
Memory	
  Management	
  



Types	
  of	
  Memory	
  Management	
  

•  Fixed	
  Par55oning	
  
•  Dynamic	
  Par55oning	
  
•  Paging	
  
•  Segmenta5on	
  
•  Segmenta5on	
  with	
  Paging	
  



Fixed	
  Par55oning	
  

•  Equal-­‐size	
  par55ons	
  
– Any	
  process	
  whose	
  size	
  is	
  less	
  than	
  or	
  
equal	
  to	
  the	
  par55on	
  size	
  can	
  be	
  
loaded	
  into	
  an	
  available	
  par55on	
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Varied-­‐Size	
  Fixed	
  Par55oning	
  



Problems	
  with	
  Fixed	
  Par55ons	
  

•  The	
  number	
  of	
  ac5ve	
  processes	
  is	
  limited	
  by	
  
the	
  system	
  (to	
  the	
  pre-­‐determined	
  number	
  of	
  
par55ons)	
  

•  A	
  large	
  number	
  of	
  very	
  small	
  process	
  will	
  not	
  
use	
  space	
  efficiently	
  

•  Solu5ons?	
  



Dynamic	
  Par55oning	
  

•  Par55ons	
  are	
  of	
  variable	
  length	
  and	
  number	
  
•  Process	
  is	
  allocated	
  as	
  much	
  as	
  required	
  
•  OS	
  decides	
  which	
  free	
  block	
  to	
  allocate	
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Allocation Strategy 

•  First-fit:  Allocate the first hole that is big enough

•  Best-fit:  Allocate the smallest hole that is big enough; must 
search entire list, unless ordered by size  

–  Produces the smallest leftover hole

•  Worst-fit:  Allocate the largest hole; must also search entire 
list  

–  Produces the largest leftover hole

How to satisfy a request of size n from a list of free holes?

First-fit and best-fit better than worst-fit in terms of speed and 
storage utilization
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Dynamic	
  Par55oning	
  Example	
  

•  External	
  Fragmenta-on	
  
– Memory	
  external	
  to	
  all	
  
processes	
  is	
  fragmented	
  

•  Compac-on	
  
– OS	
  moves	
  processes	
  so	
  that	
  
they	
  are	
  con5guous	
  

– Time	
  consuming	
  and	
  wastes	
  
CPU	
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Fragmentation 
•  External Fragmentation – total free memory is 

enough for new process, but it is not contiguous
•  Internal Fragmentation – allocated memory to a 

process but never used

•  Fixed partitioning has only internal frag.
•  Dynamic partitioning has only external frag.

•  First fit has 50-percent rule
–  given N blocks allocated, 0.5 N blocks lost to external 

fragmentation
–  Memory utilization = 2/3



Buddy	
  System	
  

•  For	
  alloca5on	
  of	
  a	
  process	
  
– Divide	
  the	
  free	
  memory	
  block	
  into	
  two	
  blocks	
  
– un5l	
  it	
  best	
  fits	
  to	
  the	
  block	
  

•  For	
  dealloca5on	
  of	
  a	
  process	
  
– Merge	
  the	
  freed	
  block	
  with	
  buddy	
  block	
  
– buddy	
  block	
  

•  The	
  other	
  block	
  when	
  it	
  was	
  divided	
  into	
  two	
  

•  Has	
  both	
  internal/external	
  fragmenta5ons	
  



Example	
  of	
  Buddy	
  System	
  



Tree	
  Representa5on	
  of	
  Buddy	
  
System	
  



Paging	
  

•  Goal	
  
– No	
  external	
  fragmenta5on	
  problem	
  
– Efficient	
  memory	
  sharing	
  
– Flexible	
  memory	
  use	
  

•  Idea	
  
– Divide	
  a	
  process	
  into	
  mul5ple	
  fragments	
  
– Alloca5on	
  each	
  fragment	
  anywhere	
  
– Maintain	
  where	
  the	
  fragments	
  are	
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Paging	
  

•  Par55on	
  physical	
  memory	
  into	
  equal	
  size	
  frames	
  
•  Divide	
  logical	
  memory	
  into	
  same-­‐size	
  pages	
  
•  Each	
  page	
  can	
  go	
  to	
  any	
  free	
  frame	
  
•  OS	
  knows	
  the	
  mapping	
  

–  page	
  table	
  



Addressing	
  with	
  Paging	
  

•  Analogy	
  
– We	
  have	
  100	
  students,	
  from	
  00	
  to	
  99	
  
–  10	
  groups:	
  00~09	
  (group	
  0),	
  10~19	
  (group	
  1),	
  20~29	
  (g2),	
  …	
  
–  Ride	
  on	
  a	
  train	
  with	
  100	
  cars,	
  10	
  people	
  on	
  each	
  
–  Each	
  group	
  on	
  the	
  same	
  car	
  
– Mapping	
  table:	
  	
  which	
  group	
  on	
  which	
  car	
  

•  Car(group)	
  	
  	
  	
  	
  	
  	
  	
  	
  ex:	
  Car(4)	
  =	
  19	
  
– Where	
  is	
  student	
  48?	
  

