

# Memory Management

# Types of Memory Management

- Fixed Partitioning
- Dynamic Partitioning
- Paging
- Segmentation
- Segmentation with Paging

# Fixed Partitioning

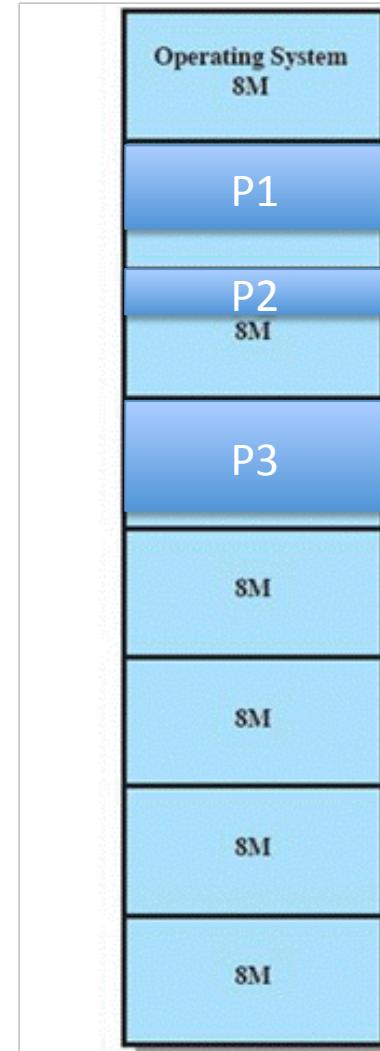
- Equal-size partitions
  - Any process whose size is less than or equal to the partition size can be loaded into an available partition



(a) Equal-size partitions

# Fixed Partitioning

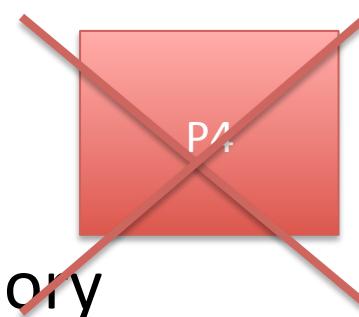
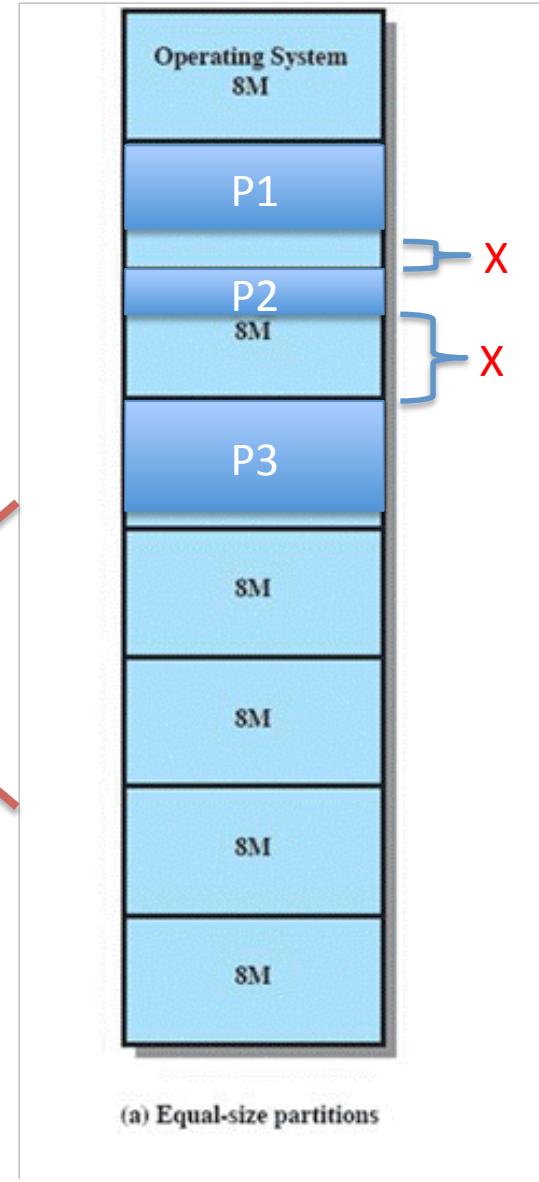
- Equal-size partitions
  - Any process whose size is less than or equal to the partition size can be loaded into an available partition



(a) Equal-size partitions

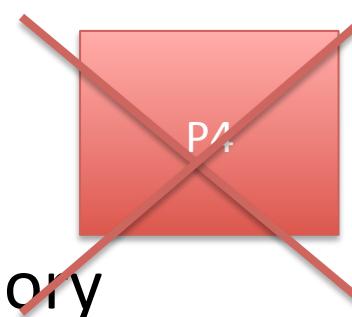
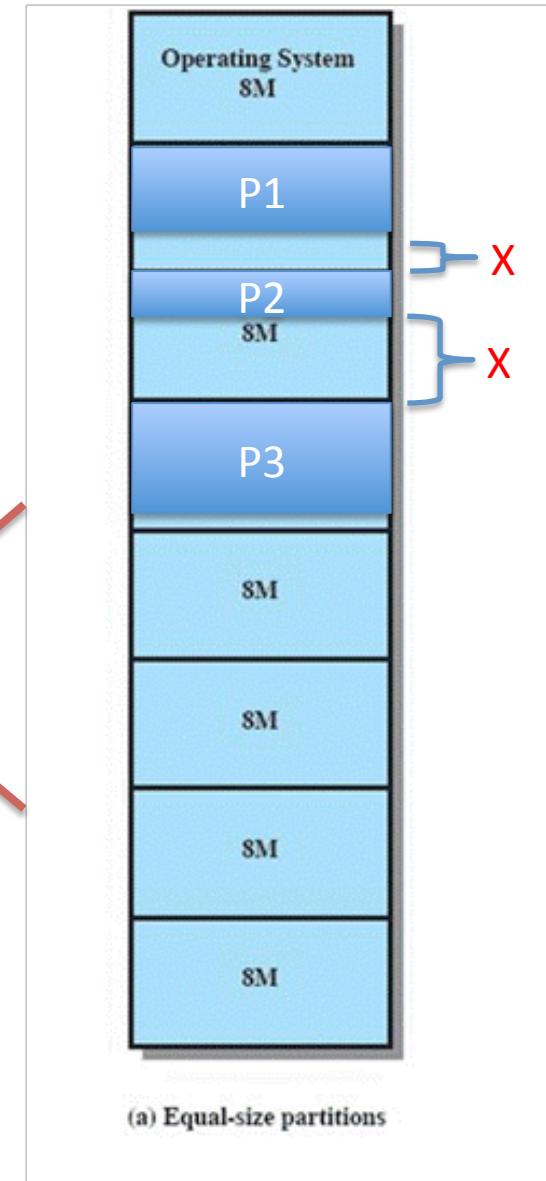
# Fixed Partitioning

- Equal-size partitions
  - Any process whose size is less than or equal to the partition size can be loaded into an available partition
- Problems
  - Large process can't fit
  - Small process wastes memory
    - *Internal fragmentation*

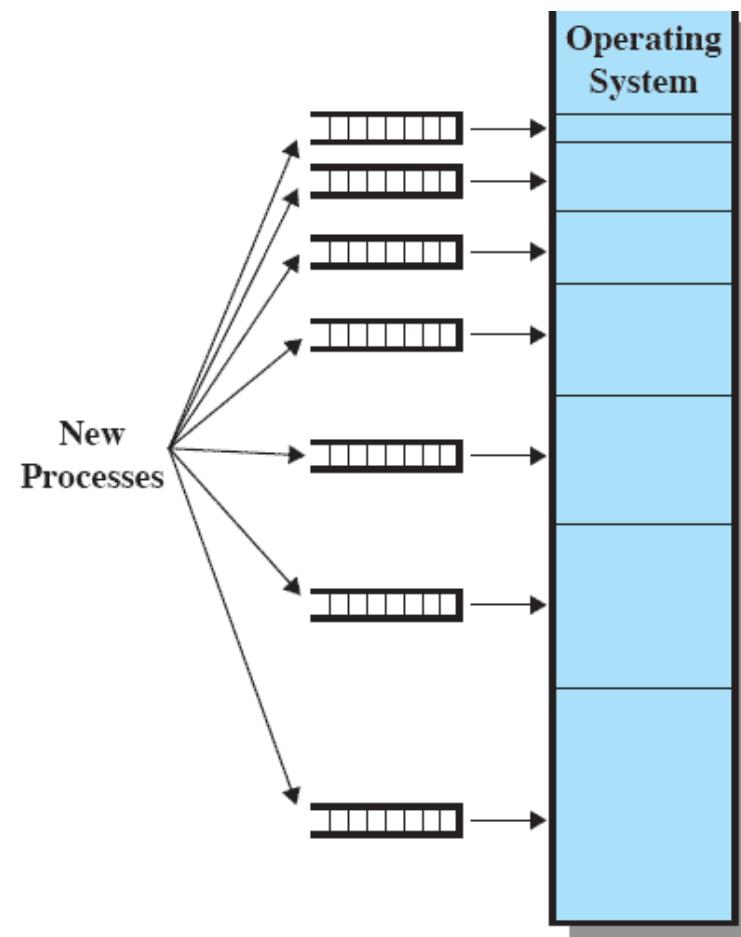


# Fixed Partitioning

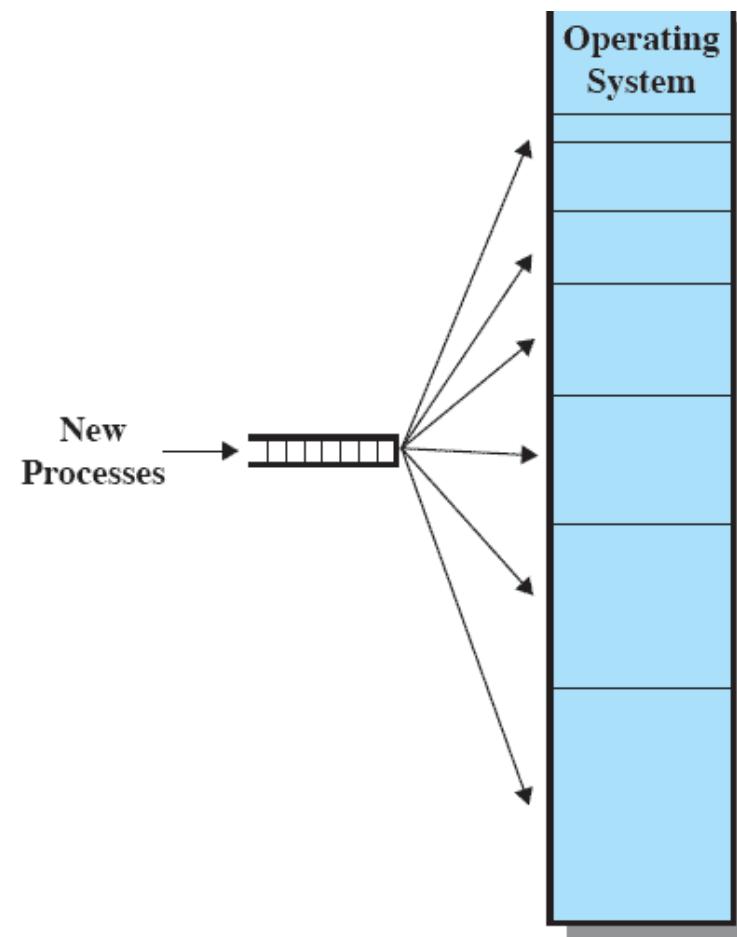
- Equal-size partitions
  - Any process whose size is less than or equal to the partition size can be loaded into an available partition
- Problems
  - Large process can't fit
  - Small process wastes memory
    - *Internal fragmentation*



