Chapter 8: Main Memory
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B Program must be brought (from disk) into memory and placed within a process
for it to be run

B Main memory and registers are only storage CPU can access directly

B Memory unit only sees a stream of addresses + read requests, or address +
data and write requests

B Register access in one CPU clock (or less)
B Main memory can take many cycles
B Cache sits between main memory and CPU registers

B Protection of memory required to ensure correct operation
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> - Base and Limit Registers

B A pair of base and limit registers define the logical address space
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- /Hardware Address Protection with Base and Limit Registers
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7 Address Binding

B Inconvenient to have first user process physical address always at 0000
® How can it not be?
B Further, addresses represented in different ways at different stages of a program’s life
® Source code addresses usually symbolic
® Compiled code addresses bind to relocatable addresses
» i.e. “14 bytes from beginning of this module”
® Linker or loader will bind relocatable addresses to absolute addresses
» i.e. 74014
® Each binding maps one address space to another
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2”7 Binding of Instructions and Data to Memory

B Address binding of instructions and data to memory addresses can happen at
three different stages

® Compile time: If memory location known a priori, absolute code can be
generated; must recompile code if starting location changes

® Load time: Must generate relocatable code if memory location is not
known at compile time

@ Execution time: Binding delayed until run time if the process can be
moved during its execution from one memory segment to another

» Need hardware support for address maps (e.g., base and limit
registers)
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7 Multistep Processing of a User Program
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“$%7 Logical vs. Physical Address Space
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B The concept of a logical address space that is bound to a separate physical
address space is central to proper memory management

® Logical address — generated by the CPU; also referred to as virtual
address

® Physical address — address seen by the memory unit

B Logical and physical addresses are the same in compile-time and load-time
address-binding schemes; logical (virtual) and physical addresses differ in
execution-time address-binding scheme

B Logical address space is the set of all logical addresses generated by a
program

B Physical address space is the set of all physical addresses generated by a
program
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G ;”“* Memory-Management Unit (Mmu)

B Hardware device that at run time maps virtual to physical address

B Many methods possible, covered in the rest of this chapter

B To start, consider simple scheme where the value in the relocation register is
added to every address generated by a user process at the time it is sent to
memory

® Base register now called relocation register
® MS-DOS on Intel 80x86 used 4 relocation registers

B The user program deals with /ogical addresses; it never sees the real physical
addresses

® Execution-time binding occurs when reference is made to location in
memory

® Logical address bound to physical addresses
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B Routine is not loaded until it is called

B Better memory-space utilization; unused routine is never loaded

B All routines kept on disk in relocatable load format

B Useful when large amounts of code are needed to handle infrequently occurring
cases

B No special support from the operating system is required
® Implemented through program design
® OS can help by providing libraries to implement dynamic loading
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B Static linking — system libraries and program code combined by the loader into
the binary program image

B Dynamic linking —linking postponed until execution time

B Small piece of code, stub, used to locate the appropriate memory-resident
library routine

B Stub replaces itself with the address of the routine, and executes the routine
B Operating system checks if routine is in processes’ memory address
@ If not in address space, add to address space
B Dynamic linking is particularly useful for libraries
B System also known as shared libraries
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B A process can be swapped temporarily out of memory to a backing store, and then brought back
into memory for continued execution

® Total physical memory space of processes can exceed physical memory

B Backing store — fast disk large enough to accommodate copies of all memory images for alll
users; must provide direct access to these memory images

B Roll out, roll in — swapping variant used for priority-based scheduling algorithms; lower-priority
process is swapped out so higher-priority process can be loaded and executed

B Major part of swap time is transfer time; total transfer time is directly proportional to the amount
of memory swapped

B System maintains a ready queue of ready-to-run processes which have memory images on disk
B Does the swapped out process need to swap back in to same physical addresses?
B Depends on address binding method
® Plus consider pending I/O to / from process memory space
B Modified versions of swapping are found on many systems (i.e., UNIX, Linux, and Windows)
@ Swapping normally disabled
@ Started if more than threshold amount of memory allocated

@ Disabled again once memory demand reduced below threshold
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o Schematic View of Swapping
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27 Context Switch Time including Swapping

B If next processes to be put on CPU is not in memory, need to swap out a process and
swap in target process

