
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 8: Main Memory

8.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Background

■  Program must be brought (from disk) into memory and placed within a process
for it to be run

■  Main memory and registers are only storage CPU can access directly

■  Memory unit only sees a stream of addresses + read requests, or address +
data and write requests

■  Register access in one CPU clock (or less)

■  Main memory can take many cycles

■  Cache sits between main memory and CPU registers

■  Protection of memory required to ensure correct operation

8.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Base and Limit Registers

■  A pair of base and limit registers define the logical address space

8.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Hardware Address Protection with Base and Limit Registers

base

memory
trap to operating system

monitor—addressing error

address yesyes

nono

CPU

base ! limit

≥ <

8.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Address Binding

■  Inconvenient to have first user process physical address always at 0000
●  How can it not be?

■  Further, addresses represented in different ways at different stages of a program’s life
●  Source code addresses usually symbolic
●  Compiled code addresses bind to relocatable addresses

!  i.e. “14 bytes from beginning of this module”
●  Linker or loader will bind relocatable addresses to absolute addresses

!  i.e. 74014
●  Each binding maps one address space to another

8.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Binding of Instructions and Data to Memory

■  Address binding of instructions and data to memory addresses can happen at
three different stages
●  Compile time: If memory location known a priori, absolute code can be

generated; must recompile code if starting location changes
●  Load time: Must generate relocatable code if memory location is not

known at compile time
●  Execution time: Binding delayed until run time if the process can be

moved during its execution from one memory segment to another
!  Need hardware support for address maps (e.g., base and limit

registers)

8.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multistep Processing of a User Program

8.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Logical vs. Physical Address Space

■  The concept of a logical address space that is bound to a separate physical
address space is central to proper memory management
●  Logical address – generated by the CPU; also referred to as virtual

address
●  Physical address – address seen by the memory unit

■  Logical and physical addresses are the same in compile-time and load-time
address-binding schemes; logical (virtual) and physical addresses differ in
execution-time address-binding scheme

■  Logical address space is the set of all logical addresses generated by a
program

■  Physical address space is the set of all physical addresses generated by a
program

8.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Memory-Management Unit (MMU)

■  Hardware device that at run time maps virtual to physical address

■  Many methods possible, covered in the rest of this chapter 

■  To start, consider simple scheme where the value in the relocation register is
added to every address generated by a user process at the time it is sent to
memory
●  Base register now called relocation register
●  MS-DOS on Intel 80x86 used 4 relocation registers

■  The user program deals with logical addresses; it never sees the real physical
addresses
●  Execution-time binding occurs when reference is made to location in

memory
●  Logical address bound to physical addresses

8.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Dynamic relocation using a
relocation register

8.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Dynamic Loading

■  Routine is not loaded until it is called

■  Better memory-space utilization; unused routine is never loaded

■  All routines kept on disk in relocatable load format

■  Useful when large amounts of code are needed to handle infrequently occurring
cases

■  No special support from the operating system is required
●  Implemented through program design
●  OS can help by providing libraries to implement dynamic loading

8.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Dynamic Linking

■  Static linking – system libraries and program code combined by the loader into
the binary program image

■  Dynamic linking –linking postponed until execution time
■  Small piece of code, stub, used to locate the appropriate memory-resident

library routine
■  Stub replaces itself with the address of the routine, and executes the routine
■  Operating system checks if routine is in processes’ memory address

●  If not in address space, add to address space
■  Dynamic linking is particularly useful for libraries
■  System also known as shared libraries

8.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Swapping
■  A process can be swapped temporarily out of memory to a backing store, and then brought back

into memory for continued execution
●  Total physical memory space of processes can exceed physical memory

■  Backing store – fast disk large enough to accommodate copies of all memory images for all
users; must provide direct access to these memory images

■  Roll out, roll in – swapping variant used for priority-based scheduling algorithms; lower-priority
process is swapped out so higher-priority process can be loaded and executed

■  Major part of swap time is transfer time; total transfer time is directly proportional to the amount
of memory swapped

■  System maintains a ready queue of ready-to-run processes which have memory images on disk
■  Does the swapped out process need to swap back in to same physical addresses?
■  Depends on address binding method

●  Plus consider pending I/O to / from process memory space
■  Modified versions of swapping are found on many systems (i.e., UNIX, Linux, and Windows)

●  Swapping normally disabled
●  Started if more than threshold amount of memory allocated
●  Disabled again once memory demand reduced below threshold

8.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Schematic View of Swapping

8.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Context Switch Time including Swapping