# Varied-Size Fixed Partitioning



(a) One process queue per partition



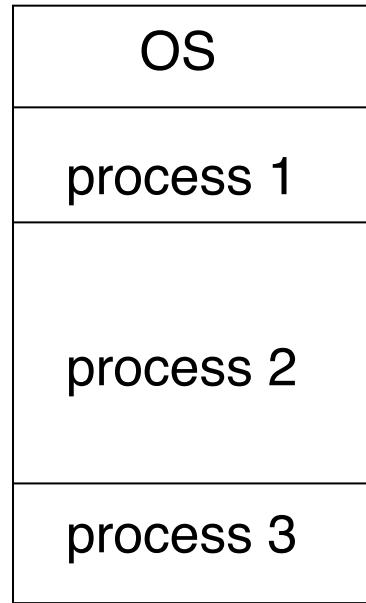
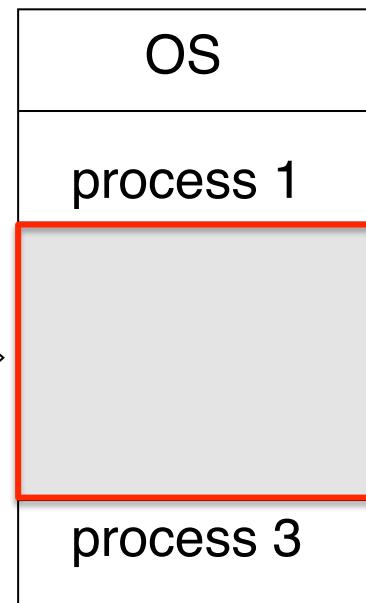
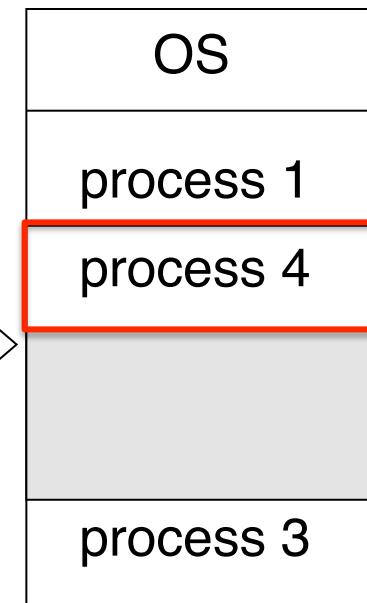
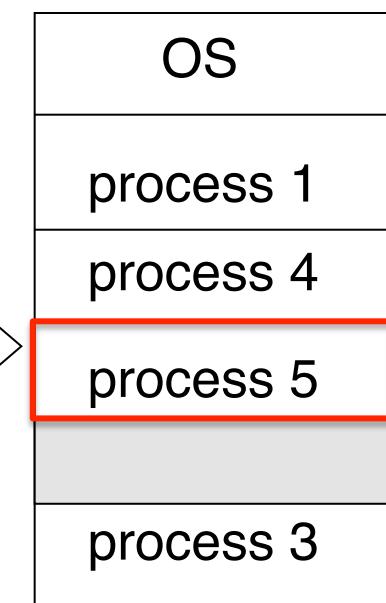
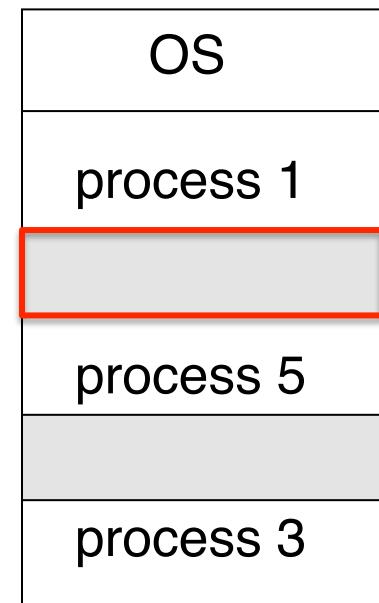
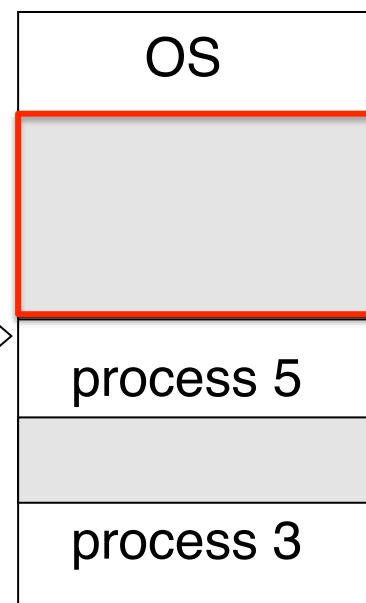
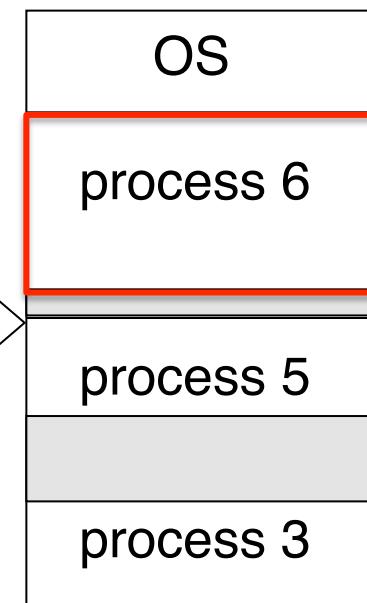
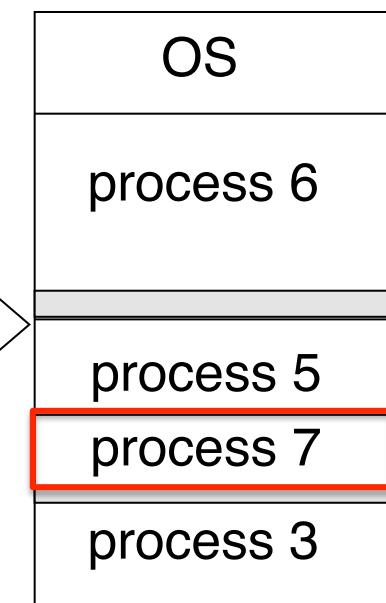
(b) Single queue

# Problems with Fixed Partitions

- The **number of active processes** is **limited** by the system (to the pre-determined number of partitions)
- A large number of very small process will **not use space efficiently**
- Solutions?

# Dynamic Partitioning

- Partitions are of variable length and number
- Process is allocated as much as required
- OS decides which free block to allocate