•  48	
  à	
  (	
  Car(4)=19,	
  8)	
  =	
  198	
  

4	
  	
  8	
  

Group-­‐car	
  
table	
  

19	
  8	
  
000~009	
   190~199	
   200~209	
  010~019	
  
20~29	
   40~49	
   00~09	
  



Paging:	
  Logical	
  Addresses	
  
•  16-bit address, page size 1K=210

, first 6 bit=page #, last 10bit = offset 



Paging:	
  Logical	
  to	
  Physical	
  Address	
  

frame	
  number	
  



Address Translation Scheme 

•  Address generated by CPU is divided into:
–  Page number (p) 

•  index into a page table = (page #, frame #) 
–  Page offset (d)

•  offset within the page (frame)
–  Given m bits logical address, page size 2n

•  last n bit = offset = 0 ~ 2n-1
•  first m-n bit = page number = 0 ~ 2m-1

–  page table translates: page no à frame no (M-n bits)
•  M >= m

page number page offset

p d

m - n n

frame number page offset

f d

M - n n

page	
  
table	
  



Paging Hardware 



Paging Example 
4-bit logical address (m=4), 16-byte process space
2-bit page no (m-n=2), 0~3

2-bit offset (n=2), 4-byte pages
5-bit physical address, 32-byte memory
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Paging Example 
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Logical	
  address	
  1110	
  
àpage	
  11,	
  offset	
  10	
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  offset	
  10	
  
àPhys.	
  addr.	
  01010	
  



Fragmentation in Paging 
•  Internal fragmentation

–  Page size = 2,048 bytes
–  Process size = 72,766 bytes
–  35 pages + 1,086 bytes
–  Internal fragmentation = 2,048 - 1,086 = 962 bytes

•  Frame size & fragmentation
–  Internal fragmentation = 1byte ~ (frame size – 1)
–  Average fragmentation = 1 / 2 frame size
–  Small frame size better?

•  Small frame size à Small internal fragmentation  
à Large page table

•  Large frame sizeà Small page table  
à More internal fragmentation



Quiz	
  
Consider	
  a	
  simple	
  paging	
  system	
  with	
  the	
  
following	
  parameters:	
  232	
  bytes	
  of	
  physical	
  
memory;	
  page	
  size	
  of	
  210	
  bytes;	
  216	
  pages	
  of	
  
logical	
  address	
  space.	
  	
  
– How	
  many	
  bits	
  are	
  in	
  a	
  logical	
  address?	
  
– How	
  many	
  bytes	
  in	
  a	
  frame?	
  
– How	
  many	
  bits	
  in	
  the	
  physical	
  address	
  
specify	
  the	
  frame?	
  

– How	
  many	
  entries	
  in	
  the	
  page	
  table?	
  



Allocation of Free Frames 
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Implementation of Page Table 
•  Page table is kept in main memory
•  Page-table base register (PTBR) points to the 

page table
•  Page-table length register (PTLR) indicates size 

of the page table

*	
   4	
  
PTBR	
   PTLR	
  



Memory Access with Paging 
•  With paging, every data/instruction access requires

–  2 memory accesses
–  One for the page table and one for the data / instruction

Page	
  Table	
  

Page	
  X	
  

PTBR	
  

CPU	
  
access	
  1

:	
  get	
  add
ress	
  

access	
  2:	
  get	
  data/instruc5on	
  



Memory Access with Paging 
•  Solution: translation look-aside buffer

–  a special fast-lookup hardware cache
–  associative memory

•  address-space identifiers (ASIDs)
–  distinguish between entries of different processes
–  Otherwise need to flush at every context switch

•  TLBs typically small (64 to 1,024 entries)

•  Operation
–  Works like a cache
–  Replacement policies must be considered
–  Some entries can be wired down for permanent fast access



Paging With TLB 

M:	
  memory	
  access	
  5me	
  
e:	
  cache	
  access	
  5me	
  
e	
  <<	
  M	
  



Paging With TLB-hit 

1	
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  +	
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Paging With TLB-miss 

X	
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1	
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Access	
  5me	
  =	
  e	
  +	
  2M	
  



Effective Access Time 
•  Memory lookup = M time unit
•  Associative Lookup = e time unit

–  Can be < 10% of memory access time
•  Hit ratio = α

–  0 < α < 1
•  Effective Access Time (EAT)

EAT = (M + e) α + (2M + e)(1 – α)
= 2M + e – α

•  Consider α = 80%, e = 20 ns, M=100 ns
–  EAT = 0.80 x 120 + 0.20 x 220 = 140ns



Shared Pages 
•  Shared code

– One copy of read-only (reentrant) code 
shared among processes (i.e., text editors, 
compilers, window systems)

– Also useful for interprocess communication 
if sharing of read-write pages is allowed



Shared Pages Example 
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