
Opera&ng	
 Systems	

2.	
 Computer	
 Organiza2on	

1	

2	

What	
 is	
 an	
 Opera&ng	
 System?	

•  Help	
 the	
 user	
 use	
 computer	
 easily	
 (Interface)	

•  Help	
 the	
 so&ware	
 use	
 computer	
 resource	

•  Help	
 the	
 programmer	
 develop	
 so@ware	
 (API)	

•  Opera2ng	
 system	
 knows	
 well	
 the	
 computer	

works:	
 Computer	
 Architecture	

Von	
 Neumann	
 Machine	

3	

•  Pre-­‐Von-­‐Neumann	
 Machine	

– A	
 computer	
 can	
 do	
 only	
 single	
 computa2on	

– Program	
 =	
 HW,	
 Data	
 in	
 memory	

•  Von-­‐Neumann	
 Machine	
 	

– General	
 purpose	
 computer	

– Program	
 in	
 memory,	
 Data	
 in	
 memory	

– Called	
 stored-­‐program	
 architecture	

– Good:	
 re-­‐program	
 easily	

Von	
 Neumann	
 Architecture	

4	

- Moves data/program from/to memory
- Execute program instruction
- Temporary memory: register

Bus

5	

Registers	

PC: Address of
next instruction

IR: Current
Instruction

PSW: Result
(Condition, Logic,
Error)

MBR: Address to
fetch/store d
ata/prog.

MBR: Buffer for
data/prog
to fetch/store

6	

Problem	
 1	
 of	
 Von-­‐Neumann	

•  Problem:	
 Von	
 Neumann	
 BoVleneck	
 =	
 Bus	

– Too	
 much	
 to	
 move	
 over	
 bus:	
 slow	

•  Solu2on:	
 Cache	

– Temporary	
 fast	
 memory	
 with	
 recent	
 data/prog	

– Code	
 op;miza;on	

7	

Problem	
 2	
 of	
 Von-­‐Neumann	

•  Problem	
 2:	
 Prog.	
 &	
 data	
 in	
 same	
 memory	

– A	
 program	
 can	
 mess-­‐up	
 instruc2ons	
 in	
 memory	

•  Solu2on:	
 Harvard	
 Architecture	

– Separate	
 data	
 and	
 program	
 memory	

– Memory	
 restric;on:	
 Prevent	
 accessing	
 memory	

outside	
 data	

8	

Problem	
 3	
 of	
 Von-­‐Neumann	

•  Problem	
 3:	
 Prog.	
 &	
 data	
 over	
 the	
 same	
 bus	

– Different	
 fetch	
 rate,	
 slow	
 bus	

•  Solu2on:	
 Harvard	
 Architecture	

– Separate	
 data	
 and	
 program	
 bus	

Remarks	
 on	
 VNA	

•  Understand	
 Von-­‐Neumann	
 Architecture	

•  Understand	
 problems	
 and	
 solu2ons	

•  How	
 CPU	
 executes	
 a	
 program?	

– Bring	
 to	
 memory	
 &	
 run	

– Sequen;al	
 execu;on	
 of	
 instruc2ons	

•  How	
 a	
 computer	
 can	
 do	
 many	
 things	

simultaneously?	

–  Interrupts	

9	

Basic	
 Instruc&on	
 Cycle	

10	

Instruc&on	
 Fetch	
 	

and	
 Execute	

•  The	
 processor	
 fetches	
 the	
 instruc2on	
 from	
 memory	

into	
 Instruc2on	
 Register	
 (IR)	

•  Program	
 counter	
 (PC)	
 holds	
 address	
 of	
 the	

instruc2on	
 to	
 be	
 fetched	
 next	

–  PC	
 is	
 incremented	
 a@er	
 each	
 fetch	

•  Processor	
 interprets	
 the	
 instruc2on	
 and	
 performs	

required	
 ac2on:	