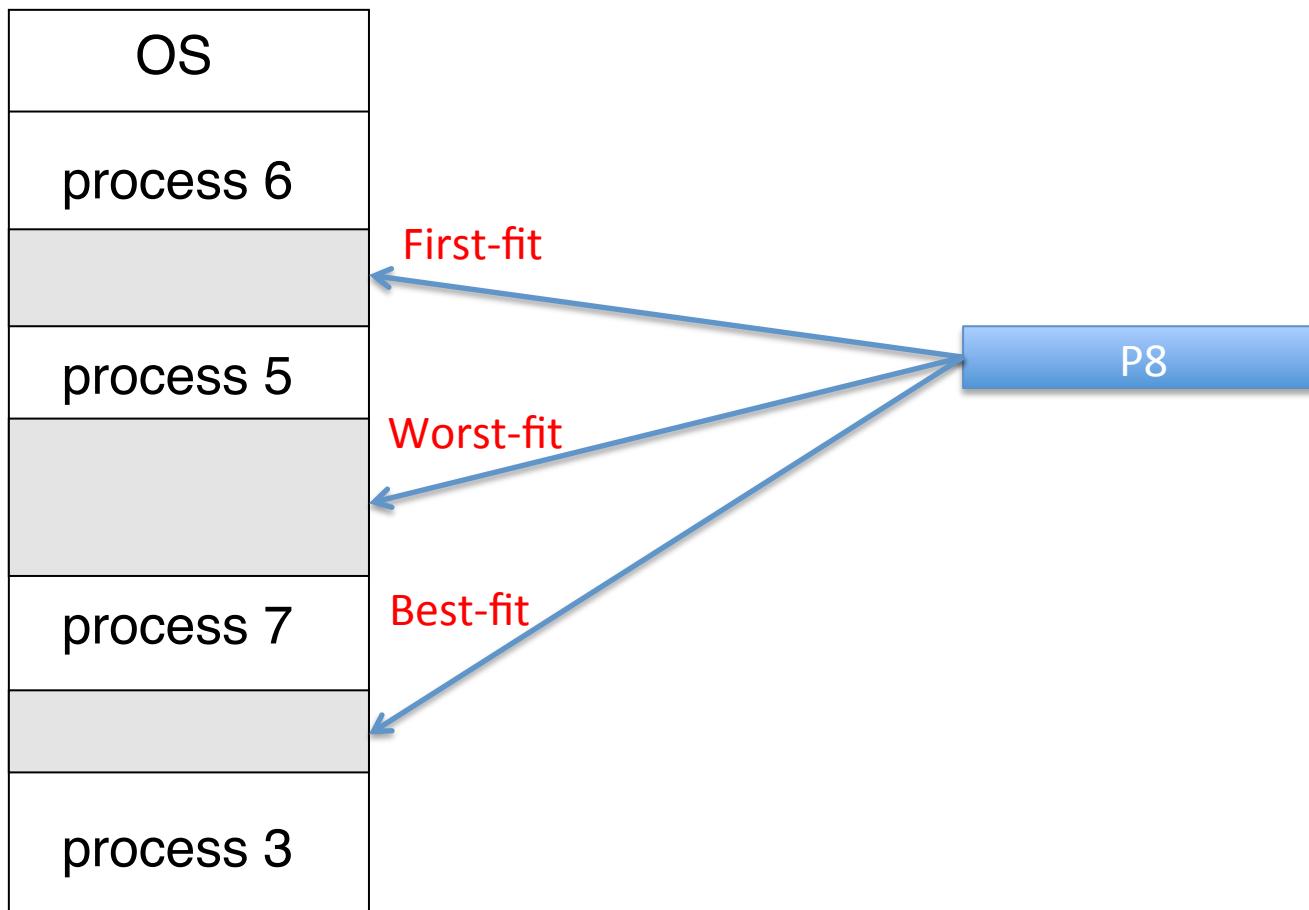
# Allocation Strategy

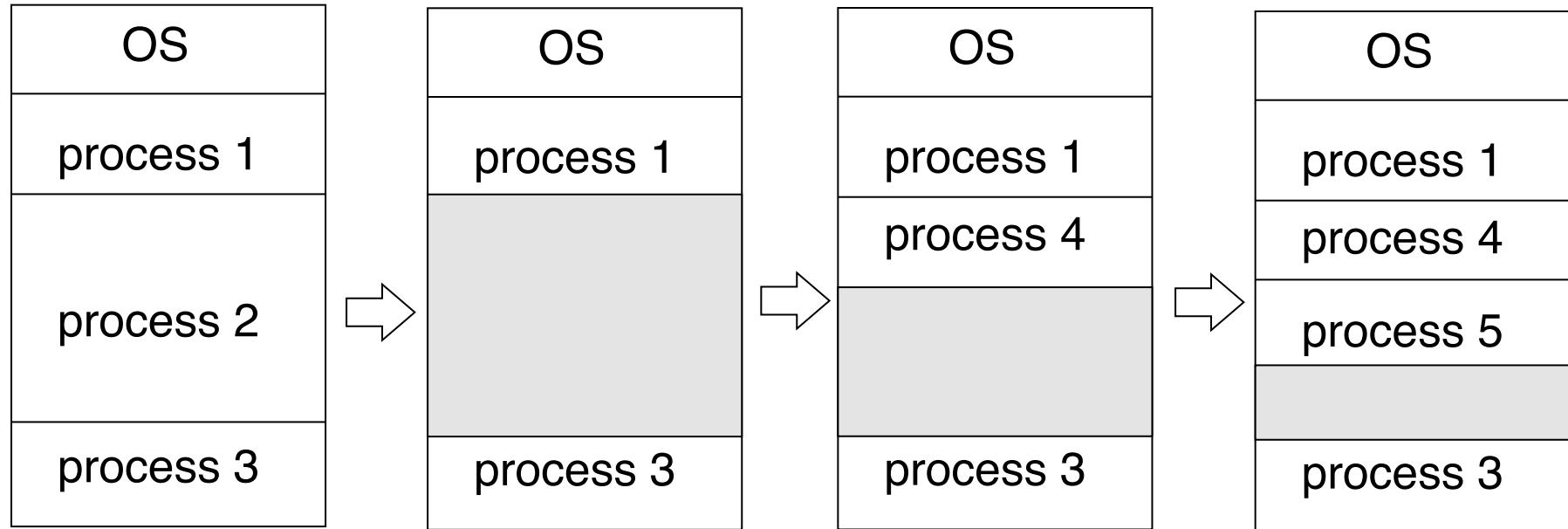
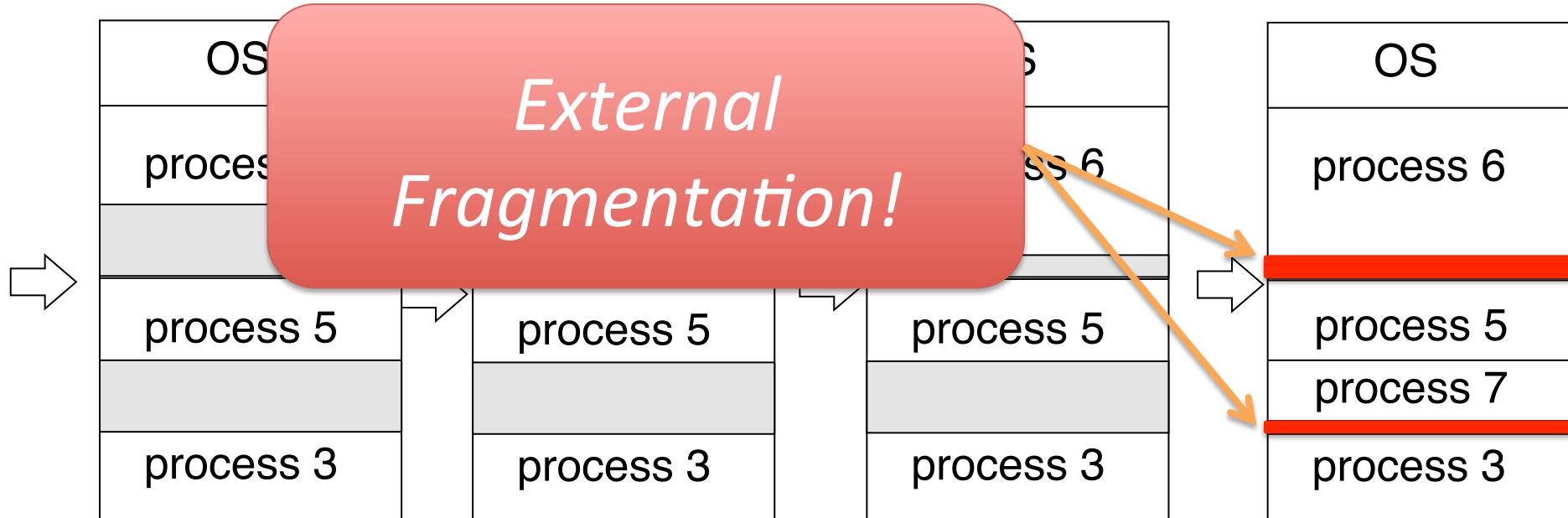
How to satisfy a request of size  $n$  from a list of free holes?

- **First-fit**: Allocate the *first* hole that is big enough
- **Best-fit**: Allocate the *smallest* hole that is big enough; must search entire list, unless ordered by size
  - Produces the smallest leftover hole
- **Worst-fit**: Allocate the *largest* hole; must also search entire list
  - Produces the largest leftover hole

First-fit and best-fit better than worst-fit in terms of speed and storage utilization

# Allocation Strategy





# Dynamic Partitioning Example



- ***External Fragmentation***
  - Memory external to all processes is fragmented
- ***Compaction***
  - OS moves processes so that they are contiguous
  - Time consuming and wastes CPU time

# Fragmentation

- **External Fragmentation** – total free memory is enough for new process, but it is not contiguous
- **Internal Fragmentation** – allocated memory to a process but never used
- *Fixed partitioning has only internal frag.*
- *Dynamic partitioning has only external frag.*
- First fit has 50-percent rule
  - given  $N$  blocks allocated,  $0.5 N$  blocks lost to external fragmentation
  - Memory utilization =  $2/3$

# Buddy System

- For allocation of a process
  - Divide the free memory block into two blocks
  - until it best fits to the block
- For deallocation of a process
  - Merge the freed block with buddy block
  - buddy block
    - The other block when it was divided into two
- Has both internal/external fragmentations

# Example of Buddy System

|               |          |         |          |          |          |      |
|---------------|----------|---------|----------|----------|----------|------|
| 1 Mbyte block | 1 M      |         |          |          |          |      |
| Request 100 K | A = 128K | 128K    | 256K     | 512K     |          |      |
| Request 240 K | A = 128K | 128K    | B = 256K | 512K     |          |      |
| Request 64 K  | A = 128K | C = 64K | 64K      | B = 256K | 512K     |      |
| Request 256 K | A = 128K | C = 64K | 64K      | B = 256K | D = 256K | 256K |
| Release B     | A = 128K | C = 64K | 64K      | 256K     | D = 256K | 256K |
| Release A     | 128K     | C = 64K | 64K      | 256K     | D = 256K | 256K |
| Request 75 K  | E = 128K | C = 64K | 64K      | 256K     | D = 256K | 256K |
| Release C     | E = 128K | 128K    | 256K     | D = 256K | 256K     |      |
| Release E     | 512K     |         |          | D = 256K | 256K     |      |
| Release D     | 1M       |         |          |          |          |      |

# Tree Representation of Buddy System

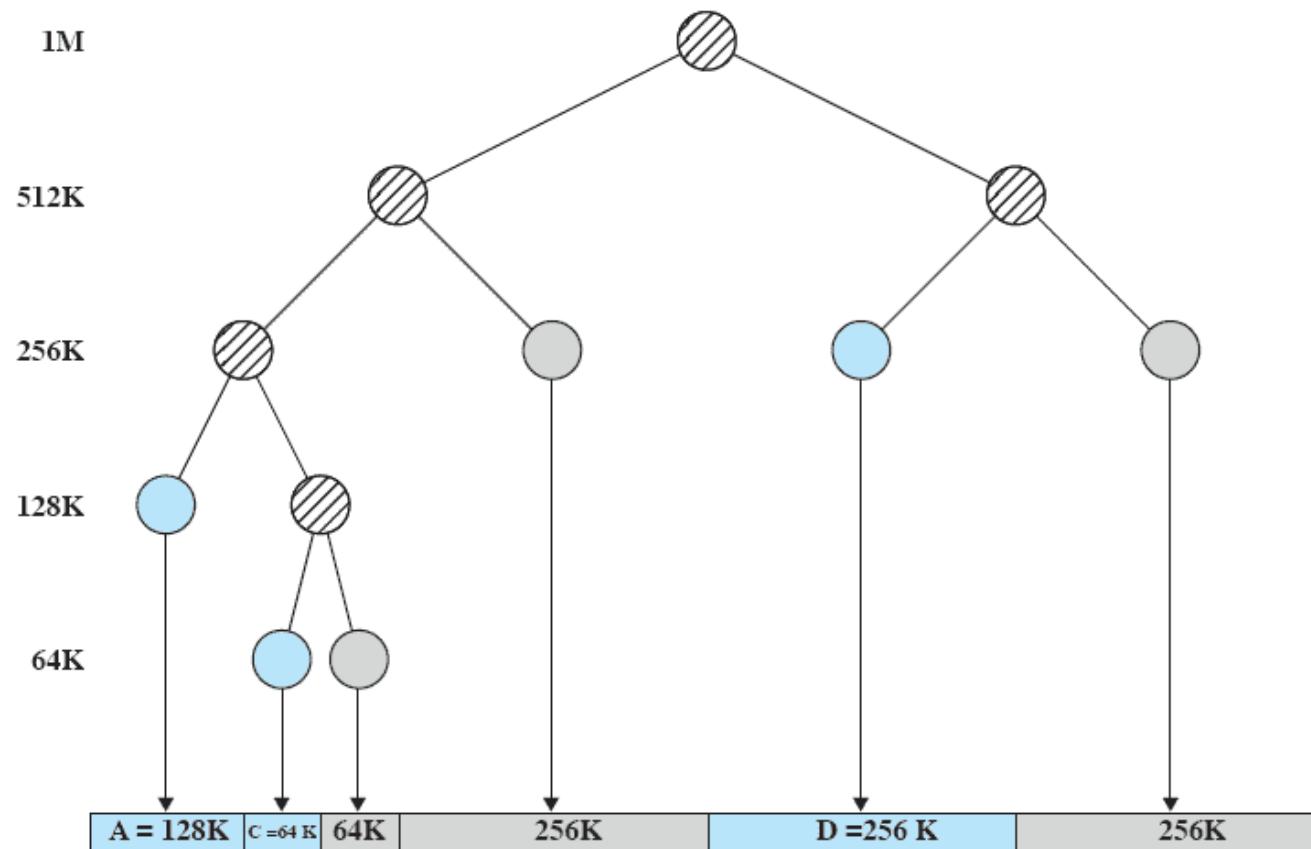


Figure 7.7 Tree Representation of Buddy System

# Paging

- Goal
  - No external fragmentation problem
  - Efficient memory sharing
  - Flexible memory use
- Idea
  - Divide a process into multiple fragments
  - Allocation each fragment anywhere
  - Maintain where the fragments are