B Context switch time can then be very high
B 100MB process swapping to hard disk with transfer rate of 50MB/sec
® Plus disk latency of 8 ms
® Swap out time of 2008 ms
® Plus swap in of same sized process
@ Total context switch swapping component time of 4016ms (> 4 seconds)

B Can reduce if reduce size of memory swapped — by knowing how much memory
really being used

® System calls to inform OS of memory use via request memory and release
memory
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57 Contiguous Allocation

B Main memory usually into two partitions:
® Resident operating system, usually held in low memory with interrupt vector
® User processes then held in high memory
® Each process contained in single contiguous section of memory

B Relocation registers used to protect user processes from each other, and from
changing operating-system code and data

® Base register contains value of smallest physical address

@ Limit register contains range of logical addresses — each logical address
must be less than the limit register

® MMU maps logical address dynamically

@ Can then allow actions such as kernel code being transient and kernel
changing size
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e Hardware Support for Relocation
~7 and Limit Registers
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Contiguous Allocation (Cont.)

B Multiple-partition allocation
® Degree of multiprogramming limited by number of partitions

® Hole — block of available memory; holes of various size are scattered
throughout memory

® When a process arrives, it is allocated memory from a hole large enough to
accommodate it

® Process exiting frees its partition, adjacent free partitions combined

® Operating system maintains information about:
a) allocated partitions b) free partitions (hole)
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~%7" Dynamic Storage-Allocation Problem

How to satisfy a request of size n from a list of free holes?
B First-fit: Allocate the first hole that is big enough

B Best-fit: Allocate the smallest hole that is big enough; must search entire list,
unless ordered by size

® Produces the smallest leftover hole

B Worst-fit: Allocate the largest hole; must also search entire list
® Produces the largest leftover hole

First-fit and best-fit better than worst-fit in terms of speed and storage utilization
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S Fragmentation
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B External Fragmentation — total memory space exists to satisfy a request, but it
iS not contiguous

B Internal Fragmentation — allocated memory may be slightly larger than
requested memory; this size difference is memory internal to a partition, but not

being used

B First fit analysis reveals that given N blocks allocated, 0.5 N blocks lost to
fragmentation

® 1/3 may be unusable -> 50-percent rule
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g Fragmentation (Cont.)
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B Reduce external fragmentation by compaction
@ Shuffle memory contents to place all free memory together in one large block
® Compaction is possible only if relocation is dynamic, and is done at execution
time
® 1/O problem
» Latch job in memory while it is involved in I/O

» Do I/O only into OS buffers

B Now consider that backing store has same fragmentation problems
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B Physical address space of a process can be noncontiguous; process is
allocated physical memory whenever the latter is available

B Divide physical memory into fixed-sized blocks called frames
® Size is power of 2, between 512 bytes and 16 Mbytes

B Divide logical memory into blocks of same size called pages
B Keep track of all free frames

B Torun a program of size N pages, need to find N free frames and load
program

B Setup a page table to translate logical to physical addresses

Backing store likewise split into pages
B Still have Internal fragmentation
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557 Address Translation Scheme

B Address generated by CPU is divided into:

® Page number (p) — used as an index into a page table which contains
base address of each page in physical memory

® Page offset (d) — combined with base address to define the physical
memory address that is sent to the memory unit

page number page offset
p d
m-n n

@ For given logical address space 2™and page size 2
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o Paging Hardware
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‘f%g‘” Paging Model of Logical and Physical Memory
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Paging (Cont.)

B Calculating internal fragmentation

Page size = 2,048 bytes
Process size = 72,766 bytes
35 pages + 1,086 bytes
Internal fragmentation of 2,048 - 1,086 = 962 bytes
Worst case fragmentation = 1 frame — 1 byte
On average fragmentation = 1 / 2 frame size
So small frame sizes desirable?
But each page table entry takes memory to track
Page sizes growing over time
» Solaris supports two page sizes — 8 KB and 4 MB

B Process view and physical memory now very different

B By implementation process can only access its own memory
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> Free Frames
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“$*7  Implementation of Page Table
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B Page table is kept in main memory
B Page-table base register (PTBR) points to the page table
B Page-table length register (PTLR) indicates size of the page table

