
Memory	
 Management	

Types	
 of	
 Memory	
 Management	

•  Fixed	
 Par55oning	

•  Dynamic	
 Par55oning	

•  Paging	

•  Segmenta5on	

•  Segmenta5on	
 with	
 Paging	

Fixed	
 Par55oning	

•  Equal-­‐size	
 par55ons	

– Any	
 process	
 whose	
 size	
 is	
 less	
 than	
 or	

equal	
 to	
 the	
 par55on	
 size	
 can	
 be	

loaded	
 into	
 an	
 available	
 par55on	

Fixed	
 Par55oning	

•  Equal-­‐size	
 par55ons	

– Any	
 process	
 whose	
 size	
 is	
 less	
 than	
 or	

equal	
 to	
 the	
 par55on	
 size	
 can	
 be	

loaded	
 into	
 an	
 available	
 par55on	

P1	

P2	

P3	

Fixed	
 Par55oning	

•  Equal-­‐size	
 par55ons	

– Any	
 process	
 whose	
 size	
 is	
 less	
 than	
 or	

equal	
 to	
 the	
 par55on	
 size	
 can	
 be	

loaded	
 into	
 an	
 available	
 par55on	

•  Problems	

– Large	
 process	
 can’t	
 fit	

– Small	
 process	
 wastes	
 memory	

•  Internal	
 fragmenta,on	

	

P1	

P2	

P3	

P4	

X	

X	

Fixed	
 Par55oning	

•  Equal-­‐size	
 par55ons	

– Any	
 process	
 whose	
 size	
 is	
 less	
 than	
 or	

equal	
 to	
 the	
 par55on	
 size	
 can	
 be	

loaded	
 into	
 an	
 available	
 par55on	

•  Problems	

– Large	
 process	
 can’t	
 fit	

– Small	
 process	
 wastes	
 memory	

•  Internal	
 fragmenta,on	

	

P1	

P2	

P3	

P4	

X	

X	

Varied-­‐Size	
 Fixed	
 Par55oning	

Problems	
 with	
 Fixed	
 Par55ons	

•  The	
 number	
 of	
 ac5ve	
 processes	
 is	
 limited	
 by	

the	
 system	
 (to	
 the	
 pre-­‐determined	
 number	
 of	

par55ons)	

•  A	
 large	
 number	
 of	
 very	
 small	
 process	
 will	
 not	

use	
 space	
 efficiently	

•  Solu5ons?	

Dynamic	
 Par55oning	

•  Par55ons	
 are	
 of	
 variable	
 length	
 and	
 number	

•  Process	
 is	
 allocated	
 as	
 much	
 as	
 required	

•  OS	
 decides	
 which	
 free	
 block	
 to	
 allocate	

OS

process 1

process 2

process 3

OS

process 1

process 3

OS

process 1

process 3

OS

process 1
process 4

process 3

process 4

process 5

OS

process 1

process 3

process 5

OS

process 3

process 5

OS

process 6

process 3

process 5

OS

process 6

process 3

process 5
process 7

Allocation Strategy

•  First-fit: Allocate the first hole that is big enough

•  Best-fit: Allocate the smallest hole that is big enough; must
search entire list, unless ordered by size

–  Produces the smallest leftover hole

•  Worst-fit: Allocate the largest hole; must also search entire
list

–  Produces the largest leftover hole

How to satisfy a request of size n from a list of free holes?

First-fit and best-fit better than worst-fit in terms of speed and
storage utilization

Allocation Strategy	

OS

process 6

process 3

process 5

process 7

P8	

First-­‐fit	

Worst-­‐fit	

Best-­‐fit	

OS

process 1

process 2

process 3

OS

process 1

process 3

OS

process 1

process 3

OS

process 1
process 4

process 3

process 4

process 5

OS

process 1

process 3

process 5

OS

process 3

process 5

OS

process 6

process 3

process 5

OS

process 6

process 3

process 5
process 7

External	

Fragmenta,on!	

Dynamic	
 Par55oning	
 Example	

•  External	
 Fragmenta-on	

– Memory	
 external	
 to	
 all	

processes	
 is	
 fragmented	

•  Compac-on	

– OS	
 moves	
 processes	
 so	
 that	

they	
 are	
 con5guous	

– Time	
 consuming	
 and	
 wastes	

CPU	
 5me	

OS	
 (8M)	

P1	
 	

(20M)	

P3	

(18M)	

Empty (4M)

P4(8M)	

Empty (6M)

P2	

(14M)	

Empty (6M)

Fragmentation
•  External Fragmentation – total free memory is

enough for new process, but it is not contiguous
•  Internal Fragmentation – allocated memory to a

process but never used

•  Fixed partitioning has only internal frag.
•  Dynamic partitioning has only external frag.