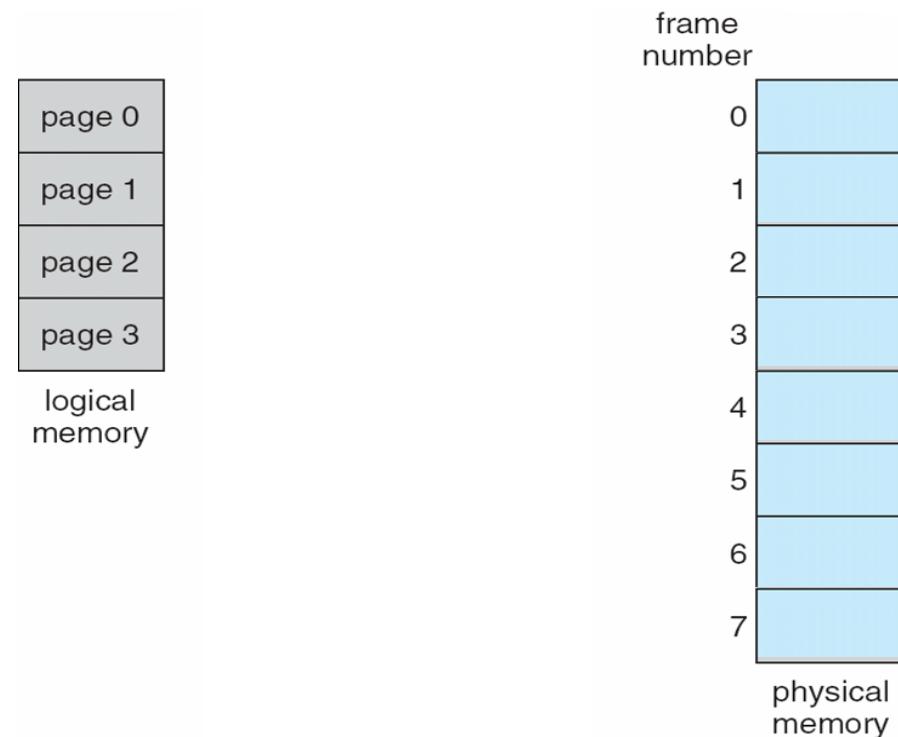
# Paging

- Partition physical memory into equal size **frames**



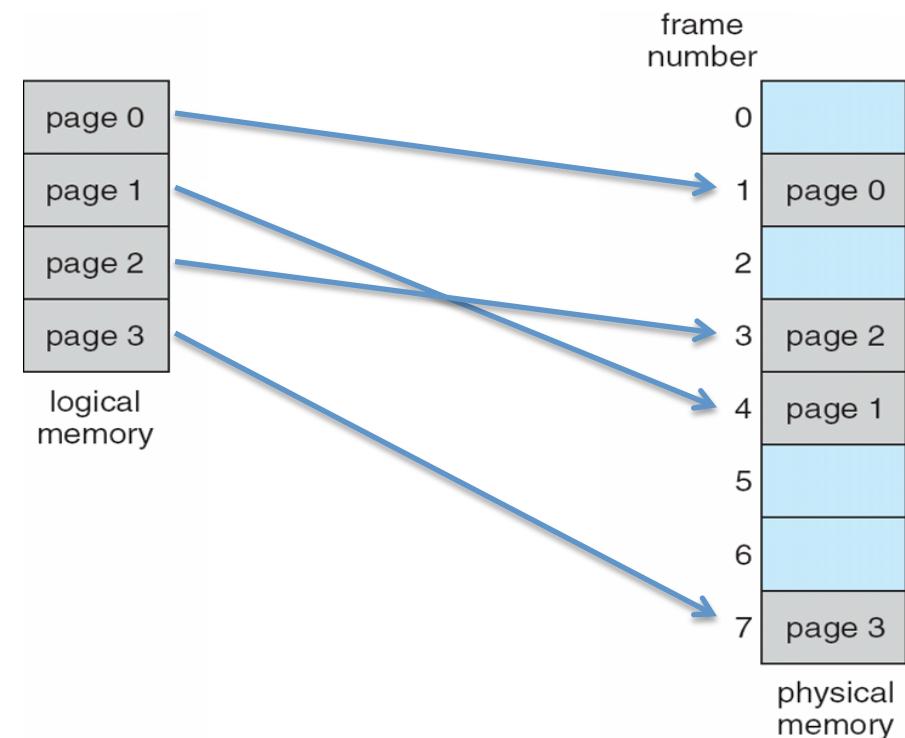
# Paging

- Partition physical memory into equal size **frames**
- Divide logical memory into same-size **pages**



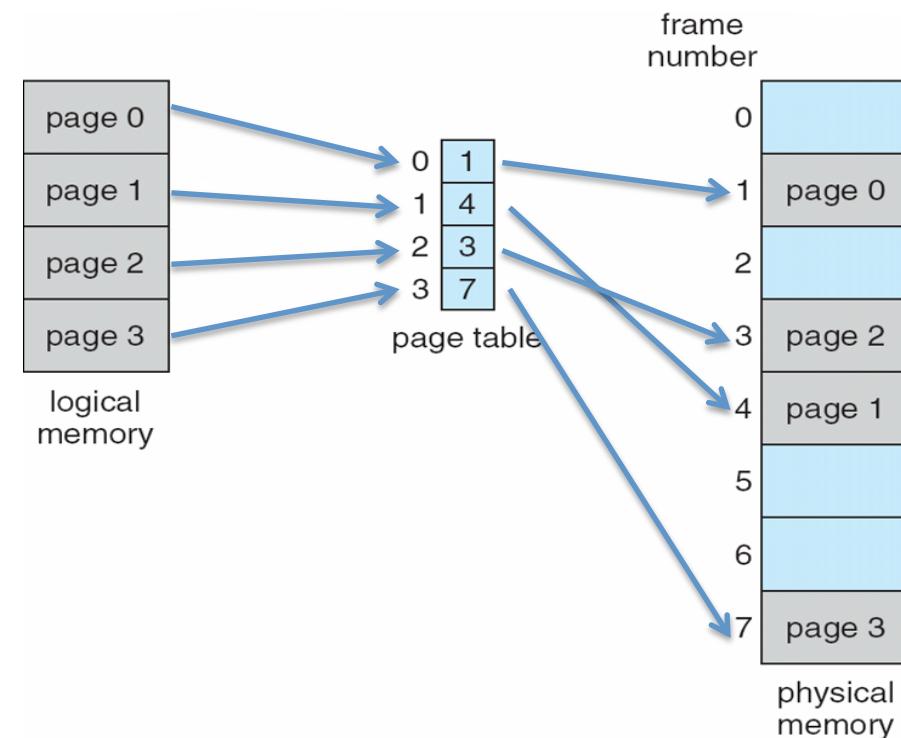
# Paging

- Partition physical memory into equal size **frames**
- Divide logical memory into same-size **pages**
- Each page can go to any free frame



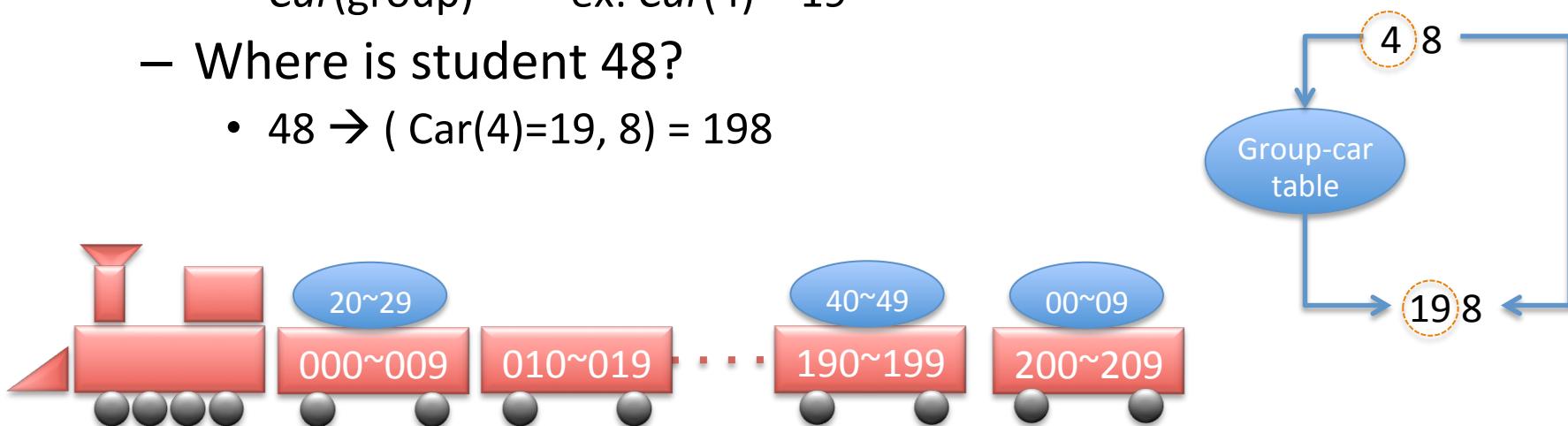
# Paging

- Partition physical memory into equal size **frames**
- Divide logical memory into same-size **pages**
- Each page can go to any free frame
- OS knows the mapping
  - **page table**



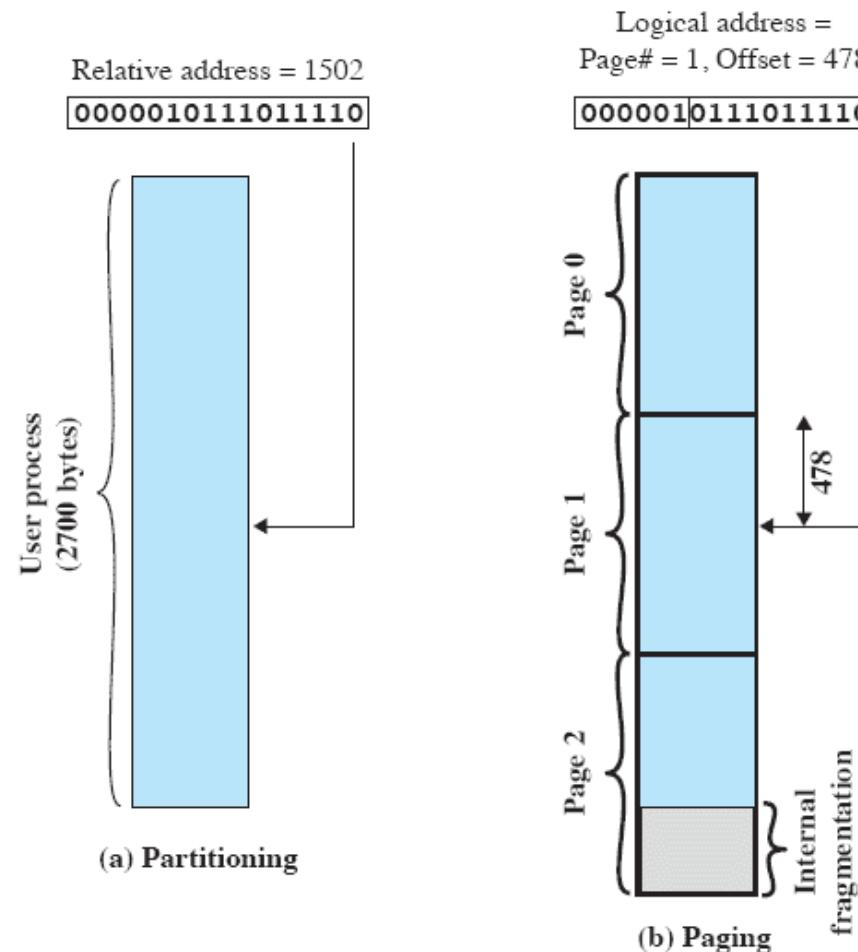
# Addressing with Paging

- **Analogy**
  - We have 100 students, from 00 to 99
  - 10 groups: 00~09 (group 0), 10~19 (group 1), 20~29 (g2), ...
  - Ride on a train with 100 cars, 10 people on each
  - Each group on the same car
  - Mapping table: which group on which car
    - $Car(group)$       ex:  $Car(4) = 19$
  - Where is student 48?
    - $48 \rightarrow (Car(4)=19, 8) = 198$

