Operating Systems

2. Computer Organization

What is an Operating System?

e Help the user use computer easily (Interface)
* Help the software use computer resource

* Help the programmer develop software (API)

* Operating system knows well the computer
works: Computer Architecture

Von Neumann Machine

* Pre-Von-Neumann Machine
— A computer can do only single computation
— Program = HW, Data in memory

* Von-Neumann Machine
— General purpose computer
— Program in memory, Data in memory
— Called stored-program architecture

— Good: re-program easily

Von Neumann Architecture

- Moves data/program from/to memory
- Execute program instruction
- Temporary memory: register

PC: Address of
next instruction

IR: Current
Instruction

PSW: Result
(Condition, Logic,
Error)

Registers

Registers within a CPU

Data Bus

Memory Buffer Register

Memory Address Register

CPU - Central Processing Unit

(c) www.teach-ict.com

Main memory

Address Bus

(RAM)

MBR: Buffer for
data/prog
fo fetch/store

MBR: Address to
fetch/store d
ata/prog.

Problem 1 of Von-Neumann

e Problem: Von Neumann Bottleneck = Bus
— Too much to move over bus: slow

e Solution: Cache
— Temporary fast memory with recent data/prog
— Code optimization

Problem 2 of Von-Neumann

* Problem 2: Prog. & data in same memory

— A program can mess-up instructions in memory
* Solution: Harvard Architecture

— Separate data and program memory

— Memory restriction: Prevent accessing memory
outside data

Problem 3 of Von-Neumann

* Problem 3: Prog. & data over the same bus
— Different fetch rate, slow bus
e Solution: Harvard Architecture

— Separate data and program bus

Program
Bus

Remarks on VNA

Understand Von-Neumann Architecture
Understand problems and solutions
How CPU executes a program?

— Bring to memory & run
— Sequential execution of instructions

How a computer can do many things
simultaneously?

— Interrupts

Basic Instruction Cycle

Fetch Stage Execute Stage

Figure 1.2 Basic Instruction Cycle

10

Instruction Fetch
and Execute

* The processor fetches the instruction from memory
into Instruction Register (IR)

* Program counter (PC) holds address of the
instruction to be fetched next
— PCis incremented after each fetch

* Processor interprets the instruction and performs
required action:
— Processor-memory
— Processor-1/0
— Data processing
— Control

11

Program Execution

Fetch Stage Execute Stage
Memory CPU Registers Memory CPU Registers
0 34 15 30011 9 40 3 0 0|PC 3001 9 40 3 0 1|PC
. . 30159411 ac| 30159 41| »[0003]Ac
[Opcode | Address | |sezoaa Simaor|sezoag (Io4oR
(a) Instruction format 940(0 0 0 3 94010 0 0 3
94110 0 0 2 941{0 0 0 2
Step 1 Step 2
0 1 15 . : .
I S I Maenitude Memory CPU Registers Memory CPU Registers
£ 300{1 9 40 30 L|PC 300|1 9 4 0 3 0 2|PC
301159 4 1 0 00 3|]AC]301|5 9 4 1 0 00 5[AC
(b) Integer format 302921 WEOAIR |302E 00T <‘5 941
940[0 0 0 3 9000 03] ™*3+2=5
Program counter (PC) = Address of instruction 94110 0 0 2 941[0 0 0 2}——"
Instruction register (IR) = Instruction being executed Step 3 Step 4
Accumulator (AC) = Temporary storage
Memory CPU Registers Memory CPU Registers
(c) Internal CPU registers 300{1 9 4 0 3 0 2|PC 30011 9 4 0O 3 0 3|PC
301{5 9 41 0 00 5|AC|301(59 41 0 0 0 5]AC
30212 9 41 »2 9 4 1|IR |302]12 9 4 1 29 4 1|IR
0001 = Load AC from memory 940[0 0 0 3 940[0 0 .0 3
0010 = Store AC to memory 941[0 0 0 2 94100 0 5
0101 = Add to AC from memory _
Step 5 Step 6
(d) Partial list of opcodes
Figure 1.3 Characteristics of a Hypothetical Machine Figure 14 Examp]e of Program Execution

(contents of memory and registers in hexadecimal)

Interrupts

* Interrupt the normal sequencing of the processor

* Provided to improve processor utilization
* most |/O devices are slower than the processor
e processor must pause to wait for device
» wasteful use of the processor

Common Classes
of Interrupts

Table 1.1 Classes of Interrupts

Program Generated by some condition that occurs as a result of an instruction
execution, such as arithmetic overflow, division by zero, attempt to execute
an illegal machine instruction, and reference outside a user's allowed
memory space.