–  Processor-­‐memory	

–  Processor-­‐I/O	

–  Data	
 processing	

–  Control	

11	

Program	
 Execu&on	

12	

Interrupts	

•  Interrupt	
 the	
 normal	
 sequencing	
 of	
 the	
 processor	

•  Provided	
 to	
 improve	
 processor	
 u2liza2on	

• most	
 I/O	
 devices	
 are	
 slower	
 than	
 the	
 processor	

• processor	
 must	
 pause	
 to	
 wait	
 for	
 device	

• wasteful	
 use	
 of	
 the	
 processor	

13	

Common	
 Classes	
 	

of	
 Interrupts	

14	

Flow	
 of	
 Control	
 	

Without	

Interrupts	

15	

Interrupts:	
 	

Short	
 I/O	
 Wait	

16	

Transfer	
 of	
 Control	
 via	
 Interrupts	

17	

Instruc&on	
 Cycle	
 With	
 Interrupts	

18	

MEMORY	
 HIERARCHY	

Memory	

•  Major	
 constraints	
 in	
 memory	

◆ amount	

◆ speed	

◆ expense	

•  Memory	
 must	
 be	
 able	
 to	
 keep	
 up	
 with	
 the	
 processor	

•  Cost	
 of	
 memory	
 must	
 be	
 reasonable	
 in	
 rela2onship	
 to	

the	
 other	
 components	

The	
 Memory	
 Hierarchy	

§  Going	
 down	
 the	

hierarchy:	

Ø decreasing	
 cost	
 per	
 bit	

Ø increasing	
 capacity	

Ø increasing	
 access	
 2me	

Ø decreasing	
 frequency	
 of	

access	
 to	
 the	
 memory	
 by	

the	
 processor	

:	
 	

– Memory	
 references	
 by	
 the	
 processor	
 tend	
 to	
 cluster	

in	
 &me	
 and	
 space	

:	
 	

– Data	
 is	
 organized	
 so	
 that	
 the	
 percentage	
 of	
 accesses	

to	
 each	
 successively	
 lower	
 level	
 is	
 substan2ally	
 less	

than	
 that	
 of	
 the	
 level	
 above	

– Can	
 be	
 applied	
 across	
 more	
 than	
 two	
 levels	
 of	

memory	

•  Invisible	
 to	
 the	
 processors,	
 programmer,	
 OS	
 	

•  Interacts	
 with	
 other	
 memory	
 management	
 hardware	

•  Reasons	
 for	
 its	
 existence:	

– Processor	
 must	
 access	
 memory	
 at	
 least	
 once	
 per	

instruc2on	
 cycle	

– Processor	
 execu2on	
 is	
 limited	
 by	
 memory	
 cycle	
 2me	

– Exploit	
 the	
 principle	
 of	
 locality	
 with	
 a	
 small,	
 fast	

memory	

•  Contains	
 a	
 copy	
 of	
 a	
 por2on	
 of	
 main	
 memory	

•  Processor	
 first	
 checks	
 cache	

–  If	
 not	
 found,	
 a	
 block	
 of	
 memory	
 is	
 read	
 into	
 cache	

•  Because	
 of	
 locality	
 of	
 reference,	
 it	
 is	
 likely	
 that	
 many	
 of	

the	
 future	
 memory	
 references	
 will	
 be	
 to	
 other	
 bytes	
 in	

the	
 block	

Cache	
 and	
 	

Main	

Memory	

Cache/Main-­‐Memory	
 Structure	

Cache	
 Read	

Opera&on	

CACHE	

DESIGN	

Main	

categories	

are:	

cache	
 size	

block	
 size	

mapping	

func2on	

replacement	

algorithm	

write	

policy	

number	
 of	

cache	

levels	

Mapping	
 Func2on	

Two	
 constraints	
 affect	

design:	

When	
 one	
 block	
 is	
 read	
 in,	

another	
 may	
 have	
 to	
 be	

replaced	

The	
 more	
 flexible	
 the	

mapping	
 func2on,	
 the	
 more	

complex	
 is	
 the	
 circuitry	

required	
 to	
 search	
 the	
 cache	
 	

∗ 	
 	
 Determines	
 which	
 cache	

loca2on	
 the	
 block	
 will	
 occupy	

Replacement	
 Algorithm	

–  Chooses	
 which	
 block	
 to	
 replace	
 when	
 a	

new	
 block	
 is	
 to	
 be	
 loaded	
 into	
 the	
 cache	

	