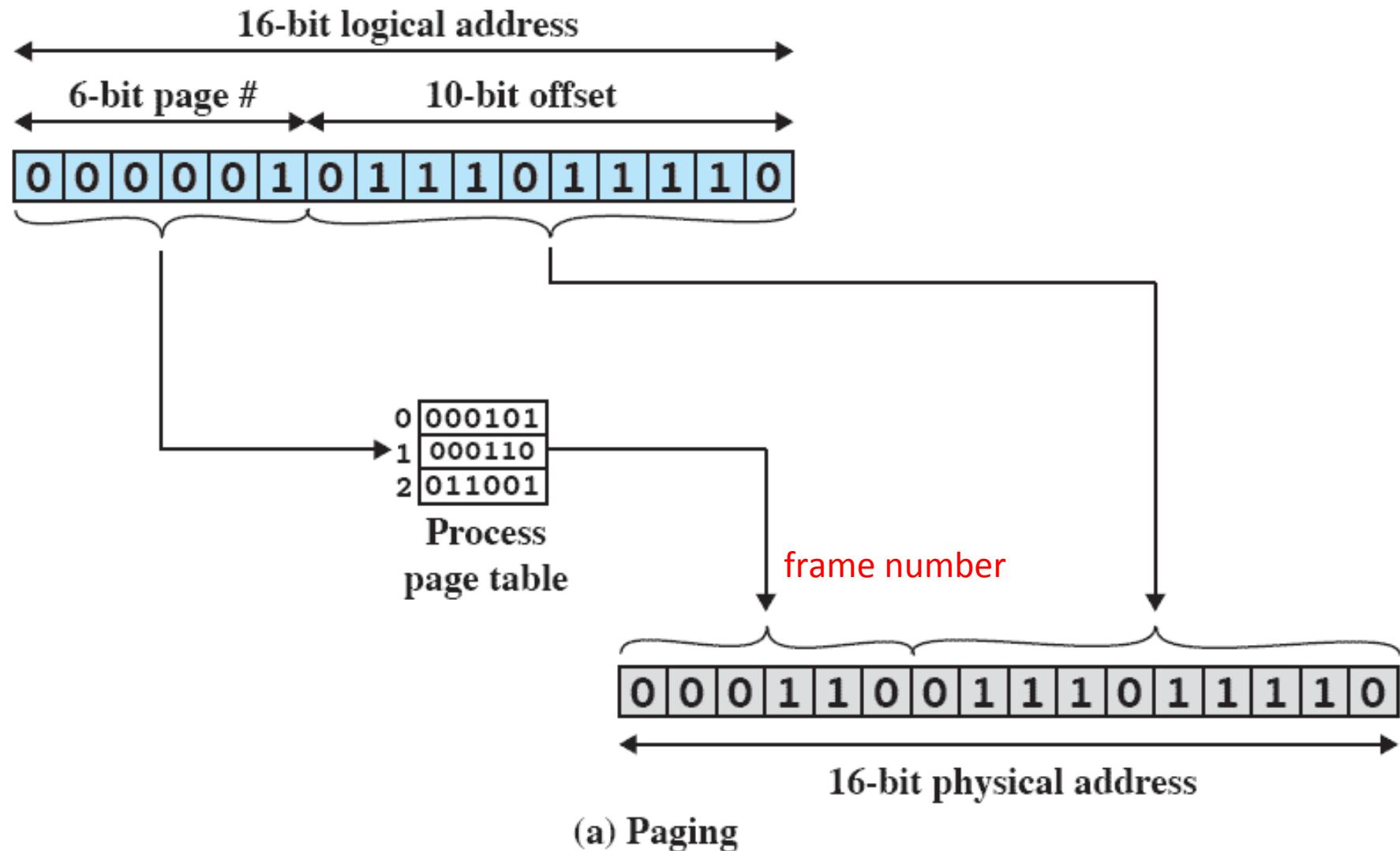


# Paging: Logical Addresses

- 16-bit address, page size  $1K=2^{10}$ , **first 6 bit=page #, last 10bit = offset**

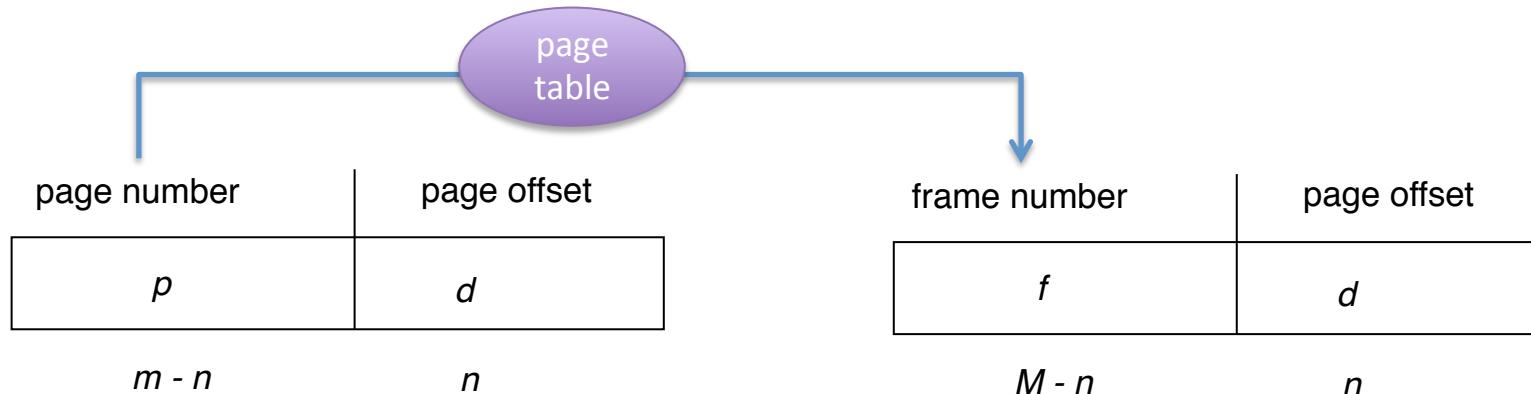


# Paging: Logical to Physical Address

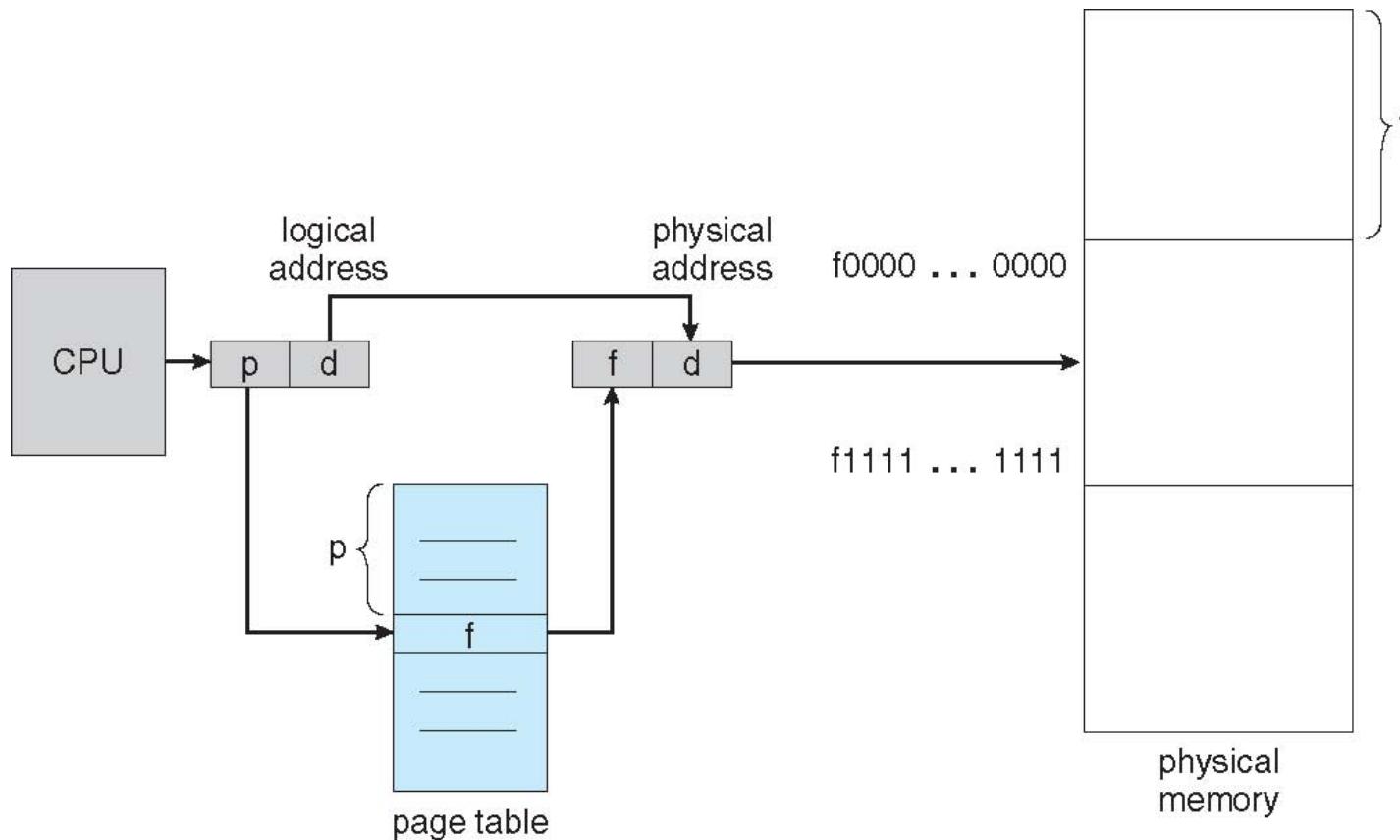


# Address Translation Scheme

- Address generated by CPU is divided into:
  - **Page number (p)**
    - index into a **page table** = (page #, frame #)
  - **Page offset (d)**
    - offset within the page (frame)
  - Given  $m$  bits logical address, page size  $2^n$ 
    - last  $n$  bit = offset =  $0 \sim 2^n - 1$
    - first  $m-n$  bit = page number =  $0 \sim 2^m - 1$
  - page table translates: page no  $\rightarrow$  frame no ( $M-n$  bits)
    - $M \geq m$



# Paging Hardware



# Paging Example

4-bit logical address ( $m=4$ ), 16-byte process space

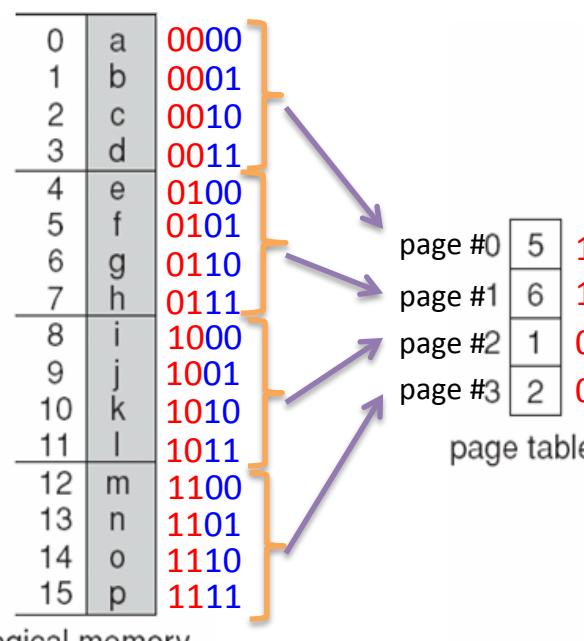
2-bit page no ( $m-n=2$ ), 0~3

2-bit offset ( $n=2$ ), 4-byte pages

5-bit physical address, 32-byte memory

|    |   |
|----|---|
| 0  | a |
| 1  | b |
| 2  | c |
| 3  | d |
| 4  | e |
| 5  | f |
| 6  | g |
| 7  | h |
| 8  | i |
| 9  | j |
| 10 | k |
| 11 | l |
| 12 | m |
| 13 | n |
| 14 | o |
| 15 | p |