Timer Generated by a timer within the processor. This allows the operating system
to perform certain functions on a regular basis.

O Generated by an [/O controller, to signal normal completion of an operation
or to signal a variety of error conditions.

Hardware failure Generated by a failure, such as power failure or memory parity error.

14

Flow of Control
Without
Interrupts

»
-
- »
s
e

......
. - .
L
.
.

(a) No interrupts

15

Interrupts:
Short I/0 Wait

J

User /O
Program , Program

.
Tl
~\ .
-
.
o
-

] ..,.o"..: —I"'O_
Command

N A Interrupt
@ . Handler

N =
— v

WRITE

(b) Interrupts; short IO wait

16

Transfer of Control via Interrupts

User Program Interrupt Handler

v

[] L]
L] -
L] L
1
Interrupt —
occurs here i+1 +
L]
&
L J
M

Figure 1.6 Transfer of Control via Interrupts

Instruction Cycle With Interrupts

Fetch Stage Execute Stage

Interrupt Stage

Interrupts
Disabled

Figure 1.7 Instruction Cycle with Interrupts

18

MEMORY HIERARCHY

Memory

* Major constraints in memory
€ amount <

& speed
@ expense

* Memory must be able to keep up with the processor

e Cost of memory must be reasonable in relationship to
the other components

The Memory Hierarchy

" Going down the
hierarchy:

» decreasing cost per bit
» increasing capacity
» increasing access time

» decreasing frequency of
access to the memory by
the processor

Figure 1.14 The Memory Hierarchy

Principle of Locality

* Fact:
— Memory references by the processor tend to cluster
in time and space
* How to exploit it:

— Data is organized so that the percentage of accesses
to each successively lower level is substantially less
than that of the level above

— Can be applied across more than two levels of
memory

Cache Memory

* |nvisible to the processors, programmer, OS
* Interacts with other memory management hardware
* Reasons for its existence:

— Processor must access memory at least once per
instruction cycle

— Processor execution is limited by memory cycle time

— Exploit the principle of locality with a small, fast
memory

Cache Principles

5 '-r-

e Contains a copy of a portion of main memory
* Processor first checks cache

— If not found, a block of memory is read into cache

* Because of locality of reference, it is likely that many of
the future memory references will be to other bytes in
the block

Cache and
Main
Memory

Word Transfer

~AA

Block Transfer

~AA

L

Cache

CPU
Fast
Level 1
CPU (L1) cache
Fastest

Slow

(a) Single cache

Level 2
(L2) cache

Fast

Main Memory
Level 3 |F—» Main
(L3) cache |}g—] Memory
Slow

Less
fast

(b) Three-level cache organization

Cache/Main-Memory Structure

Line

Number Tag Block
oI T T T T T |
L -
1! | |
|____= ——————————————————— —
e g
I | |
| | |
| | - |
o : :
I : - I
I I
———————————————————
c-rc__r :

_____ BlockLength

l (K Words) -

(a) Cache

Memory
address

L]
e :
o X
3 I ________ _!
! I
' I

e
| !
! I
' I
' I
' |
' I
' I
I * |
e !
I » |
, I
, I
I I
I I
, I
T~ =)
I I
I I
, I
, I
I I
I I
, I
| |
e

Word
Length

(b) Main memory

Figure 1.17 Cache/Main-Memory Structure

Block
(K words)

Block

START

RA -read address

Receive address

Cache Read o
Operation

Access main
memory for block

containing RA

Fetch RA word
and deliver
to CPU

l l

o0 Load main X
Deliver RA word
o memory block t0 CPU

into cache slot
(DONE '

Figure 1.18 Cache Read Operation

CACHE
DESIGN

number of
cache
levels

Main

categories
are:

mapping
function

replacement
algorithm

Mapping Function

X Determines which cache
location the block will occupy

When one block is read in,
another may have to be
replaced

Two constraints affect

design:

The more flexible the
mapping function, the more
complex is the circuitry
required to search the cache

Replacement Algorithm

— Chooses which block to replace when a
new block is to be loaded into the cache

— Least Recently Used (LRU) Algorithm

— effective strategy is to replace a block that has been
in the cache the longest with no references to it