•  First fit has 50-percent rule
–  given N blocks allocated, 0.5 N blocks lost to external

fragmentation
–  Memory utilization = 2/3

Buddy	
 System	

•  For	
 alloca5on	
 of	
 a	
 process	

– Divide	
 the	
 free	
 memory	
 block	
 into	
 two	
 blocks	

– un5l	
 it	
 best	
 fits	
 to	
 the	
 block	

•  For	
 dealloca5on	
 of	
 a	
 process	

– Merge	
 the	
 freed	
 block	
 with	
 buddy	
 block	

– buddy	
 block	

•  The	
 other	
 block	
 when	
 it	
 was	
 divided	
 into	
 two	

•  Has	
 both	
 internal/external	
 fragmenta5ons	

Example	
 of	
 Buddy	
 System	

Tree	
 Representa5on	
 of	
 Buddy	

System	

Paging	

•  Goal	

– No	
 external	
 fragmenta5on	
 problem	

– Efficient	
 memory	
 sharing	

– Flexible	
 memory	
 use	

•  Idea	

– Divide	
 a	
 process	
 into	
 mul5ple	
 fragments	

– Alloca5on	
 each	
 fragment	
 anywhere	

– Maintain	
 where	
 the	
 fragments	
 are	

Paging	

•  Par55on	
 physical	
 memory	
 into	
 equal	
 size	
 frames	

Paging	

•  Par55on	
 physical	
 memory	
 into	
 equal	
 size	
 frames	

•  Divide	
 logical	
 memory	
 into	
 same-­‐size	
 pages	

Paging	

•  Par55on	
 physical	
 memory	
 into	
 equal	
 size	
 frames	

•  Divide	
 logical	
 memory	
 into	
 same-­‐size	
 pages	

•  Each	
 page	
 can	
 go	
 to	
 any	
 free	
 frame	

Paging	

•  Par55on	
 physical	
 memory	
 into	
 equal	
 size	
 frames	

•  Divide	
 logical	
 memory	
 into	
 same-­‐size	
 pages	

•  Each	
 page	
 can	
 go	
 to	
 any	
 free	
 frame	

•  OS	
 knows	
 the	
 mapping	

–  page	
 table	

Addressing	
 with	
 Paging	

•  Analogy	

– We	
 have	
 100	
 students,	
 from	
 00	
 to	
 99	

–  10	
 groups:	
 00~09	
 (group	
 0),	
 10~19	
 (group	
 1),	
 20~29	
 (g2),	
 …	

–  Ride	
 on	
 a	
 train	
 with	
 100	
 cars,	
 10	
 people	
 on	
 each	

–  Each	
 group	
 on	
 the	
 same	
 car	

– Mapping	
 table:	
 	
 which	
 group	
 on	
 which	
 car	

•  Car(group)	
 	
 	
 	
 	
 	
 	
 	
 	
 ex:	
 Car(4)	
 =	
 19	

– Where	
 is	
 student	
 48?	

•  48	
 à	
 (
 Car(4)=19,	
 8)	
 =	
 198	

4	
 	
 8	

Group-­‐car	

table	

19	
 8	

000~009	
 190~199	
 200~209	
 010~019	

20~29	
 40~49	
 00~09	

Paging:	
 Logical	
 Addresses	

•  16-bit address, page size 1K=210

, first 6 bit=page #, last 10bit = offset

Paging:	
 Logical	
 to	
 Physical	
 Address	

frame	
 number	

Address Translation Scheme

•  Address generated by CPU is divided into:
–  Page number (p)

•  index into a page table = (page #, frame #)
–  Page offset (d)

•  offset within the page (frame)
–  Given m bits logical address, page size 2n

•  last n bit = offset = 0 ~ 2n-1
•  first m-n bit = page number = 0 ~ 2m-1

–  page table translates: page no à frame no (M-n bits)
•  M >= m

page number page offset

p d

m - n n

frame number page offset

f d

M - n n

page	

table	

Paging Hardware

Paging Example
4-bit logical address (m=4), 16-byte process space
2-bit page no (m-n=2), 0~3

2-bit offset (n=2), 4-byte pages
5-bit physical address, 32-byte memory

frame-­‐0	

frame-­‐1	

frame-­‐2	

frame-­‐3	

frame-­‐4	

frame-­‐5	

frame-­‐6	

frame-­‐7	

00000	

00100	

01000	

01100	

10000	

10100	

11000	

11100	

01001	

01010	

01011	

0000	

0001	

0010	

0011	

0100	

1000	

1100	

1111	

1101	

1110	

0101	

0110	

0111	

1001	

1010	

1011	

101	

110	

001	

010	

page	
 #	

page	
 #	

page	
 #	

page	
 #	

Paging Example
4-bit logical address (m=4), 16-byte process space
2-bit page no (m-n=2), 0~3