logical memory



|       |    |         |
|-------|----|---------|
| 00000 | 0  | frame-0 |
| 00100 | 4  | frame-1 |
| 01000 | 8  | frame-2 |
| 01001 |    |         |
| 01010 |    |         |
| 01011 |    |         |
| 01100 | 12 | frame-3 |
| 10000 | 16 | frame-4 |
|       |    |         |
| 10100 | 20 | frame-5 |
|       |    |         |
| 11000 | 24 | frame-6 |
|       |    |         |
| 11100 | 28 | frame-7 |

physical memory

# Paging Example

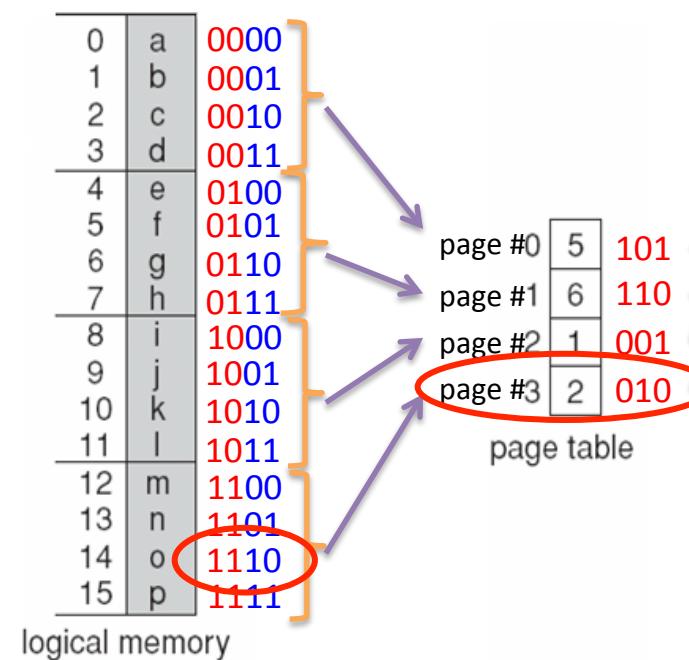
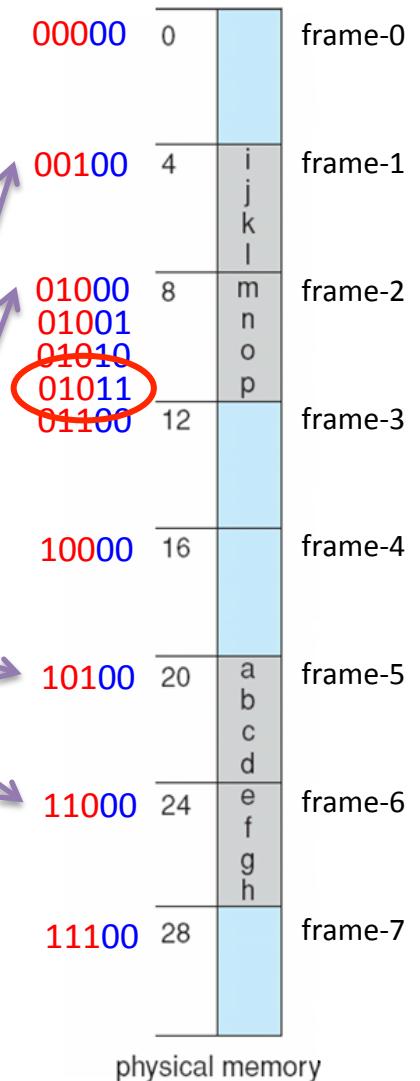
4-bit logical address ( $m=4$ ), 16-byte process space

2-bit page no ( $m-n=2$ ), 0~3

2-bit offset ( $n=2$ ), 4-byte pages

5-bit physical address, 32-byte memory

Logical address **1110**  
 → page **11**, offset **10**  
 → frame **010**, offset **10**  
 → Phys. addr. **01010**



# Fragmentation in Paging

- Internal fragmentation
  - Page size = 2,048 bytes
  - Process size = 72,766 bytes
  - 35 pages + 1,086 bytes
  - Internal fragmentation =  $2,048 - 1,086 = 962$  bytes
- Frame size & fragmentation
  - Internal fragmentation = 1 byte ~ (frame size – 1)
  - Average fragmentation =  $1 / 2$  frame size
  - Small frame size better?
- Small frame size → Small internal fragmentation  
→ Large page table
- Large frame size → Small page table  
→ More internal fragmentation

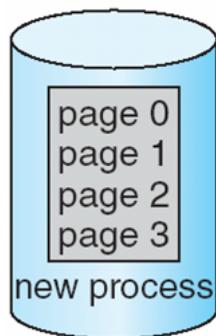
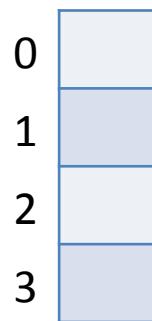
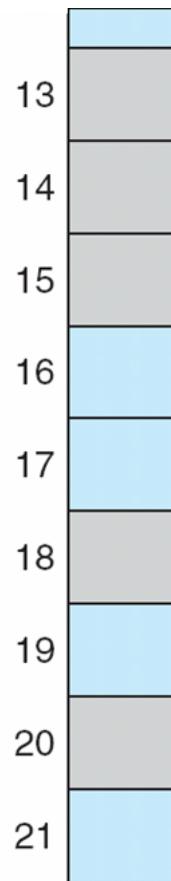
# Quiz

Consider a simple paging system with the following parameters:  $2^{32}$  bytes of physical memory; page size of  $2^{10}$  bytes;  $2^{16}$  pages of logical address space.

- How many bits are in a logical address?
- How many bytes in a frame?
- How many bits in the physical address specify the frame?
- How many entries in the page table?

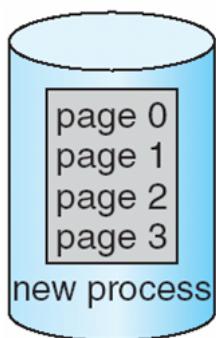
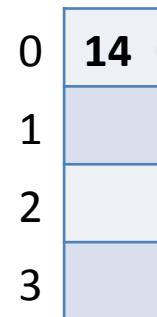
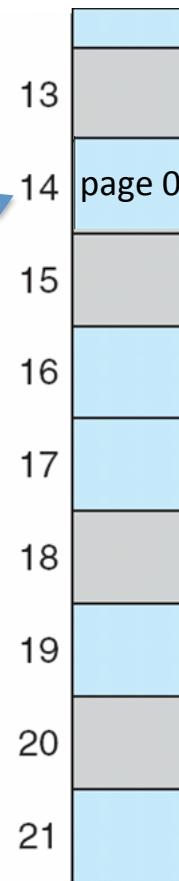
# Allocation of Free Frames

Free frame list: 14→13→18→20→15→•



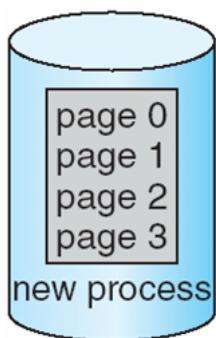
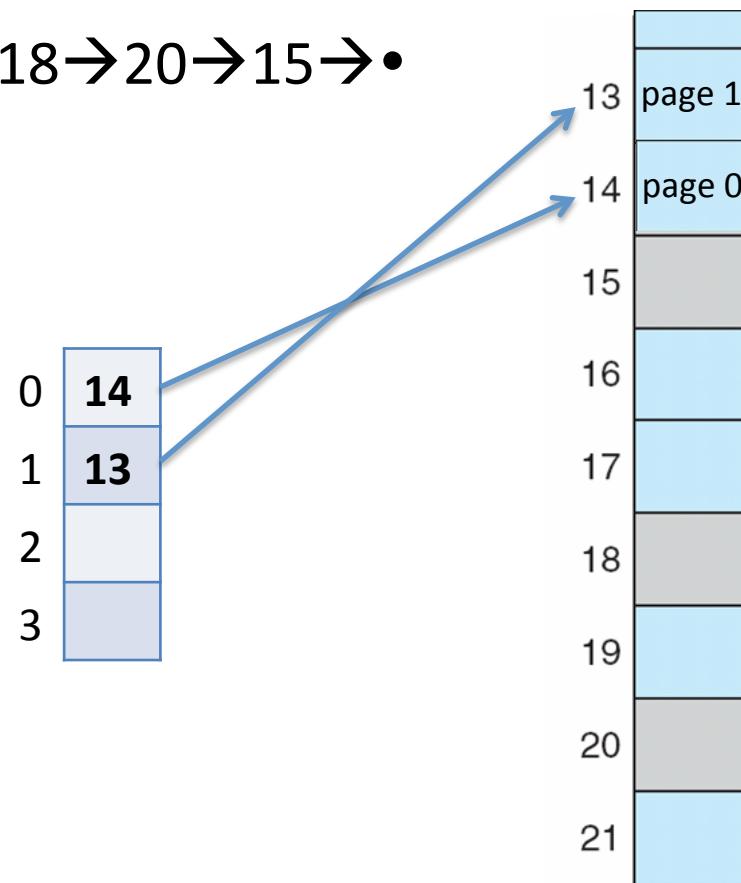
# Allocation of Free Frames

Free frame list: 14 → 13 → 18 → 20 → 15 → •



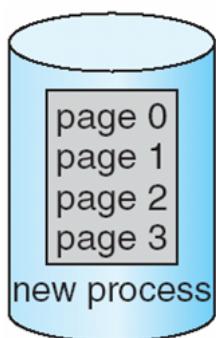
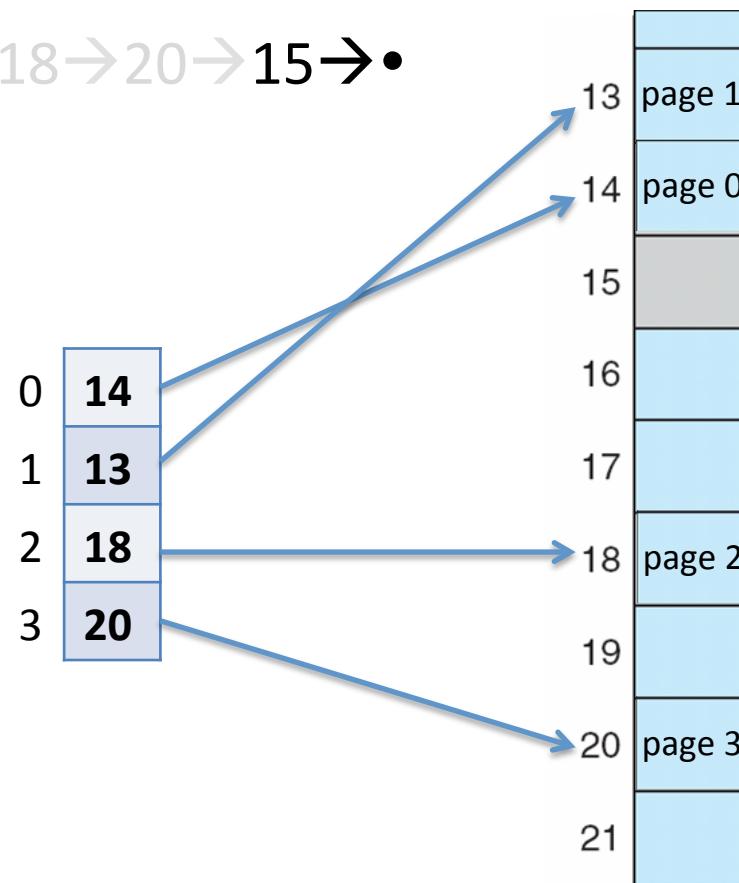
# Allocation of Free Frames