■  If next processes to be put on CPU is not in memory, need to swap out a process and
swap in target process

■  Context switch time can then be very high
■  100MB process swapping to hard disk with transfer rate of 50MB/sec

●  Plus disk latency of 8 ms
●  Swap out time of 2008 ms
●  Plus swap in of same sized process
●  Total context switch swapping component time of 4016ms (> 4 seconds)

■  Can reduce if reduce size of memory swapped – by knowing how much memory
really being used
●  System calls to inform OS of memory use via request memory and release

memory

8.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Contiguous Allocation

■  Main memory usually into two partitions:
●  Resident operating system, usually held in low memory with interrupt vector
●  User processes then held in high memory
●  Each process contained in single contiguous section of memory 

■  Relocation registers used to protect user processes from each other, and from
changing operating-system code and data
●  Base register contains value of smallest physical address
●  Limit register contains range of logical addresses – each logical address

must be less than the limit register
●  MMU maps logical address dynamically
●  Can then allow actions such as kernel code being transient and kernel

changing size

8.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Hardware Support for Relocation
and Limit Registers

8.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Contiguous Allocation (Cont.)
■  Multiple-partition allocation

●  Degree of multiprogramming limited by number of partitions
●  Hole – block of available memory; holes of various size are scattered

throughout memory
●  When a process arrives, it is allocated memory from a hole large enough to

accommodate it
●  Process exiting frees its partition, adjacent free partitions combined
●  Operating system maintains information about: 

a) allocated partitions b) free partitions (hole)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5
process 9

process 2

process 9

process 10

8.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Dynamic Storage-Allocation Problem

■  First-fit: Allocate the first hole that is big enough

■  Best-fit: Allocate the smallest hole that is big enough; must search entire list,
unless ordered by size
●  Produces the smallest leftover hole

■  Worst-fit: Allocate the largest hole; must also search entire list
●  Produces the largest leftover hole

How to satisfy a request of size n from a list of free holes?

First-fit and best-fit better than worst-fit in terms of speed and storage utilization

8.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Fragmentation

■  External Fragmentation – total memory space exists to satisfy a request, but it
is not contiguous

■  Internal Fragmentation – allocated memory may be slightly larger than
requested memory; this size difference is memory internal to a partition, but not
being used

■  First fit analysis reveals that given N blocks allocated, 0.5 N blocks lost to
fragmentation
●  1/3 may be unusable -> 50-percent rule

8.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Fragmentation (Cont.)

■  Reduce external fragmentation by compaction
●  Shuffle memory contents to place all free memory together in one large block
●  Compaction is possible only if relocation is dynamic, and is done at execution

time
●  I/O problem

!  Latch job in memory while it is involved in I/O
!  Do I/O only into OS buffers

■  Now consider that backing store has same fragmentation problems

8.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging

■  Physical address space of a process can be noncontiguous; process is
allocated physical memory whenever the latter is available

■  Divide physical memory into fixed-sized blocks called frames
●  Size is power of 2, between 512 bytes and 16 Mbytes

■  Divide logical memory into blocks of same size called pages

■  Keep track of all free frames

■  To run a program of size N pages, need to find N free frames and load
program

■  Set up a page table to translate logical to physical addresses
■  Backing store likewise split into pages
■  Still have Internal fragmentation

8.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Address Translation Scheme

■  Address generated by CPU is divided into:
●  Page number (p) – used as an index into a page table which contains

base address of each page in physical memory
●  Page offset (d) – combined with base address to define the physical

memory address that is sent to the memory unit

●  For given logical address space 2m and page size 2n

page number page offset

p d

m - n n

8.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging Hardware

8.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging Model of Logical and Physical Memory

8.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging Example

n=2 and m=4 32-byte memory and 4-byte pages

8.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging (Cont.)

■  Calculating internal fragmentation
●  Page size = 2,048 bytes
●  Process size = 72,766 bytes
●  35 pages + 1,086 bytes
●  Internal fragmentation of 2,048 - 1,086 = 962 bytes
●  Worst case fragmentation = 1 frame – 1 byte
●  On average fragmentation = 1 / 2 frame size
●  So small frame sizes desirable?
●  But each page table entry takes memory to track
●  Page sizes growing over time

!  Solaris supports two page sizes – 8 KB and 4 MB
■  Process view and physical memory now very different
■  By implementation process can only access its own memory

8.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Free Frames

Before allocation After allocation

8.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Implementation of Page Table

■  Page table is kept in main memory

■  Page-table base register (PTBR) points to the page table

■  Page-table length register (PTLR) indicates size of the page table

■  In this scheme every data/instruction access requires two memory accesses
●  One for the page table and one for the data / instruction