— hardware mechanisms are needed to identify the
least recently used block

Write Policy

Dictates when the memory write operation takes

place

e can occur every time the block is updated

e can occur when the block is replaced
®* minimizes write operations
e |leaves main memory in an obsolete state

SMP AND MULTICORE

Symmetric Multiprocessors
(SMP)

A stand-alone computer system with the following
characteristics:

— two or more similar processors of comparable capability

— processors share the same main memory and are
interconnected by a bus or other internal connection scheme

— processors share access to |/O devices
— all processors can perform the same functions

— the system is controlled by an integrated operating system
that provides interaction between processors and their
programs at the job, task, file, and data element levels

SMP Advantages

Performance

e a system with multiple
processors will yield greater
performance if work can be
done in parallel

Availability

e the failure of a single
processor does not halt the
machine

Scaling

e vendors can offer a range of
products with different
price and performance
characteristics

Incremental Growth

e an additional processor can
be added to enhance
performance

SMP Organization

Processor

L1 Cache

L1 Cache

| L2 Cache ' L2 Cache

170

Subsystem

Processor e o o

System Bus

Processor

| L2 Cache '

I/0
Adapter

I/0
Adapter

/
/

I/0
Adapter

Figure 1.19 Symmetric Multiprocessor Organization

= Multicore Computer

* Also known as a chip multiprocessor
 Combines two or more processors (cores) on a
single piece of silicon (die)

- each core consists of all of the components of an
independent processor

* |n addition, multicore chips also include L2
cache and in some cases L3 cache

Intel Core i7

Supports two forms of external communications to other chips:

DDR3 Memory Controller

e brings the memory controller for the DDR (double data rate) main
memory onto the chip

e with the memory controller on the chip the Front Side Bus is
eliminated

QuickPath Interconnect (QPI)

e enables high-speed communications among connected
processor chips

Intel

Core i/

Core0 Core 1 Core 2 Core 3
32kBI1&D 32 kB I&D 32 kB 1&D 32kBI&D
L1 Caches L1 Caches L1 Caches L1 Caches

256 kB 256 kB 256 kB 256 kB
L2 Cache L2 Cache L2 Cache L2 Cache

8 MB
L3 Cache
DDR3 Memory QuickPath
Controllers Interconnect
, S, S 4 4

vy oy vi vi

X 8B@1.33GT/s 4x 20b @ 6.4 GT/s

Figure 1.20 Intel Corei7 Block Diagram

DIRECT MEMORY ACCESS (DMA)

/0O Techniques

When the processor encounters an instruction related to 1/0,
it executes that instruction by issuing a command to the
appropriate I/0 module

Three techniques are possible for I/0
operations:

Programmed Interrupt- Direct Memory
/0 Driven 1/0O Access (DMA)

Programmed I/0O

* The I/O module performs the requested action then
sets the appropriate bits in the |/O status register

* The processor periodically checks the status of the I/
O module until it determines the instruction is
complete

* With programmed I/0O the performance level of the
entire system is severely degraded

Interrupt-Driven |/O

Processor

issues an 1/0O The processor
command to a executes the

module and data transfer
then goes on and then

to do some resumes its
other useful former

work processing

The 1/0 module will More efficient than
then interrupt the Programmed I/0 but still
processor to request requires active
service when it is intervention of the
ready to exchange processor to transfer
data with the data between memory

processor and an I/O module

Interrupt-Driven 1/0O -
Drawbacks DY

* Transfer rate is limited by the speed with which
the processor can test and service a device

* The processor is tied up in managing an /0O
transfer

= 3 number of instructions must be
executed for each I/O transfer

Direct Memory Access
(DMA)

Performed by a separate module on the system bus or
incorporated into an I/O module

When the processor wishes to read or write data it issues a

command to the DMA module containing:

e whether a read or write is requested

e the address of the 1/O device involved

e the starting location in memory to read/write
e the number of words to be read/written

Direct Memory Access

* Transfers the entire block of data directly to and
from memory without going through the
processor

* processor is involved only at the beginning and end of the
transfer

* processor executes more slowly during a transfer when
processor access to the bus is required

* More efficient than interrupt-driven or
programmed 1/0O

Summary

 Basic Elements
e processor, main memory, |/0 modules, system bus
* GPUs, SIMD, DSPs, SoC

* Instruction execution

» processor-memory, processor-1/0, data processing,
control

* Interrupt/Interrupt Processing

* Memory Hierarchy

* Cache/cache principles and designs
* Multiprocessor/multicore