Free frame list: 14 → 13 → 18 → 20 → 15 → •



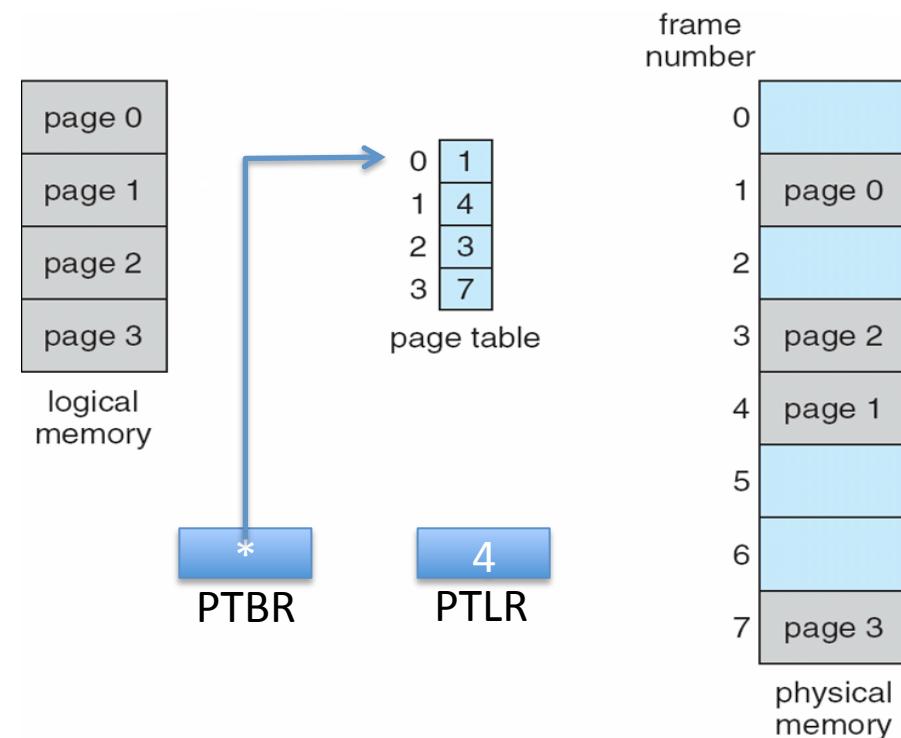
# Allocation of Free Frames

Free frame list: 14→13→18→20→15→•



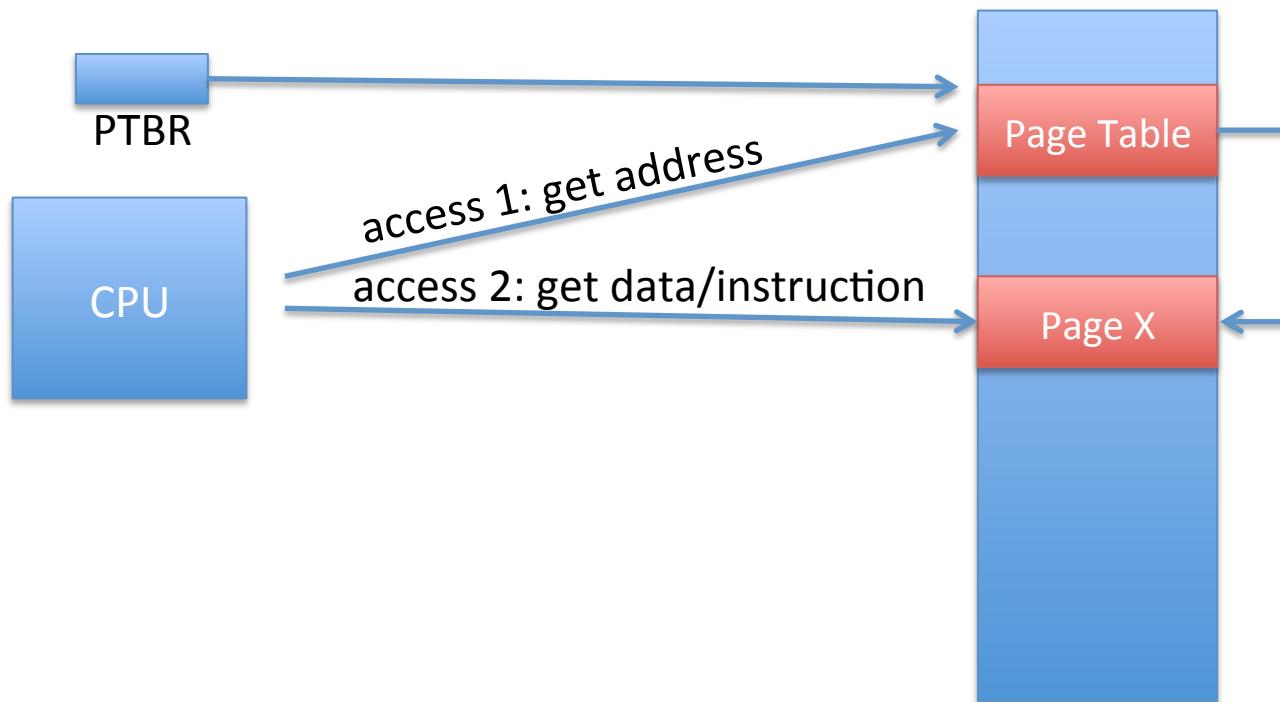
# Implementation of Page Table

- Page table is kept in main memory
- **Page-table base register (PTBR)** points to the page table
- **Page-table length register (PTLR)** indicates size of the page table



# Memory Access with Paging

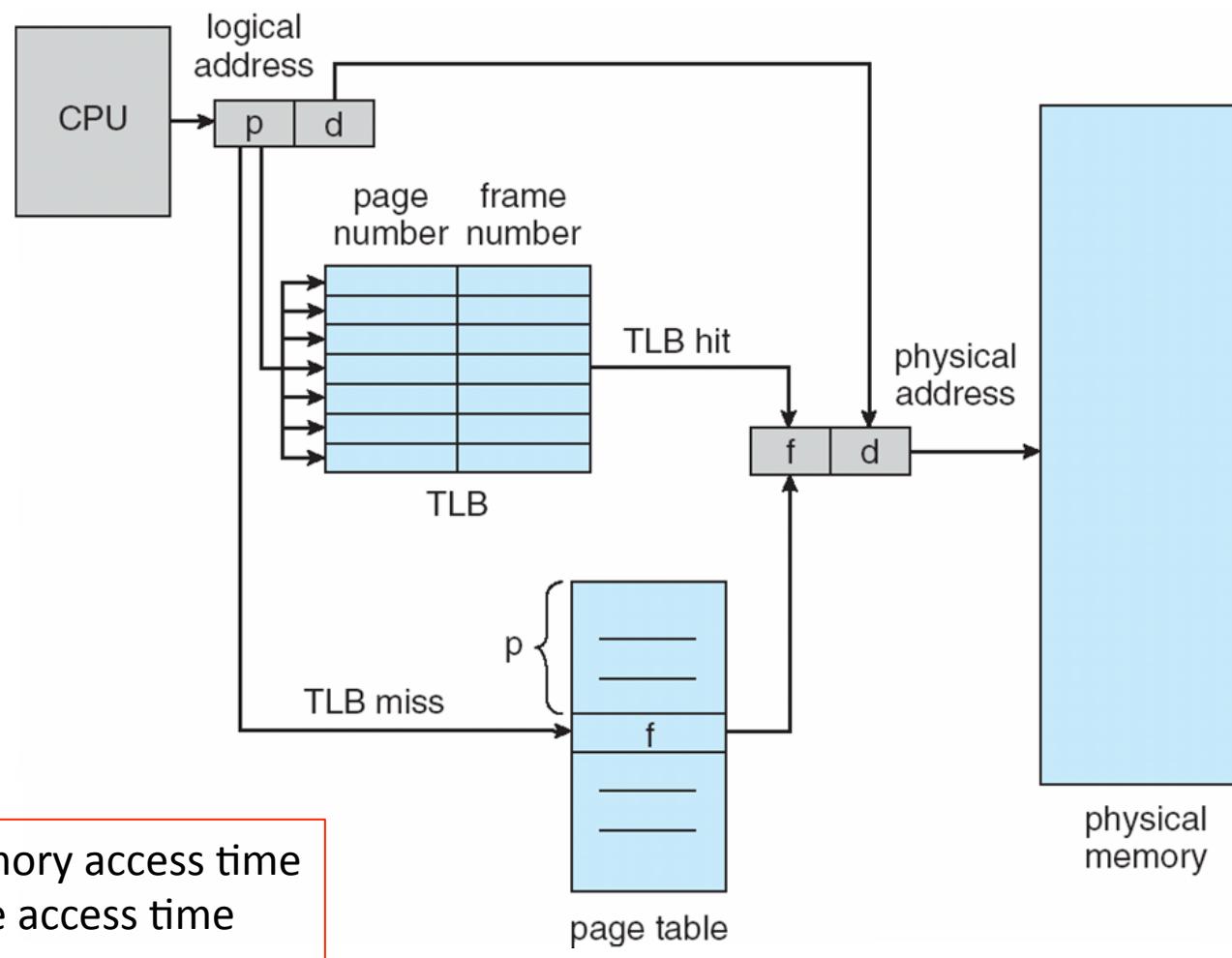
- With paging, every data/instruction access requires
  - 2 memory accesses
  - One for the page table and one for the data / instruction



