Memory Management

Types of Memory Management

Fixed Partitioning
Dynamic Partitioning

Paging
Segmentation

Segmentation with Paging

Fixed Partitioning

Operating System
8M

* Equal-size partitions

SM

— Any process whose size is less than or |
equal to the partition size can be = I!
loaded into an available partition ™ Ii

SM ll
)
SM li
i

2|

SM

(a) Equal-size partitions

Fixed Partitioning

Operating System
SM

* Equal-size partitions
— Any process whose size is less than or

equal to the partition size can be

loaded into an available partition

SM

SM

SM

SM

(a) Equal-size partitions

Fixed Partitioning

Operating System
SM

* Equal-size partitions

— Any process whose size is less than or 7 =X
equal to the partition size can be = }-x
loaded into an available partition

* Problems

SM

— Large process can’t fit

SM

— Small process wastes mem
* Internal fragmentation

SM

SM

(a) Equal-size partitions

Fixed Partitioning

Operating System
SM

* Equal-size partitions

— Any process whose size is less than or ==X
equal to the partition size can be = }x
loaded into an available partition

* Problems

SM

— Large process can’t fit

SM

— Small process wastes mem
* Internal fragmentation

SM

SM

(a) Equal-size partitions

New
Processes

Varied-Size Fixed Partitioning

Operating
System

(a) One process queue per partition

New
Processes

—

Operating
System

(b) Single queue

Problems with Fixed Partitions

* The number of active processes is limited by

the system (to the pre-determined number of
partitions)

* Alarge number of very small process will not
use space efficiently

e Solutions?

Dynamic Partitioning

e Partitions are of variable length and number
* Process is allocated as much as required
* OS decides which free block to allocate

OS

process 1

OS

OS

process 2

process 1

process 1

OS

process 3

process 4

process 1

process 4

process 3

process 5

OS

process 3

process 3

process 1

OS

process 5

OS

OS

process 6

process 6

process 5

process 5

process 5

process 3

process 7

process 3

process 3

process 3

Allocation Strategy

How to satisfy a request of size n from a list of free holes?
« First-fit: Allocate the first hole that is big enough

- Best-fit: Allocate the smallest hole that is big enough; must
search entire list, unless ordered by size
— Produces the smallest leftover hole

- Worst-fit: Allocate the /argest hole; must also search entire
list
— Produces the largest leftover hole

First-fit and best-fit better than worst-fit in terms of speed and
storage utilization

Allocation Strategy

OS
process 6
First-fit
process 5
Worst-fit
process 7
process 3

OS

process 1

OS

OS

process 1

process 2

process 3

process 1

process 4

process 3

process 3

o4

proces

process 5

process 5

process 5

process 3

process 3

process 3

OS

process 1

process 4

process 5

process 3

OS

process 6

process 5
process 7

process 3

Dynamic Partitioning Example

* External Fragmentation

— Memory external to all
processes is fragmented

* Compaction

— OS moves processes so that
they are contiguous

— Time consuming and wastes
CPU time

Fragmentation

External Fragmentation — total free memory is
enough for new process, but it is not contiguous

Internal Fragmentation — allocated memory to a
process but never used

Fixed partitioning has only internal frag.
Dynamic partitioning has only external frag.

First fit has 50-percent rule

— ?iven N blocks allocated, 0.5 N blocks lost to external
ragmentation

— Memory utilization = 2/3

Buddy System

* For allocation of a process

— Divide the free memory block into two blocks
— until it best fits to the block

* For deallocation of a process
— Merge the freed block with buddy block
— buddy block

* The other block when it was divided into two

* Has both internal/external fragmentations

1 Mbyte block
Request 100 K
Request 240 K
Request 64 K
Request 256 K
Release B
Release A
Request 75 K
Release C
Release E

Release D

Example of Buddy System

1M
A=128K 128K 256K 512K
A=128K 128K = 256K S12K
A=128K [c=sk| 64K = 256K S12K
A=128K [c=6| 64K = 256K D = 256K 256K
A=128K [c=6K| 64K 256K D = 256K 256K
128K [c=6K| 64K 256K D = 256K 256K
E =128K [c=sk| 64K 256K D = 256K 256K
E=128K 128K 256K D = 256K 256K
512K D = 256K 256K
1M

Tree Representation of Buddy
System

1M

256K
128K

64K

v v
[[A=128K [c-o+x] 64K | 256K | D=256K | 256K |

Figure 7.7 Tree Representation of Buddy System

Paging

* Goal
— No external fragmentation problem
— Efficient memory sharing

— Flexible memory use

* |dea
— Divide a process into multiple fragments
— Allocation each fragment anywhere