B In this scheme every data/instruction access requires two memory accesses
® One for the page table and one for the data / instruction

B The two memory access problem can be solved by the use of a special fast-
lookup hardware cache called associative memory or translation look-aside
buffers (TLBs)

B Some TLBs store address-space identifiers (ASIDs) in each TLB entry —
uniquely identifies each process to provide address-space protection for that
process

® Otherwise need to flush at every context switch
B TLBs typically small (64 to 1,024 entries)
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o Associative Memory

B Associative memory — parallel search
Page # Frame #

B Address translation (p, d)
@ If pisin associative register, get frame # out
® Otherwise get frame # from page table in memory
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Paging Hardware With TLB
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557 Effective Access Time

B Associative Lookup = ¢ time unit
® Can be < 10% of memory access time
B Hitratio =«

@ Hit ratio — percentage of times that a page number is found in the
associative registers; ratio related to number of associative registers

Consider a = 80%, ¢ = 20ns for TLB search, 100ns for memory access
Effective Access Time (EAT)
EAT=(1+¢)a+(2+¢)(1—0a)
=2+¢c—0a
B Consider a = 80%, ¢ = 20ns for TLB search, 100ns for memory access
® EAT =0.80x 120 + 0.20 x 220 = 140ns

B Consider slower memory but better hit ratio -> o = 98%, ¢ = 20ns for TLB
search, 140ns for memory access

® EAT=0.98x160 + 0.02 x 300 = 162.8ns
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7 Memory Protection

B Memory protection implemented by associating protection bit with each frame to
indicate if read-only or read-write access is allowed

® Can also add more bits to indicate page execute-only, and so on

B Valid-invalid bit attached to each entry in the page table:

@ “valid’ indicates that the associated page is in the process’ logical address
space, and is thus a legal page

@ ‘“invalid” indicates that the page is not in the process’ logical address space
® Oruse PTLR

B Any violations result in a trap to the kernel
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B Shared code

® One copy of read-only (reentrant) code shared among processes (i.e., text
editors, compilers, window systems)

@ Similar to multiple threads sharing the same process space

® Also useful for interprocess communication if sharing of read-write pages is
allowed

B Private code and data
® Each process keeps a separate copy of the code and data

® The pages for the private code and data can appear anywhere in the logical
address space
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"%)" Shared Pages Example
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‘*;;} Structure of the Page Table

B Memory structures for paging can get huge using straight-forward methods
® Consider a 32-bit logical address space as on modern computers
® Page size of 4 KB (2?)
® Page table would have 1 million entries (232 / 212)
®

If each entry is 4 bytes -> 4 MB of physical address space / memory for
page table alone

» That amount of memory used to cost a lot
» Don’t want to allocate that contiguously in main memory

B Hierarchical Paging
B Hashed Page Tables
B Inverted Page Tables
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S Hierarchical Page Tables
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B Break up the logical address space into multiple page tables

B A simple technique is a two-level page table

B We then page the page table
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~#7 Two-Level Page-Table Scheme
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Two-Level Paging Example

A logical address (on 32-bit machine with 1K page size) is divided into:
® a page number consisting of 22 bits
® a page offset consisting of 10 bits

Since the page table is paged, the page number is further divided into:
® a 12-bit page number
® a 10-bit page offset

Thus, a logical address is as follows:

page number page offset
P P> d
12 10 10

where p; is an index into the outer page table, and p, is the displacement
the page of the inner page table
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~5F7 Address-Translation Scheme
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‘w';} 64-bit Logical Address Space

B Even two-level paging scheme not sufficient

B If page size is 4 KB (21?)
@ Then page table has 2% entries
e If two level scheme, inner page tables could be 21° 4-byte entries
® Address would look like

outer page inner page page offset
P; P> d
42 10 12

@ Outer page table has 242 entries or 244 bytes
® One solution is to add a 2" outer page table
@ But in the following example the 2" outer page table is still 234 bytes in size

» And possibly 4 memory access to get to one physical memory location

A\
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A P
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Three-level Paging Scheme

outer page Inner page offset
P1 P2 d
42 10 12

2nd outer page , outer page | innerpage offset

P1 P> Ps d
32 10 10 12

A \
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