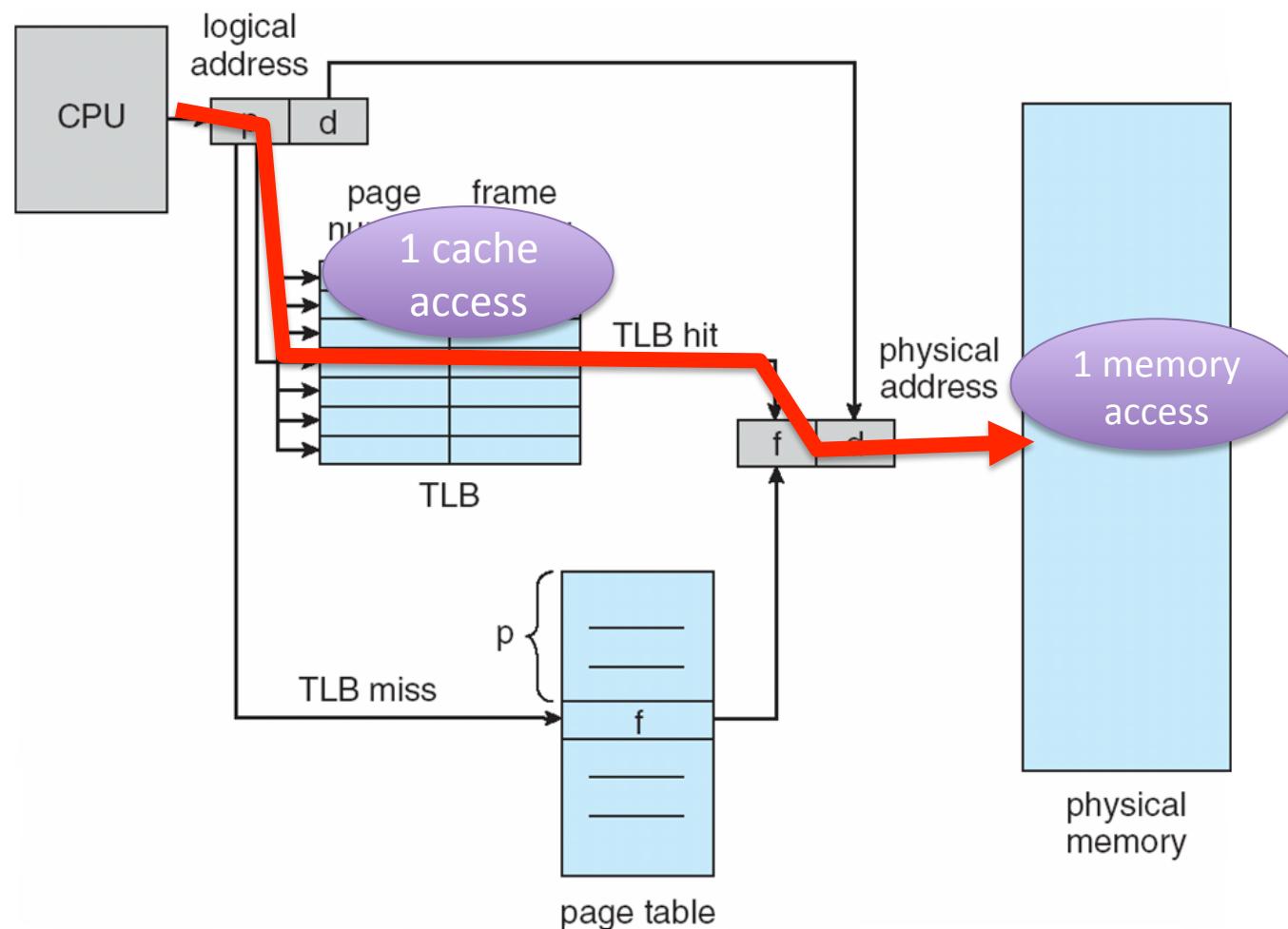
# Memory Access with Paging

- Solution: **translation look-aside buffer**
  - a special fast-lookup hardware cache
  - **associative memory**
- **address-space identifiers (ASIDs)**
  - distinguish between entries of different processes
  - Otherwise need to flush at every context switch
- TLBs typically small (64 to 1,024 entries)
- Operation
  - Works like a cache
  - Replacement policies must be considered
  - Some entries can be **wired down** for permanent fast access

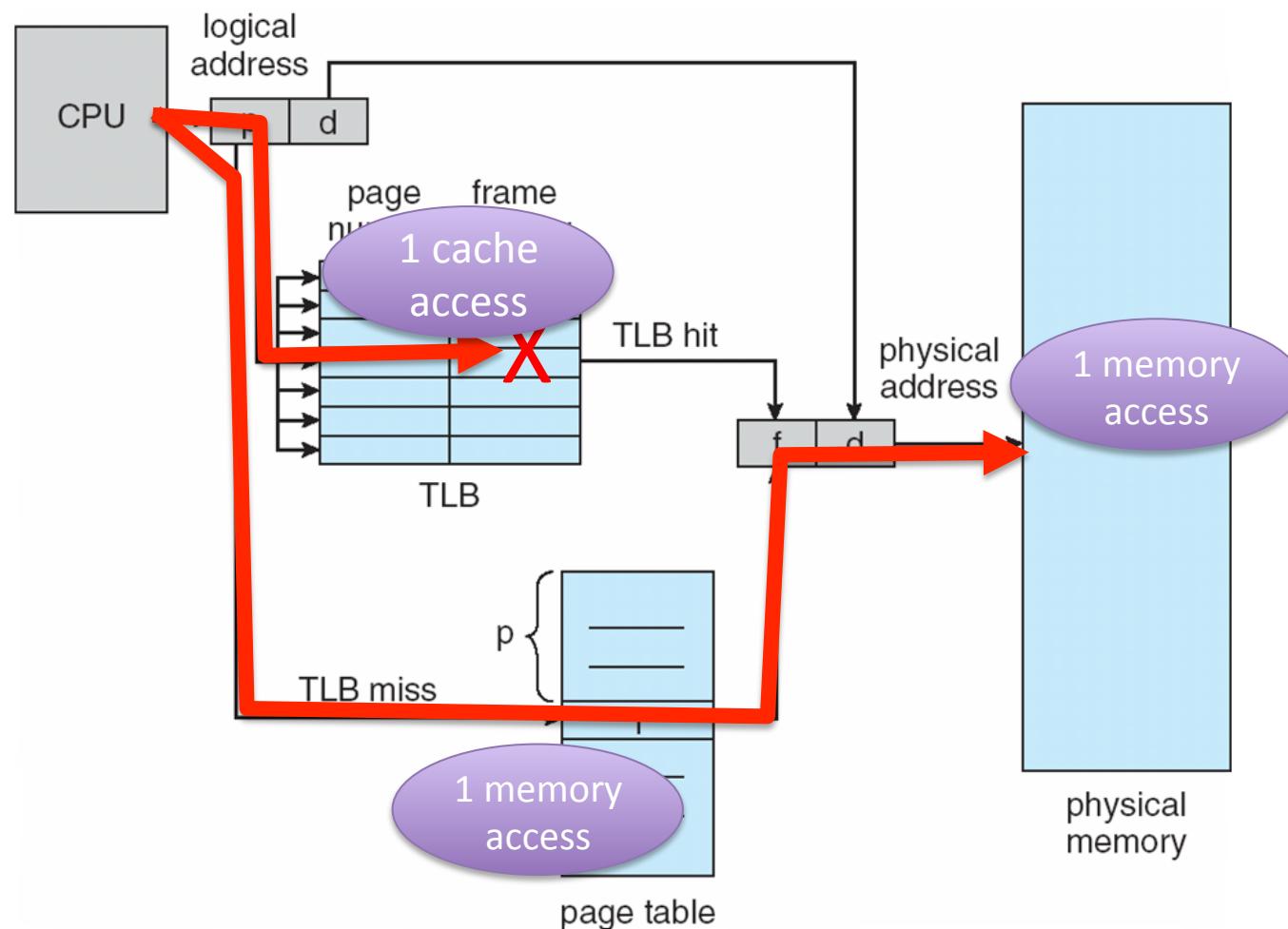
# Paging With TLB



# Paging With TLB-hit



# Paging With TLB-miss



Access time =  $e + 2M$

# Effective Access Time

- Memory lookup =  $M$  time unit
- Associative Lookup =  $e$  time unit
  - Can be < 10% of memory access time
- Hit ratio =  $\alpha$ 
  - $0 < \alpha < 1$
- **Effective Access Time (EAT)**

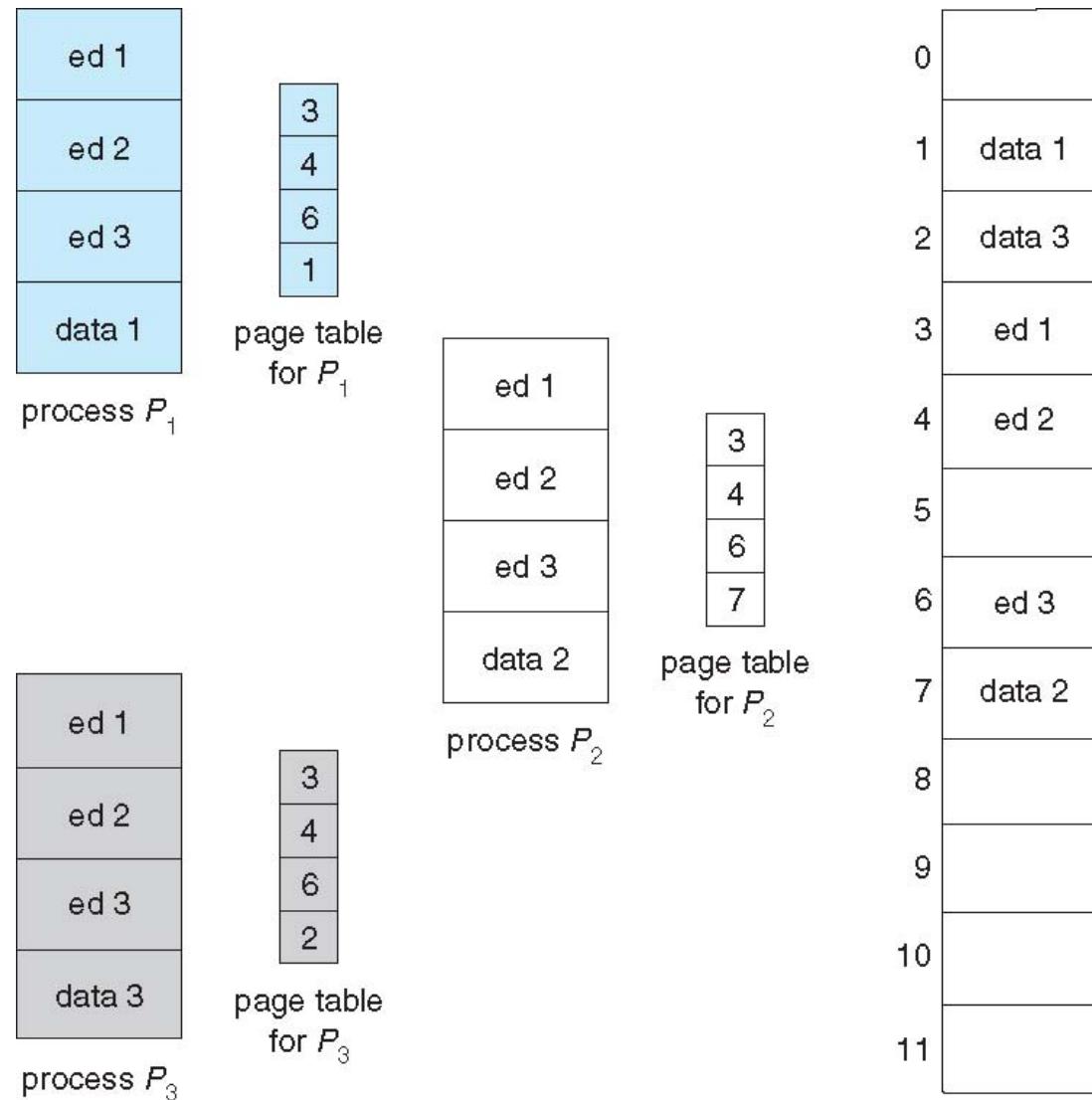
$$\begin{aligned} \text{EAT} &= (M + e) \alpha + (2M + e)(1 - \alpha) \\ &= 2M + e - \alpha \end{aligned}$$

- Consider  $\alpha = 80\%$ ,  $e = 20$  ns,  $M=100$  ns
  - $\text{EAT} = 0.80 \times 120 + 0.20 \times 220 = 140\text{ns}$

# Shared Pages

- **Shared code**
  - One copy of read-only (**reentrant**) code shared among processes (i.e., text editors, compilers, window systems)
  - Also useful for interprocess communication if sharing of read-write pages is allowed

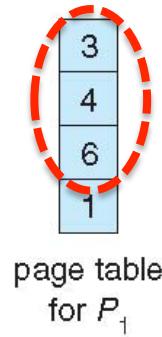
# Shared Pages Example



# Shared Pages Example

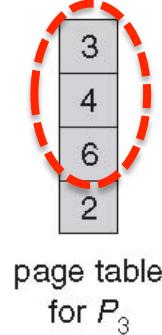
|        |
|--------|
| ed 1   |
| ed 2   |
| ed 3   |
| data 1 |

process  $P_1$



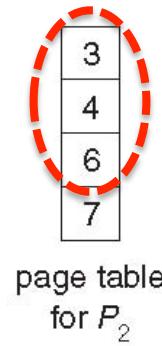
|        |
|--------|
| ed 1   |
| ed 2   |
| ed 3   |
| data 3 |

process  $P_3$



|        |
|--------|
| ed 1   |
| ed 2   |
| ed 3   |
| data 2 |

process  $P_2$



|    |
|----|
| 0  |
| 1  |
| 2  |
| 3  |
| 4  |
| 5  |
| 6  |
| 7  |
| 8  |
| 9  |
| 10 |
| 11 |