— Maintain where the fragments are

Paging

e Partition physical memory into equal size frames

frame
number

physical
memory

Paging

e Partition physical memory into equal size frames
* Divide logical memory into same-size pages

frame
number

page O 0
page 1 1
page 2 2
page 3 3

logical 4
memory

physical
memory

Paging

e Partition physical memory into equal size frames
* Divide logical memory into same-size pages
 Each page can go to any free frame

frame
number

page 1 1| page O

page 2 2
page 3 3| page 2
logical 4| page 1

memory

7| page 3

physical
memory

Paging

Partition physical memory into equal size frames
Divide logical memory into same-size pages
Each page can go to any free frame

OS knows the mapping number
page O \ 0

— page table — %? I s
page 2 /‘;2 3 2
page 3 page tabl 3| page 2
logical o e

memory

7| page 3

physical
memory

Addressing with Paging

* Analogy
— We have 100 students, from 00 to 99
— 10 groups: 00~09 (group 0), 10~19 (group 1), 20~29 (g2), ...
— Ride on a train with 100 cars, 10 people on each
— Each group on the same car

— Mapping table: which group on which car
* Car(group) ex: Car(4) =19

— Where is student 48? 48 =]
48 - (Car(4)=19, 8) =198

'l o D O s e
A T e) ki

NN - - - - N

Paging: Logical Addresses

» 16-bit address, page size 1K=2"° first 6 bit=page #, last 10bit = offset

Logical address =

Relative address = 1502 Page# = 1, Offset = 478
(0000010111011110)| (000001/0111011110|
r

Page 0
A

27

S g x
2 . ~
= = -+
~ — N
b

R +— > -
s & <)
A o | -

- —

Page 2
A

k

(a) Partitioning

r
\’?\J
Internal

fragmentation

(b) Paging

Paging: Logical to Physical Address

16-bit logical address
< -

6-bit page # 10-bit offset
< > <

=
0/0]j0|0OfOf1|Of1]1)1|0|1f1f1])1|0
_,———\/\A ~ —

0[000101
»1[000110
2(011001
Process
page table frame number
v
——A ———— A
0|0|0j1]1(0fOj1|1]1|0f1f1)|1]1

<

16-bit physical address
(a) Paging

Address Translation Scheme

« Address generated by CPU is divided into:

— Page number (p)
 index into a page table = (page #, frame #)

— Page offset (d)

« offset within the page (frame)

— Given m bits logical address, page size 2"
* last n bit = offset = 0 ~ 2"-1
« first m-n bit = page number = 0 ~ 2™M-1

— page table translates: page no - frame no (M-n bits)
e M>=m

page number

page offset

&
) 0 g

p

d

!

frame number

page offset

m -

n

n

f

d

M -

n

n

CPU

Paging Hardware

fO000

... 0000

logical physical
address address
A
d d
P

Y

page table

f1111

« v 1T

physical
memory

Paging Example

4-bit logical address (m=4), 16-byte process space
00000
2-bit page no (m-n=2), 0~3
2-bit offset (n=2), 4-byte pages 00100
5-bit physical address, 32-byte memory
01000
01001
01010
01011
0 | a |0000 01100
1 | b |0001
2 | c |0010
31d 0011
g e 0100 10000
0101
6 | g |0110 \page#O 51101
7 1 h {0111 page#1| 6 | 110 10100
8 I 1000 page#2| 1 | 001
o |1 |1001 / page #3[2 | 010
10| k 1010 11000
1111 11011 page table
12({m |1100
13 n (1101
141 0 (1110 11100
15]p |1111

logical memory

T 03 3[—x——

12

16

20

24

oQ -0 0 T

28

frame-0

frame-1

frame-2

frame-3

frame-4

frame-5

frame-6

frame-7

physical memory

Paging Example

4-bit logical address (m=4), 16-byte process space
2-bit page no (m-n=2), 0~3

2-bit offset (n=2), 4-byte pages

5-bit physical address, 32-byte memory

o | a |0000
1 [b |0001
Logical address 1110 2| ¢ (0010
31d 0011
—~>page 11, offset 10 4 e |0100
—>frame 010, offset 10 : é T ., Peee#o[5] 101
—Phys. addr. 01010 7| h |0111 page #1| 6 | 110
8 | I 1000 page #2 Q01
f; K 1823 ”//;7 ik U
1101 [1011 page table
12| m |1100
13| n
14| o([1110
15 P<:b

logical memory

00000 o
00100 4 | |
j
Kk
|
m
n
0
P
10000 16
10100 20 |8
C
d
11000 24 |
g
h
11100 28

frame-0

frame-1

frame-2

frame-3

frame-4

frame-5

frame-6

frame-7

physical memory

Fragmentation in Paging

Internal fragmentation

— Page size = 2,048 bytes

— Process size = 72,766 bytes

— 35 pages + 1,086 bytes

— Internal fragmentation = 2,048 - 1,086 = 962 bytes
Frame size & fragmentation

— Internal fragmentation = 1byte ~ (frame size — 1)
— Average fragmentation = 1/ 2 frame size

— Small frame size better?