2-bit offset (n=2), 4-byte pages
5-bit physical address, 32-byte memory

frame-­‐0	

frame-­‐1	

frame-­‐2	

frame-­‐3	

frame-­‐4	

frame-­‐5	

frame-­‐6	

frame-­‐7	

00000	

00100	

01000	

01100	

10000	

10100	

11000	

11100	

01001	

01010	

01011	

0000	

0001	

0010	

0011	

0100	

1000	

1100	

1111	

1101	

1110	

0101	

0110	

0111	

1001	

1010	

1011	

101	

110	

001	

010	

page	
 #	

page	
 #	

page	
 #	

page	
 #	

Logical	
 address	
 1110	

àpage	
 11,	
 offset	
 10	

àframe	
 010,	
 offset	
 10	

àPhys.	
 addr.	
 01010	

Fragmentation in Paging
•  Internal fragmentation

–  Page size = 2,048 bytes
–  Process size = 72,766 bytes
–  35 pages + 1,086 bytes
–  Internal fragmentation = 2,048 - 1,086 = 962 bytes

•  Frame size & fragmentation
–  Internal fragmentation = 1byte ~ (frame size – 1)
–  Average fragmentation = 1 / 2 frame size
–  Small frame size better?

•  Small frame size à Small internal fragmentation  
à Large page table

•  Large frame sizeà Small page table  
à More internal fragmentation

Quiz	

Consider	
 a	
 simple	
 paging	
 system	
 with	
 the	

following	
 parameters:	
 232	
 bytes	
 of	
 physical	

memory;	
 page	
 size	
 of	
 210	
 bytes;	
 216	
 pages	
 of	

logical	
 address	
 space.	
 	

– How	
 many	
 bits	
 are	
 in	
 a	
 logical	
 address?	

– How	
 many	
 bytes	
 in	
 a	
 frame?	

– How	
 many	
 bits	
 in	
 the	
 physical	
 address	

specify	
 the	
 frame?	

– How	
 many	
 entries	
 in	
 the	
 page	
 table?	

Allocation of Free Frames
Free	
 frame	
 list:	
 14à13à18à20à15à�	

0	

1	

2	

3	

Allocation of Free Frames
Free	
 frame	
 list:	
 14à13à18à20à15à�	

0	
 14	

1	

2	

3	

page	
 0	

Allocation of Free Frames
Free	
 frame	
 list:	
 14à13à18à20à15à�	

0	
 14	

1	
 13	

2	

3	

page	
 0	

page	
 1	

Allocation of Free Frames
Free	
 frame	
 list:	
 14à13à18à20à15à�	

0	
 14	

1	
 13	

2	
 18	

3	
 20	

page	
 0	

page	
 1	

page	
 2	

page	
 3	

Implementation of Page Table
•  Page table is kept in main memory
•  Page-table base register (PTBR) points to the

page table
•  Page-table length register (PTLR) indicates size

of the page table

*	
 4	

PTBR	
 PTLR	

Memory Access with Paging
•  With paging, every data/instruction access requires

–  2 memory accesses
–  One for the page table and one for the data / instruction

Page	
 Table	

Page	
 X	

PTBR	

CPU	

access	
 1

:	
 get	
 add
ress	

access	
 2:	
 get	
 data/instruc5on	

Memory Access with Paging
•  Solution: translation look-aside buffer

–  a special fast-lookup hardware cache
–  associative memory

•  address-space identifiers (ASIDs)
–  distinguish between entries of different processes
–  Otherwise need to flush at every context switch

•  TLBs typically small (64 to 1,024 entries)

•  Operation
–  Works like a cache
–  Replacement policies must be considered
–  Some entries can be wired down for permanent fast access

Paging With TLB

M:	
 memory	
 access	
 5me	

e:	
 cache	
 access	
 5me	

e	
 <<	
 M	

Paging With TLB-hit

1	
 cache	

access	

1	
 memory	

access	

Access	
 5me	
 =	
 e	
 +	
 M	

Paging With TLB-miss

X	

1	
 cache	

access	

1	
 memory	

access	

1	
 memory	

access	

Access	
 5me	
 =	
 e	
 +	
 2M	

Effective Access Time
•  Memory lookup = M time unit
•  Associative Lookup = e time unit

–  Can be < 10% of memory access time
•  Hit ratio = α

–  0 < α < 1
•  Effective Access Time (EAT)

EAT = (M + e) α + (2M + e)(1 – α)
= 2M + e – α

•  Consider α = 80%, e = 20 ns, M=100 ns
–  EAT = 0.80 x 120 + 0.20 x 220 = 140ns

Shared Pages
•  Shared code

– One copy of read-only (reentrant) code
shared among processes (i.e., text editors,
compilers, window systems)

– Also useful for interprocess communication
if sharing of read-write pages is allowed

Shared Pages Example

Shared Pages Example