■  The two memory access problem can be solved by the use of a special fast-
lookup hardware cache called associative memory or translation look-aside
buffers (TLBs)

■  Some TLBs store address-space identifiers (ASIDs) in each TLB entry –
uniquely identifies each process to provide address-space protection for that
process
●  Otherwise need to flush at every context switch

■  TLBs typically small (64 to 1,024 entries)

■  On a TLB miss, value is loaded into the TLB for faster access next time
●  Replacement policies must be considered
●  Some entries can be wired down for permanent fast access

8.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Associative Memory

■  Associative memory – parallel search

■  Address translation (p, d)
●  If p is in associative register, get frame # out
●  Otherwise get frame # from page table in memory

Page # Frame #

8.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging Hardware With TLB

8.32 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Effective Access Time

■  Associative Lookup = ε time unit
●  Can be < 10% of memory access time

■  Hit ratio = α
●  Hit ratio – percentage of times that a page number is found in the

associative registers; ratio related to number of associative registers
■  Consider α = 80%, ε = 20ns for TLB search, 100ns for memory access
■  Effective Access Time (EAT)

EAT = (1 + ε) α + (2 + ε)(1 – α)
= 2 + ε – α

■  Consider α = 80%, ε = 20ns for TLB search, 100ns for memory access
●  EAT = 0.80 x 120 + 0.20 x 220 = 140ns

■  Consider slower memory but better hit ratio -> α = 98%, ε = 20ns for TLB
search, 140ns for memory access
●  EAT = 0.98 x 160 + 0.02 x 300 = 162.8ns

8.33 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Memory Protection

■  Memory protection implemented by associating protection bit with each frame to
indicate if read-only or read-write access is allowed
●  Can also add more bits to indicate page execute-only, and so on  

■  Valid-invalid bit attached to each entry in the page table:
●  “valid” indicates that the associated page is in the process’ logical address

space, and is thus a legal page
●  “invalid” indicates that the page is not in the process’ logical address space
●  Or use PTLR

■  Any violations result in a trap to the kernel

8.34 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Valid (v) or Invalid (i)
Bit In A Page Table

8.35 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Shared Pages

■  Shared code
●  One copy of read-only (reentrant) code shared among processes (i.e., text

editors, compilers, window systems)
●  Similar to multiple threads sharing the same process space
●  Also useful for interprocess communication if sharing of read-write pages is

allowed

■  Private code and data
●  Each process keeps a separate copy of the code and data
●  The pages for the private code and data can appear anywhere in the logical

address space

8.36 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Shared Pages Example

8.37 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Structure of the Page Table

■  Memory structures for paging can get huge using straight-forward methods
●  Consider a 32-bit logical address space as on modern computers
●  Page size of 4 KB (212)
●  Page table would have 1 million entries (232 / 212)

●  If each entry is 4 bytes -> 4 MB of physical address space / memory for
page table alone
!  That amount of memory used to cost a lot
!  Don’t want to allocate that contiguously in main memory

■  Hierarchical Paging
■  Hashed Page Tables
■  Inverted Page Tables

8.38 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Hierarchical Page Tables

■  Break up the logical address space into multiple page tables

■  A simple technique is a two-level page table

■  We then page the page table

8.39 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Two-Level Page-Table Scheme

8.40 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Two-Level Paging Example

■  A logical address (on 32-bit machine with 1K page size) is divided into:
●  a page number consisting of 22 bits
●  a page offset consisting of 10 bits

■  Since the page table is paged, the page number is further divided into:
●  a 12-bit page number
●  a 10-bit page offset

■  Thus, a logical address is as follows: 
 
 
 
 
 
 
 

■  where p1 is an index into the outer page table, and p2 is the displacement within
the page of the inner page table

■  Known as forward-mapped page table

page number page offset

p1 p2 d

12 10 10

8.41 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Address-Translation Scheme

8.42 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

64-bit Logical Address Space

■  Even two-level paging scheme not sufficient
■  If page size is 4 KB (212)

●  Then page table has 252 entries
●  If two level scheme, inner page tables could be 210 4-byte entries
●  Address would look like

●  Outer page table has 242 entries or 244 bytes
●  One solution is to add a 2nd outer page table
●  But in the following example the 2nd outer page table is still 234 bytes in size

!  And possibly 4 memory access to get to one physical memory location

outer page page offset

p1 p2 d

42 10 12

inner page

8.43 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Three-level Paging Scheme

