvin and Gagne ©2009

B If thereis a reference to a page, first reference to that page will
trap to operating system:

page fault
1. Operating system looks at another table to decide:
® Invalid reference = abort
® Just not in memory
2. Get empty frame
3. Swap page into frame via scheduled disk operation

4. Reset tables to indicate page now in memory
Set validation bit =v

5. Restart the instruction that caused the page fault

Sy
< o\
/Si:{\\\
e W
U 209%™

Operating System Concepts — 8" Edition 8.20 Silberschatz, Galvin and Gagne ©2009

Steps in Handling a Page Fault

@ page is on
backing store

load M

_//

operating
system @
reference
trap
- \ i
restart page table
instruction
free frame =
reset page bring in
table missing page
physical
memory
8.21

Operating System Concepts — 8" Edition

7 1S
)

Silberschatz, Galvin and Gagne ©2009

What Happens if There is no Free Frame?

B Page replacement

® Find some page in memory, but not really in use,
page it out

® Performance — want an algorithm which will result
in minimum number of page faults

, .\"' ::E‘\ \
A RO
Operating System Concepts — 8t" Edition 8.22 Silberschatz, Galvin and Gagne ©200

.
[Need For Page Replacement

valid—invalid

0 H frame bit O | monitor
o R
PC —> 3 |V
o Gl 2| D
5 |v
3 M : 3| H 5
logical memory page table 4| load M
for user 1 for user 1
5 dJ
6 A
s . M
valid—invalid ri E
0 A frame bit
N / physical
1 B 6 v memory v
2 D i
2 |v
3 E 7 v
logical memory page table
for user 2 for user 2

Operating System Concepts — 8" Edition 8.23 Silberschatz, Galvin and Gagne ©2009

Page Replacement

frame valid—invalid bit
N ¥
change
0 |i to invalid
flv
reset page
page table table for
new page

Operating System Concepts — 8" Edition

swap out
victim

victim
<:>swap
desired
page in
physical
memory
8.24

N
S

Silberschatz, Galvin and Gagne ©2009

, =
>

L~

Page Replacement Algorithms

B Page-replacement algorithm

® Want lowest page-fault rate on both first access and
re-access

B Optimal
B FIFO (First In First Out)
B Least Recently Used (LRU)

74
A AN
Operating System Concepts — 8" Edition 8.25 Silberschatz, Galvin and Gagne ©2009

55 Optimal Algorithm

B Replace page that will not be used for longest period of
time

B How do you know this?
® Can’t read the future

B Used for measuring how well your algorithm performs

Operating System Concepts — 8" Edition 8.26 Silberschatz, Galvin and Gagne ©2009

Optimal Page Replacement

reference string
7 01 2 0 38 0 4 2 3 0321 2 01 7 0 1

. A .g\

Operating System Concepts — 8" Edition 8.27 Silberschatz, Galvin and Gagne ©2009

2 Optimal Page Replacement

€

reference string
7 01 2 0 383 0 4 2 3 03 21 2 017 0 1

71 7] 7] l2] 2] e Bl B 7
BEEOE EH E Y 1Y Y
1 3 3 3 1 1

page frames

Operating System Concepts — 8" Edition 8.28 Silberschatz, Galvin and Gagne ©2009

 a FIFO Algorithm

B Replace page that is oldest
B How do you know this?

® FIFO queue

A N
Operating System Concepts — 8" Edition 8.29 Silberschatz, Galvin and Gagne ©2009

T FIFO Page Replacement

€

reference string
7 01 2 0 38 0 4 2 3 0321 2 01 7 0 1

Operating System Concepts — 8" Edition 8.30 Silberschatz, Galvin and Gagne ©2009

FIFO Page Replacement

reference string
2 0 83 0 4 2 3 0 8 2

page frames

Operating System Concepts — 8" Edition 8.31 Silberschatz, Galvin and Gagne ©2009

L i

r ol Least Recently Used (LRU) Algorithm

B Use past knowledge rather than future

B Replace page that has not been used in the most
amount of time

B Associate time of last use with each page
B Generally good algorithm and frequently used

B But how to implement?

~ ‘\\‘ \
> "Fm\
| ,,y“)f’f:“\\\\ |
7 W
AU 20K

Operating System Concepts — 8" Edition 8.32 Silberschatz, Galvin and Gagne ©2009

T LRU Page Replacement

€

reference string
7 01 2 0 38 0 4 2 3 0321 2 01 7 0 1

Operating System Concepts — 8" Edition 8.33 Silberschatz, Galvin and Gagne ©2009

~#7" Least Recently Used (LRU) Algorithm

tL\b

reference string
7 o 1 2 0 3 0 4 2 383 0 383 2 1 2 0 1 7 0 1

‘'R R 4] |4
ol o] o Jo] |0
o @ B 3 [2

page frames

)]
SIS
W
(©
E)

o

Operating System Concepts — 8t Edition 8.34 Silberschatz, Galvin and Gagne ©2009

x;";x LRU Algorithm (Cont.)

B Counter implementation

® Every page entry has a counter; every time page is referenced through
this entry, copy the clock into the counter

® When a page needs to be changed, look at the counters to find smallest
value

» Search through table needed
M Stack implementation
® Keep a stack of page numbers in a double link form:
® Page referenced:
» move it to the top
» requires 6 pointers to be changed
® But each update more expensive

® No search for replacement

Operating System Concepts — 8" Edition 8.35 Silberschatz, Galvin and Gagne ©2009

(™ Use Of A Stack to Record The

o Most Recent Page References

@ \

reference string
4 7 o 7 1 0 1 2 1 2 7 1 2

: > T
a b
1 2
0 1
7 0
4 4
stack stack
before after
a b

Operating System Concepts — 8" Edition 8.36 Silberschatz, Galvin and Gagne ©2009

=

o i
&iw Clock Policy

B Uses and additional bit called a “use bit”

B When a page is first loaded in memory or referenced, the use bit is
settol

B When itis time to replace a page, the OS scans the set flipping all
1’sto0

B The first frame encountered with the use bit already set to O is
replaced.

B When a page is revisited, setto 1

\
\\\\\
\

~ oS < 1\
v <
A ‘v.,v’

Operating System Concepts — 8" Edition 8.37 Silberschatz, Galvin and Gagne ©2009

—
vy)

When a page fault occurs,
the page the hand is
1 5 pointing to is inspected.

The action taken depends
on the R bit:
R = O: Evict the page
R = 1: Clear R and advance hand

implementation is different.

Operating System Concepts — 8" Edition 8.38 éﬁBerschatz, Galvin and Gagne ©2009

Clock Algorithm: Example

First frame in

circular buffer of
frames that are 2% =] 0
candidates for replacement

P Page 19
e 1| Use = 1

Page 222

Page 556
Use =0

(a) State of buffer just prior to a page replacement

39

Operating System Concepts — 8" Edition 8.39 Silberschatz, Galvin and Gagne ©2009

T Clock Page Replacement

€

reference string
7 01 2 0 38 0 4 2 3 0321 2 01 7 0 1

Operating System Concepts — 8t Edition 8.40 Silberschatz, Galvin and Gagne ©2009