–  Least	
 Recently	
 Used	
 (LRU)	
 Algorithm	

–  effec2ve	
 strategy	
 is	
 to	
 replace	
 a	
 block	
 that	
 has	
 been	

in	
 the	
 cache	
 the	
 longest	
 with	
 no	
 references	
 to	
 it	

–  hardware	
 mechanisms	
 are	
 needed	
 to	
 iden2fy	
 the	

least	
 recently	
 used	
 block	

	

Write	
 Policy	

• can	
 occur	
 every	
 2me	
 the	
 block	
 is	
 updated	

• can	
 occur	
 when	
 the	
 block	
 is	
 replaced	

• minimizes	
 write	
 opera2ons	

•  leaves	
 main	
 memory	
 in	
 an	
 obsolete	
 state	

Dictates	
 when	
 the	
 memory	
 write	
 opera2on	
 takes	

place	

SMP	
 AND	
 MULTICORE	

Symmetric	
 Mul2processors	
 	

(SMP)	

•  	
 A	
 stand-­‐alone	
 computer	
 system	
 with	
 the	
 following	

characteris2cs:	

–  two	
 or	
 more	
 similar	
 processors	
 of	
 comparable	
 capability	

–  processors	
 share	
 the	
 same	
 main	
 memory	
 and	
 are	

interconnected	
 by	
 a	
 bus	
 or	
 other	
 internal	
 connec2on	
 scheme	

–  processors	
 share	
 access	
 to	
 I/O	
 devices	

–  all	
 processors	
 can	
 perform	
 the	
 same	
 func2ons	

–  the	
 system	
 is	
 controlled	
 by	
 an	
 integrated	
 opera2ng	
 system	

that	
 provides	
 interac2on	
 between	
 processors	
 and	
 their	

programs	
 at	
 the	
 job,	
 task,	
 file,	
 and	
 data	
 element	
 levels	

Performance	

• a	
 system	
 with	
 mul2ple	

processors	
 will	
 yield	
 greater	

performance	
 if	
 work	
 can	
 be	

done	
 in	
 parallel	

Availability	

•  the	
 failure	
 of	
 a	
 single	

processor	
 does	
 not	
 halt	
 the	

machine	

Incremental	
 Growth	

• an	
 addi2onal	
 processor	
 can	

be	
 added	
 to	
 enhance	

performance	

Scaling	

• vendors	
 can	
 offer	
 a	
 range	
 of	

products	
 with	
 different	

price	
 and	
 performance	

characteris2cs	

SMP	
 Organiza2on	

	
 	
 	
 	
 	
 Figure	
 1.19	
 Symmetric	
 Mul2processor	
 Organiza2on	
 	

Mul2core	
 Computer	

•  Also	
 known	
 as	
 a	
 chip	
 mul2processor	

•  Combines	
 two	
 or	
 more	
 processors	
 (cores)	
 on	
 a	

single	
 piece	
 of	
 silicon	
 (die)	

•  each	
 core	
 consists	
 of	
 all	
 of	
 the	
 components	
 of	
 an	

independent	
 processor	

•  In	
 addi2on,	
 mul2core	
 chips	
 also	
 include	
 L2	

cache	
 and	
 in	
 some	
 cases	
 L3	
 cache	

Intel	
 Core	
 i7	

Supports	
 two	
 forms	
 of	
 external	
 communica2ons	
 to	
 other	
 chips:	

DDR3	
 Memory	
 Controller	

•  brings	
 the	
 memory	
 controller	
 for	
 the	
 DDR	
 (double	
 data	
 rate)	
 main	

memory	
 onto	
 the	
 chip	

• with	
 the	
 memory	
 controller	
 on	
 the	
 chip	
 the	
 Front	
 Side	
 Bus	
 is	

eliminated	

QuickPath	
 Interconnect	
 (QPI)	

• enables	
 high-­‐speed	
 communica2ons	
 among	
 connected	

processor	
 chips	

Intel	

Core	
 i7	

Figure	
 1.20	
 Intel	
 Corei7	
 Block	
 Diagram	
 	

DIRECT	
 MEMORY	
 ACCESS	
 (DMA)	

I/O	
 Techniques	

Three	
 techniques	
 are	
 possible	
 for	
 I/O	

opera2ons:	

Programmed	

I/O	

Interrupt-­‐
Driven	
 I/O	

Direct	
 Memory	

Access	
 (DMA)	