Small frame size - Small internal fragmentation
—> Large page table

Large frame size—> Small page table
- More internal fragmentation

Quiz

Consider a simple paging system with the
following parameters: 232 bytes of physical
memory; page size of 210 bytes; 21° pages of
logical address space.

OW many
OW many

oW many

oits are in a logical address?
oytes in a frame?

oits in the physical address

specify the frame?

—How many entries in the page table?

Allocation of Free Frames

Free frame list: 142>132>182>20—>15—>° s
14

15

G 0 16
G 1 17

SZSZ? 2 18

20

21

Allocation of Free Frames

Free frame list: 13-2>18220>15>° s
14 |page 0
15
D 0 14
page O
page 1 1 17
page 2
page 3 2 18
new process 3
< 19
20
21

Allocation of Free Frames

Free frame list: 18220>15->¢°
13 |page 1
14 |page 0
15
@ 16
| ——— 014
page O
page 1 1113 i
page 2
page 3 2 18
new process 3
- 19
20
21

Allocation of Free Frames

Free frame list: 15>
13 |page 1
14 |page 0
15
a 16
| —— 0|14
page O
page 1 1113 i
2
52823 2|18 * 18 |page 2
new process 3120
20 |page 3
21

Implementation of Page Table

Page table is kept in main memory

Page-table base register (PTBR) points to the

page table

Page-table length register (PTLR) indicates size

of the page table

page O
p— 0| 1
page 1 1 [
2|3
age 2
pag 507
page 3 page table
logical
memory
PTBR PTLR

frame
number

0

’
2
3
4
5
6
7

page O

page 2

page 1

page 3

physical
memory

Memory Access with Paging

« With paging, every data/instruction access requires
— 2 memory accesses
— One for the page table and one for the data / instruction

B >

PTER X addr ess
ge

/
access 2: get data/instruction
—— Page X wamm

Memory Access with Paging

Solution: translation look-aside buffer
— a special fast-lookup hardware cache
— associative memory

address-space identifiers (ASIDs)
— distinguish between entries of different processes
— Otherwise need to flush at every context switch

TLBs typically small (64 to 1,024 entries)

Operation
— Works like a cache
— Replacement policies must be considered
— Some entries can be wired down for permanent fast access

Paging With TLB

logical

address |
CPU > p d

page frame
number number

TLB hit

I YYVYY VYN

physical

' address

TLB

TLB miss

v

M: memory access time
e: cache access time
e<< M

page table

physical
memory

Paging With TLB-hit

logical
address |

CPU

|
=L access
- TLB hit

physical
’ address

daCcess

TLB

TLB miss

v

physical
memory

page table

Accesstime=e + M

Paging With TLB-miss

logical
address |

CPU

-L
—L dcCcess
e

= Y

TLB hit

physical
address

daCcess

physical
memory

aCcess

page table

Access time =e + 2M

Effective Access Time

Memory lookup = M time unit
Associative Lookup = ¢ time unit
— Can be < 10% of memory access time
Hit ratio = a
— O<ax<1
Effective Access Time (EAT)
EAT=(M+¢e)a+ (2M + ¢)(1 — a)
=2M + e — Q.

Consider a. = 80%, ¢ = 20 ns, M=100 ns
— EAT =0.80x120 + 0.20 x 220 = 140ns

Shared Pages

 Shared code

— One copy of read-only (reentrant) code
shared among processes (i.e., text editors,
compilers, window systems)

— Also useful for interprocess communication
If sharing of read-write pages is allowed

Shared Pages Example

ed 1 0
3
ed?2 4 1 data 1
ed 3 : o| data3
1
data 1 page table 3 ed 1
for P
i ed 1
process P, 3 4| ed?
ed 2
4 5
ed 3 0
7 6 ed3
data 2 page table
for P2 7 data 2
ciel 2 process P, 5
ed?2 4
9
ed 3 2
2 10
data 3 page table
for P3 11
process P,

Shared Pages Example

0
ed1 =
3 [\
I =1y
ed 2 l 4|1 1| data i
\i g/t
ed3 / 2| data3
} ﬂ;ht
/ \
data 1 page table 3f ed1
for P I
o ed 1 - 1]
process P \ M ed?
! 71 3 \ g
! Ny 2 |
v/ 2
ed 3 o T
7 d‘ ed3 J
i 2
data 2 page table -
for P 7| data?2
ed1 2
- process P,
EI 8
i 7 9
ed 3 v/
= 10
data 3 page table
for P, 11
process P,