When	
 the	
 processor	
 encounters	
 an	
 instruc2on	
 related	
 to	
 I/O,	

it	
 executes	
 that	
 instruc2on	
 by	
 issuing	
 a	
 command	
 to	
 the	

appropriate	
 I/O	
 module	

Programmed	
 I/O	

•  The	
 I/O	
 module	
 performs	
 the	
 requested	
 ac2on	
 then	

sets	
 the	
 appropriate	
 bits	
 in	
 the	
 I/O	
 status	
 register	
 	

•  The	
 processor	
 periodically	
 checks	
 the	
 status	
 of	
 the	
 I/
O	
 module	
 un2l	
 it	
 determines	
 the	
 instruc2on	
 is	

complete	

•  With	
 programmed	
 I/O	
 the	
 performance	
 level	
 of	
 the	

en2re	
 system	
 is	
 severely	
 degraded	

Interrupt-­‐Driven	
 I/O	

Processor	

issues	
 an	
 I/O	

command	
 to	
 a	

module	
 and	

then	
 goes	
 on	

to	
 do	
 some	

other	
 useful	

work	

The	
 I/O	
 module	
 will	

then	
 interrupt	
 the	

processor	
 to	
 request	

service	
 when	
 it	
 is	

ready	
 to	
 exchange	

data	
 with	
 the	

processor	

The	
 processor	

executes	
 the	

data	
 transfer	

and	
 then	

resumes	
 its	

former	

processing	

More	
 efficient	
 than	

Programmed	
 I/O	
 but	
 s2ll	

requires	
 ac2ve	

interven2on	
 of	
 the	

processor	
 to	
 transfer	

data	
 between	
 memory	

and	
 an	
 I/O	
 module	

Interrupt-­‐Driven	
 I/O	

Drawbacks	

•  Transfer	
 rate	
 is	
 limited	
 by	
 the	
 speed	
 with	
 which	

the	
 processor	
 can	
 test	
 and	
 service	
 a	
 device	

•  The	
 processor	
 is	
 2ed	
 up	
 in	
 managing	
 an	
 I/O	

transfer	

§ 	
 a	
 number	
 of	
 instruc2ons	
 must	
 be	

executed	
 for	
 each	
 I/O	
 transfer	

Direct	
 Memory	
 Access	

	
 (DMA)	

When	
 the	
 processor	
 wishes	
 to	
 read	
 or	
 write	
 data	
 it	
 issues	
 a	

command	
 to	
 the	
 DMA	
 module	
 containing:	

• whether	
 a	
 read	
 or	
 write	
 is	
 requested	
 	

•  the	
 address	
 of	
 the	
 I/O	
 device	
 involved	

•  the	
 star2ng	
 loca2on	
 in	
 memory	
 to	
 read/write	

•  the	
 number	
 of	
 words	
 to	
 be	
 read/wriVen	

Performed	
 by	
 a	
 separate	
 module	
 on	
 the	
 system	
 bus	
 or	

incorporated	
 into	
 an	
 I/O	
 module	

•  Transfers	
 the	
 en2re	
 block	
 of	
 data	
 directly	
 to	
 and	

from	
 memory	
 without	
 going	
 through	
 the	

processor	

•  processor	
 is	
 involved	
 only	
 at	
 the	
 beginning	
 and	
 end	
 of	
 the	

transfer	

•  processor	
 executes	
 more	
 slowly	
 during	
 a	
 transfer	
 when	

processor	
 access	
 to	
 the	
 bus	
 is	
 required	

•  More	
 efficient	
 than	
 interrupt-­‐driven	
 or	

programmed	
 I/O	

Summary	

•  Basic	
 Elements	

•  processor,	
 main	
 memory,	
 I/O	
 modules,	
 system	
 bus	

• GPUs,	
 SIMD,	
 DSPs,	
 SoC	

•  Instruc2on	
 execu2on	

» processor-­‐memory,	
 processor-­‐I/O,	
 data	
 processing,	

control	

•  Interrupt/Interrupt	
 Processing	

• Memory	
 Hierarchy	

•  Cache/cache	
 principles	
 and	
 designs	

• Mul2processor/mul2core	

